• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Broadband Microstrip Antenna Based on Operation of Multi-Resonant Modes

    2019-07-18 02:00:02TaohuaChenYueyunChenRonglingJianZushenLiuandAlanYang
    Computers Materials&Continua 2019年7期

    Taohua Chen, Yueyun Chen, , Rongling Jian, Zushen Liu and Alan Yang

    Abstract: A novel broadband microstrip antenna under operation of TM1/2,0, TM10 and TM12 modes through a shorting wall and slots is proposed in this paper.Initially, an inverted U-shaped slot is adopted around the feeding point, which achieves a good impedance matching on TM10 mode and separates the patch into two parts.Additionally, a shorting wall is added underneath the edge of smaller patch to excite another onequarter resonant mode, i.e., TM1/2,0 mode of smaller patch close to TM10 mode to expand the impedance bandwidth.Further, the antenna width is enlarged and two symmetrical vertical rectangular slots are cut on the patch to reduce the frequency of TM12 mode to form a broadband.Based on the arrangements above, a wide impedance bandwidth with three minima can finally be achieved.The results show that the impedance bandwidth of proposed antenna for |S11|<-10 dB is extended to 26.5% (23.5-30.67 GHz), which is three times of the conventional antenna at same profile.Moreover, a stable radiation pattern at broadside direction is realized over the operating band.

    Keywords: Broadband, microstrip antenna, shorting wall, slots, three resonant modes.

    1 Introduction

    With the development of modern communication systems, microstrip antenna (MSA) has attracted much attention in wireless communication because of their low profile, small cost, and ease of manufacture [Chen, Jian, Ma et al.(2017)].However, conventional MSA always suffers from a narrow impedance bandwidth, usually less than 3% [Sun, Li, Zhang et al.(2017)].Thus, how to extend the bandwidth of MSA effectively becomes a hot research topic in recent years.

    Several methods have been proposed to improve the impedance bandwidth of MSA.The simplest method to expand bandwidth is enhancing the antenna thickness and decreasing the substrate permittivity [Constantine (2005)].However, using thick substrates will enlarge the surface wave leakage leading to a decrease in radiation efficiency and the lowest substrate dielectric constant is 1, i.e., air.

    Additionally, in Liao et al.[Liao, Xue and Xu (2012)], the feeding scheme was reconfigured to extend the impedance bandwidth to 115% by introducing another non resonant mode around the fundamental mode.In addition, the L-shaped and F-shaped probe feeds in Mak et al.[Mak, Lai and Luk (2018); Jin and Du (2015)] was adopted to enhance the bandwidth to 54% and 45%, respectively.The reason for bandwidth enhancement of these antennas is that the changed probes can eliminate the impedance inductance to make a great impedance matching.Nevertheless, it is difficult to implement the feeding scheme in a thin substrate.

    Moreover, slotting on the patch is another effective method, which was widely used in the past decades to expand the impedance bandwidth because of the simple implementation.The authors in Huynh et al.[Huynh and Lee (1995)] proposed a U-shaped slot on the radiating patch to extend the impedance bandwidth to 47%.When a U-shaped slot was adopted, the frequencies of higher-order modes were reduced to around that of fundamental mode to achieve a broadband [Deshmukh and Ray (2015)].Besides, in Yang et al.[Yang, Zhang, Ye et al.(2001)], a simple E-shaped microstrip patch was proposed.The antenna in Yang et al.[Yang, Zhang, Ye et al.(2001)] could exist two different current paths by two symmetrical vertical rectangular slots cut on the patch, which realized the combination of two resonant modes and enhanced the bandwidth to 30.3%.And in Deshmukh et al.[Deshmukh and Ray (2009)], the antenna bandwidth was extended to 24.6% by adopting a half U-shaped slot on the semi E-shaped antenna.Also, wang-shaped patch in Chung et al.[Chung and Wong (2010)], modified E-shaped patch in Koutinos et al.[Koutinos, Anagnostou, Joshi et al.(2018)] and modified U-slotted antenna in Costanzo et al.[Costanzo and Costanzo (2013)] were proposed for bandwidth enhancement.However, the all antennas with slots loaded on the patch mentioned above are high-profile antennas, which destroys the low-profile property of microstrip antenna.

    Furthermore, in recent years, coupling two odd modes of MSA together becomes a new attractive method.The TM10and TM30modes could be combined together to achieve bandwidth enhancement by shorting pins and slots, and the bandwidth was increased to 13%, 18% and 11.8% in Liu et al.[Liu, Zhu and Choi (2017)], Wang et al.[Wang, Ng, Chan et al.(2015)] and Liu et al.[Liu, Zhu, Choi et al.(2017)], respectively.In Liu et al.[Liu, Zhu, Choi et al.(2018); Liu, Zhu and Choi (2017)], through same method to combine TM10and TM12modes, the impedance bandwidth was increased to 10% and 15.3%, respectively.However, since only two odd modes are combined, the impedance bandwidth of these antennas are only twice as wide as that of traditional microstrip antennas, which may hinder the application of these MSAs in broadband communication systems.

    In this paper, a novel patch antenna under operation of TM1/2,0, TM10and TM12modes through a shorting wall and slots is proposed to achieve bandwidth expansion.Firstly, an inverted U-shaped slot is loaded around the feeding point on the patch to achieve a good impedance matching and separates the patch into two parts.Secondly, a shorting wall is added underneath the smaller patch produced by the inverted U-shaped slot, which will excite another resonant mode, i.e., TM1/2,0of smaller patch antenna close to TM10mode to expand the impedance bandwidth.Thirdly, to further extend the bandwidth, the antenna width is enlarged and two symmetrical vertical rectangular slots is cut on the patch to reduce the frequency of TM12mode to form a broadband.Finally, a broadband of 26.5% (23.5-30.67 GHz) for |S11| < -10 dB is achieved and the impedance bandwidth is three times that of conventional antenna at same profile.Moreover, a stable radiation pattern at the broadside direction is realized over the operating band.In this paper, fullwave simulation software HFSS 13.0 is used for simulation calculation.

    2 Antenna configuration and design process

    2.1 Antenna configuration

    The configuration of the proposed broadband microstrip antenna is shown in Fig.1.It consists of a rectangular radiating patch with the size of L×W, a ground plane with the size of Ls×Ws, an inverted U-shape slot with the width of W2, two symmetrical vertical rectangular slots with the size of L×W1and a shorting wall with the dimensions of W3×H which is L3distance from the lower edge of patch.Between the patch and the ground, a dielectric substrate RO5880 with a permittivity of εr=2.2 and a thickness of H=0.787 mm is selected in this paper for antenna design.And all parameters for the proposed broadband antenna in Fig.1 are tabulated in Tab.1.

    Firstly, the inverted U-shaped slot is adopted to achieve impedance matching of the traditional antenna and separates the patch into two parts.Secondly, a shorting wall is added to connect the smaller patch and ground to excite a one-quarter wavelength resonant mode, i.e., TM1/2,0of the smaller patch to expand the impedance bandwidth.To further extend the bandwidth, the antenna width is enlarged and two symmetrical vertical rectangular slots are cut on the patch to reduce the frequency of TM12mode.Finally, a wideband antenna can be realized with three minima in operating band.

    Figure 1: Configuration of the proposed broadband antenna loaded with a shorting wall and slots (a) 3D view.(b) Top view.(c) Right view.(d) Front view

    Table 1: Dimensions of the proposed broadband antenna in Fig.1 (mm)

    2.2 Design process

    In order to expand the impedance bandwidth of microstrip antenna, the structure of traditional microstrip antenna is modified.The design process of proposed broadband antenna is shown in Fig.2.

    Initially, the ANT 1 is an inverted U-shaped slot cut around the feeding point on the radiating patch of the conventional antenna to achieve impedance matching.Then, for the ANT 2, another resonant mode near TM10mode is excited through a shorting wall added underneath the edge of smaller patch produced by the inverted U-shaped slot.To further expand the impedance bandwidth, for the ANT 3, i.e., proposed antenna, the antenna width is enlarged and two symmetrical vertical rectangular slots are cut on the patch to reduce the frequency of TM12mode close to that of TM10mode.The radiating patches of ANT 1 and ANT 2 are with the same size (W=1.5 L), and the patch width of ANT 3 is enlarged to twice of the length.The simulated reflection coefficients are shown in Fig.3.The antennas dimensions are optimized to good impedance matching.It can be observed from the Fig.3 that the impedance bandwidth for |S11|<-10 dB of ANT 1 is 9.4% (24.17-26.55 GHz), and is 18.4% (23.45-28.2 GHz) for ANT 2.The reason of enhancement of the impedance bandwidth is that another resonant mode, i.e., TM1/2,0mode which is excited through a shorting wall underneath the smaller patch produced by the inverted Ushaped slot is coupled to the fundamental TM10mode.As for the proposed antenna ANT 3, the impedance bandwidth is further extended to 26.5% (23.5-30.67 GHz).Through two symmetrical vertical rectangular slots and increasing the patch width to twice of the length, for ANT 3, another resonant mode, i.e., TM12mode is added to form a wider bandwidth, which can be easily observed from Fig.3.

    Figure 2: Design process of proposed antenna

    Figure 3: Simulated reflection coefficients of three antennas

    2.3 Operating mechanism

    To understand the operating mechanism of the proposed antenna, Fig.4 plots the electric field distributions of the radiating patch.For the electric field distributions at 24.18 GHz, the electric field is mainly distributed at lower edge of the smaller patch around the feeding point, which is similar to the one-quarter wavelength resonant mode, i.e., TM1/2,0mode of smaller patch.While at the 27.74 GHz, the electric field distributions are similar to the fundamental TM10mode which is mainly distributed at the edge of conventional patch.In addition, for the 30.39 GHz, the electric field is mainly distributed at the patches on left and right sides produced by two symmetrical vertical rectangular slots.Compared with the electric field distributions of TM12mode in the patch without rectangular slots, the rectangular slots destroy the electric field distributions, which will reduce the frequency of TM12mode.Though coupling the three resonant modes together, a broadband microstrip antenna can be realized.

    Figure 4: Simulated electric field distributions of proposed antenna.(a) 24.18 GHz.(b) 27.74 GHz.(c) 30.39 GHz

    2.4 Reducing the resonant frequency of TM12 mode

    In order to better illustrate how to reduce the frequency of TM12mode, the specific analysis is made in this subsection.According to the cavity model [Garg, Bhartia, Bahl et al.(2001)], the resonant frequencies (fmn) of TMmnmodes in microstrip antenna can be expressed as follows:

    where c is the light speed in the free space, εris the dielectric constant of substrate, and m=1, 2, 3 … and n=1, 2, 3 …

    Based on formula (1), the patch width (W) plays an important role in the frequency of TM12mode (f12), yet has no effect on that of TM10mode (f10).Therefore, when W is increased, f12will be reduced while f10keeps constant.In this paper, considering the antenna size, the patch width is enlarged to twice of the length.However, when patch width is twice of length, the distance of f10and f12is still large, which cannot to form a wide bandwidth.Thus, two symmetrical vertical rectangular slots are cut on the patch to further reduce f12.

    Initially, four symmetrical vertical rectangular slots are loaded on the patch, which can be observed at Fig.5.

    Figure 5: Antenna with four symmetrical vertical rectangular slots

    Figure 6: Current distribution of TM12 mode at different slots length.(a) Without slots, 39.57 GHz.(b) Lslot=0.2L, 36.17 GHz.(c) Lslot=0.4L, 31.27 GHz.(d) Lslot=0.5L, 30.26 GHz

    Because the four vertical rectangular slots are parallel to current flow direction of TM10mode, they have little effect on f10.However, for the TM12mode, the slots enlarge the horizontal current path, which will reduce the f12.To better understand the effects of four symmetrical vertical rectangular slots on TM12mode, the current distribution of TM12mode at different slots length is plotted on Fig.6, and the other antenna parameters are fixed as shown in Tab.1.

    It can be clearly seen from Fig.6 that the slots length has great effect on the TM12current path corresponding to f12.Moreover, Fig.6 also gives the f12at different slots length, we can find that the f12decreases from 39.57 GHz to 30.26 GHz as the slots length increases from 0 to 0.5L.Moreover, to better show the effect of slots length on f10and f12, Fig.7 plots the f10and f12varying with the slots length when other parameters are fixed.As can be observed from Fig.7, the f10keeps stable while f12decreases as the slots length increases, as predicted above.

    Figure 7: f10 and f12 varying with the slots length Lslot

    Finally, considering the all antenna performances, we select Lslot= 0.5L in this paper and for this reason there are only two large symmetrical vertical rectangular slots at last.Note that the TM02mode between TM10and TM12modes is removed when Lslot= 0.5L is adopted, and the radiation peak of TM12mode is changed to boresight because of the slots [Xiao, Wang, Shao et al.(2005)].

    3 Parametric studies

    To deeply understand how the influence of dimensional parameters on the proposed antenna performances and design flow, parametric studies for the proposed wideband antenna is carried out by using HFSS 13.0.In this paper, several key parameters listed in Tab.1 are extensively studied under other parameters to be fixed.

    3.1 Effects of two symmetrical vertical rectangular slots position L1 and width W1

    Fig.8 plots the simulated results of the |S11| as a function of frequency at different symmetrical vertical rectangular slots position L1.As can be observed from the Fig.8, compared with the third resonant mode, i.e., TM12mode, the first resonant mode (TM1/2,0mode) and second resonant mode (TM10mode) are less influenced by the vertical rectangular slots position L1.The reason is that two symmetrical vertical rectangular slots cut off the horizontal current of TM12mode, while have little effect on the vertical current of TM1/2,0and TM10modes.When L1is from 3.1 mm to 3.5 mm, the impedance matching of TM12mode becomes better gradually and the frequency of TM12mode increases.Yet, when L1=3.5 mm, the band between TM10and TM12mode becomes mismatched, and the best bandwidth can be obtained at L1=3.3 mm from Fig.8.

    Figure 8: |S11| as a function of frequency at different L1

    Figure 9: |S11| as a function of frequency at different W1

    In Fig.9, the |S11| as a function of frequency at different vertical rectangular slots width W1is illustrated.Like L1, the W1has little effect on the TM1/2,0mode.However, the W1begins to affect TM10and TM12modes concurrently.The wider the W1, the closer the distance between TM10and TM12modes.And the widest bandwidth can be seen at W1=1.0 mm from Fig.9.

    3.2 Effects of smaller patch length L3 and width W3

    Fig.10 gives the |S11| as a function of frequency at different smaller patch length L3.As expected, the L3has a great impact on the TM1/2,0mode.When L3increases from 1.2 mm to 1.4 mm, the frequency of TM1/2,0corresponding to the L3decreases.Meanwhile, the L3affects the impedance matching of all three modes.And the best value of L3can be found from Fig.10 is L3=1.3 mm.

    Figure 10: |S11| as a function of frequency at different L3

    Figure 11: |S11| as a function of frequency at different W3

    Fig.11 shows the |S11| as a function of frequency at different smaller patch width W3.The W3mainly affects the impedance matching of three resonant modes and has little influence on the resonant frequencies of three modes.Considering the whole |S11| performance in Fig.11, the W3=0.5 mm is selected in this paper.

    3.3 Effects of inverted U-shaped slot width W2 and feeding position P

    Fig.12 and Fig.13 plot the |S11| as a function of frequency at different inverted U-shaped slot width W2and feeding position P, respectively.

    Figure 12: |S11| as a function of frequency at different W2

    Figure 13: |S11| as a function of frequency at different P

    As can be observed from Fig.12, the W2mainly influences the impedance matching of TM1/2,0and TM10modes.And best |S11| performance of TM1/2,0and TM10modes is achieved at W2=0.03 mm.However, the band between TM10and TM12mode is mismatched at W2=0.03 mm.Thus, considering the whole |S11| performance, in this paper, W2=0.04 mm is selected.For the feeding position P, as can be seen from Fig.13, it has great effects on the matching condition.Moreover, the best value of P is realized at P=0.92 mm.

    4 Results and discussion

    The reflection coefficient of proposed broadband microstrip antenna is plotted in Fig.14.

    Figure 14: |S11| of proposed broadband antenna

    Figure 15: Gain at broadside direction of proposed antenna

    It can be observed from Fig.14 that the impedance bandwidth for |S11|<-10 dB is extended to 26.5%, ranging from 23.5 to 30.67 GHz.Meanwhile, there are three minima in the operating band, which is consistent with the three resonant modes mentioned above.Compared with the conventional antenna bandwidth of 9.4% at the same profile, the impedance bandwidth of proposed antenna is about three times that of the conventional antenna through coupling three resonant modes together.

    Figure 16: Normalized radiation patterns of proposed antenna at 24.18, 27.74 and 30.39 GHz

    Moreover, the gain as a function of frequency at broadside direction of proposed antenna is illustrated in Fig.15.It can be seen from Fig.15 that the proposed antenna has obtained a stable gain of around 6 dBi at the broadside direction in the operating band, which shows that the proposed wideband antenna has a good gain performance in the operating band.

    Fig.16 gives the normalized radiation patterns of proposed antenna at three minima of 24.18, 27.74 and 30.39 GHz.As for the E-plane, the co-polarization radiation patterns are a little asymmetric because of the asymmetric antenna structure.Yet, it is still stable at the operating band.Meanwhile, the cross-polarization level in E-plane is lower than -30 dB over the operating band, which indicates that the proposed broadband antenna has a good radiation performance in E-plane.While for the H-plane, the co-polarization radiation patterns are symmetric, and the cross-polarization level in the broadside direction is lower than -40 dB over the operating band.

    5 Conclusion

    In this paper, a novel broadband microstrip antenna is proposed and analyzed.A shorting wall is adopted to excite a one-quarter resonant mode (TM1/2,0mode) close to the fundamental mode (TM10mode) to expand the impedance bandwidth.Further, through two symmetrical vertical rectangular slots and enlarging the antenna width to twice of the length, the TM12mode is also adjusted in proximity to the TM10mode.Finally, a broadband microstrip antenna with impedance bandwidth of 26.5% for |S11|<-10 dB is achieved, and its bandwidth is about three times of the conventional antenna at same profile.In addition, a stable radiation pattern at the broadside direction is realized over the operating band.The proposed antenna is compact and wideband, it can be used for 5G wireless communication in the future.

    Acknowledgement:This work was supported by National Science and Technology Major Project No.2017ZX03001021-005.

    References

    Chen, Y.Y.; Jian, R.L.; Ma, S.S.; Mohadeskasaei, S.A.(2017): A research for millimeter wave patch antenna and array synthesis.IEEE Wireless and Optical Communication Conference, pp.1-5.

    Chung, K.L.; Wong, C.H.(2010): Wang-shaped patch antenna for wireless communications.IEEE Antennas & Wireless Propagation Letters, vol.9, no.1, pp.638-640.

    Constantine, A.B.(2005): Antenna Theory: Analysis and Design.John Wiley & Sons, USA.Costanzo, S.; Costanzo, A.(2013): Compact U-slotted antenna for broadband radar applications.Journal of Electrical and Computer Engineering,vol.2013, pp.10.

    Deshmukh, A.A.; Ray, K.P.(2009): Compact broadband slotted rectangular microstrip antenna.IEEE Antennas & Wireless Propagation Letters, vol.8, no.4, pp.1410-1413.

    Deshmukh, A.; Ray, K.P.(2015): Analysis of broadband variations of U-slot cut rectangular microstrip antennas.IEEE Antennas and Propagation Magazine, vol.57, no.2, pp.181-193.

    Garg, R.; Bhartia, P.; Bahl, I.; Ittipiboon, A.(2001): Microstrip Antenna Design Handbook.Artech House, UK.

    Huynh, T.; Lee, K.F.(1995): Single-layer single-patch wideband microstrip antenna.Electronics Letters, vol.31, no.16, pp.1310-1312.

    Jin, Y.; Du, Z.(2015): Broadband dual-polarized F-probe fed stacked patch antenna for base stations.IEEE Antennas & Wireless Propagation Letters, vol.14, pp.1121-1124.

    Koutinos, A.G.; Anagnostou, D.E.; Joshi, R.; Podilchak, S.K.; Kyriacou, G.A.et al.(2018): Modified easy to fabricate E-shaped compact patch antenna with wideband and multiband functionality.IET Microwaves, Antennas & Propagation, vol.12, no.3, pp.326-331.

    Liao, S.W.; Xue, Q.; Xu, J.H.(2012): Parallel-plate transmission line and L-plate feeding differentially driven H-slot patch antenna.IEEE Antennas & Wireless Propagation Letters, vol.11, no.8, pp.640-644.

    Liu, N.W.; Zhu, L.; Choi, W.W.(2017): A differential-fed microstrip patch antenna with bandwidth enhancement under operation of TM10and TM30modes.IEEE Transactions on Antennas and Propagation, vol.65, no.4, pp.1607-1614.

    Liu, N.W.; Zhu, L.; Choi, W.W.(2017): A low-profile wide-bandwidth planar inverted-F antenna under dual resonances: principle and design approach.IEEE Transactions on Antennas and Propagation, vol.65, no.10, pp.5019-5025.

    Liu, N.W.; Zhu, L.; Choi, W.W.; Zhang, X.(2017): Wideband shorted patch antenna under radiation of dual resonant modes.IEEE Transactions on Antennas and Propagation, vol.65, no.6, pp.2789-2796.

    Liu, N.W.; Zhu, L.; Choi, W.W.; Zhang, X.(2018): A low-profile differential-fed patch antenna with bandwidth enhancement and sidelobe reduction under operation of TM10and TM12modes.IEEE Transactions on Antennas and Propagation, vol.66, no.9, pp.4854-4859.

    Mak, K.M.; Lai, H.W.; Luk, K.M.(2018): A 5G wideband patch antenna with antisymmetric L-shaped probe feeds.IEEE Transactions on Antennas and Propagation, vol.66, no.2, pp.1-1.

    Sun, W.; Li, Y.; Zhang, Z.; Feng, Z.(2017): Broadband and low-profile microstrip antenna using strip-slot hybrid structure.IEEE Antennas and Wireless Propagation Letters, vol.16, no.99, pp.3118-3121.

    Wang, D.; Ng, K.B.; Chan, C.H.; Wong, H.(2015): A novel wideband differentiallyfed higher-order mode millimeter-wave patch antenna.IEEE Transactions on Antennas and Propagation, vol.63, no.2, pp.466-473.

    Xiao, S.Q.; Wang, B.Z.; Shao, W.; Zhang, Y.(2005): Bandwidth-enhancing ultralowprofile compact patch antenna.IEEE Transactions on Antennas and Propagation, vol.53, no.11, pp.3443-3447.

    Yang, F.; Zhang, X.X.; Ye, X.; Rahmat-Samii, Y.(2001): Wide-band E-shaped patch antennas for wireless communications.IEEE Transactions on Antennas and Propagation, vol.49, no.7, pp.1094-1100.

    搡女人真爽免费视频火全软件 | 欧洲精品卡2卡3卡4卡5卡区| 内射极品少妇av片p| 成人国产一区最新在线观看| 丰满乱子伦码专区| 久久久色成人| 色综合欧美亚洲国产小说| a级一级毛片免费在线观看| 婷婷精品国产亚洲av| 亚洲电影在线观看av| 日本黄大片高清| 岛国在线观看网站| 欧美激情久久久久久爽电影| 午夜福利18| 久久精品综合一区二区三区| 欧美成狂野欧美在线观看| 亚洲国产中文字幕在线视频| 亚洲av五月六月丁香网| 精华霜和精华液先用哪个| 一个人免费在线观看的高清视频| 亚洲人成电影免费在线| 一级毛片女人18水好多| 国产99白浆流出| avwww免费| 国产黄色小视频在线观看| 女警被强在线播放| 成人一区二区视频在线观看| 在线观看av片永久免费下载| 19禁男女啪啪无遮挡网站| 亚洲av免费高清在线观看| 精品人妻一区二区三区麻豆 | 九色成人免费人妻av| 日本一二三区视频观看| 精品人妻一区二区三区麻豆 | 淫秽高清视频在线观看| 国产美女午夜福利| 成人精品一区二区免费| 国产高潮美女av| 欧美黑人欧美精品刺激| 午夜福利视频1000在线观看| 中文字幕久久专区| 我的老师免费观看完整版| 97超视频在线观看视频| 美女cb高潮喷水在线观看| 99久久成人亚洲精品观看| 白带黄色成豆腐渣| 国产高清激情床上av| 欧美zozozo另类| 婷婷丁香在线五月| 亚洲国产精品合色在线| 一a级毛片在线观看| 亚洲av熟女| 亚洲欧美精品综合久久99| 搞女人的毛片| 婷婷六月久久综合丁香| 男女视频在线观看网站免费| 一本精品99久久精品77| 亚洲成人免费电影在线观看| 久久久精品大字幕| 亚洲一区二区三区色噜噜| 亚洲精品成人久久久久久| 少妇裸体淫交视频免费看高清| 精品无人区乱码1区二区| 国产精品 欧美亚洲| 亚洲av五月六月丁香网| 国产精品久久久人人做人人爽| 国产精品久久久久久人妻精品电影| 欧美一级毛片孕妇| 99久久九九国产精品国产免费| 亚洲自拍偷在线| 乱人视频在线观看| 亚洲成a人片在线一区二区| 波多野结衣巨乳人妻| 精品电影一区二区在线| 久久香蕉国产精品| 黄色片一级片一级黄色片| 看片在线看免费视频| 日本免费一区二区三区高清不卡| 俄罗斯特黄特色一大片| 国产精品久久久久久久久免 | 九九在线视频观看精品| 他把我摸到了高潮在线观看| 国产淫片久久久久久久久 | 久久精品国产综合久久久| 日韩人妻高清精品专区| 噜噜噜噜噜久久久久久91| 亚洲成a人片在线一区二区| 欧美乱色亚洲激情| 少妇丰满av| 亚洲精华国产精华精| 成人18禁在线播放| 欧美区成人在线视频| 国产91精品成人一区二区三区| 免费看十八禁软件| 午夜久久久久精精品| 日本黄色视频三级网站网址| 色综合站精品国产| 国产精品久久久久久久久免 | 白带黄色成豆腐渣| 精品国产美女av久久久久小说| 18禁裸乳无遮挡免费网站照片| 国产综合懂色| 欧美+亚洲+日韩+国产| 综合色av麻豆| 欧美成人免费av一区二区三区| 成人国产综合亚洲| 久久中文看片网| 亚洲最大成人手机在线| a级一级毛片免费在线观看| 精品人妻偷拍中文字幕| 最近视频中文字幕2019在线8| 久久久国产成人精品二区| 欧美日韩瑟瑟在线播放| 国产精品久久久久久精品电影| 色精品久久人妻99蜜桃| 久久人妻av系列| 999久久久精品免费观看国产| 久久精品影院6| 女警被强在线播放| 国产精品乱码一区二三区的特点| 久久中文看片网| 精品一区二区三区视频在线 | а√天堂www在线а√下载| 校园春色视频在线观看| 欧美区成人在线视频| 99精品欧美一区二区三区四区| 一级作爱视频免费观看| 中文资源天堂在线| 天堂av国产一区二区熟女人妻| av中文乱码字幕在线| 天美传媒精品一区二区| 久久伊人香网站| 特级一级黄色大片| 成人av一区二区三区在线看| 国产成人啪精品午夜网站| 中文在线观看免费www的网站| 欧美最黄视频在线播放免费| 日本熟妇午夜| 91字幕亚洲| 免费看a级黄色片| 中文字幕人成人乱码亚洲影| 99在线人妻在线中文字幕| 免费高清视频大片| 国产一区二区激情短视频| 变态另类丝袜制服| 久久久久久久久久黄片| 亚洲,欧美精品.| 日韩欧美三级三区| 亚洲无线在线观看| 天天添夜夜摸| 欧美在线一区亚洲| 午夜福利在线观看吧| or卡值多少钱| 制服丝袜大香蕉在线| 一卡2卡三卡四卡精品乱码亚洲| 一级黄色大片毛片| 久久精品影院6| 最新在线观看一区二区三区| av天堂中文字幕网| 国产黄a三级三级三级人| 国产97色在线日韩免费| 国产精品98久久久久久宅男小说| 噜噜噜噜噜久久久久久91| 一卡2卡三卡四卡精品乱码亚洲| 成人特级黄色片久久久久久久| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 成人特级黄色片久久久久久久| 欧美性猛交黑人性爽| 人妻久久中文字幕网| 中文亚洲av片在线观看爽| 欧美一区二区国产精品久久精品| 色av中文字幕| ponron亚洲| 我要搜黄色片| 一级毛片女人18水好多| 少妇丰满av| 男人和女人高潮做爰伦理| 看黄色毛片网站| 国产一区在线观看成人免费| 精品一区二区三区视频在线 | 免费高清视频大片| 中出人妻视频一区二区| 欧美三级亚洲精品| 99在线人妻在线中文字幕| 亚洲精品在线观看二区| 好男人电影高清在线观看| 99在线人妻在线中文字幕| 99在线视频只有这里精品首页| 国产又黄又爽又无遮挡在线| 国语自产精品视频在线第100页| av国产免费在线观看| АⅤ资源中文在线天堂| 国产成人影院久久av| 久久久久精品国产欧美久久久| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利18| 亚洲av电影在线进入| 精品一区二区三区视频在线 | 91麻豆精品激情在线观看国产| bbb黄色大片| 又黄又粗又硬又大视频| 99精品欧美一区二区三区四区| 国产亚洲欧美98| 一级黄色大片毛片| 俄罗斯特黄特色一大片| 国产成人a区在线观看| 国产av在哪里看| 亚洲精品影视一区二区三区av| 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| x7x7x7水蜜桃| 精品国产超薄肉色丝袜足j| 听说在线观看完整版免费高清| svipshipincom国产片| 国产一级毛片七仙女欲春2| 成人无遮挡网站| 亚洲片人在线观看| 岛国在线免费视频观看| xxxwww97欧美| 亚洲人成网站高清观看| 特级一级黄色大片| 人妻夜夜爽99麻豆av| www.999成人在线观看| 亚洲国产精品成人综合色| 国产亚洲欧美98| 少妇的逼水好多| 在线观看av片永久免费下载| 97超视频在线观看视频| 一边摸一边抽搐一进一小说| 精品人妻一区二区三区麻豆 | 亚洲国产欧洲综合997久久,| 超碰av人人做人人爽久久 | 亚洲在线观看片| 每晚都被弄得嗷嗷叫到高潮| 成人无遮挡网站| 欧美乱码精品一区二区三区| 长腿黑丝高跟| 99久久成人亚洲精品观看| 亚洲真实伦在线观看| 一本久久中文字幕| 又黄又爽又免费观看的视频| 淫秽高清视频在线观看| 国产精品一区二区免费欧美| 国产免费av片在线观看野外av| 国产中年淑女户外野战色| 国产精品1区2区在线观看.| 综合色av麻豆| 国产精品电影一区二区三区| 亚洲av免费在线观看| 特大巨黑吊av在线直播| 午夜免费成人在线视频| 国产精华一区二区三区| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 免费人成在线观看视频色| 午夜a级毛片| 三级毛片av免费| 又紧又爽又黄一区二区| 偷拍熟女少妇极品色| 久久久久久久亚洲中文字幕 | а√天堂www在线а√下载| 成人欧美大片| 国产高清视频在线观看网站| 日本在线视频免费播放| 亚洲成人中文字幕在线播放| 国产麻豆成人av免费视频| 欧美区成人在线视频| 男女之事视频高清在线观看| 香蕉久久夜色| 最近视频中文字幕2019在线8| 亚洲天堂国产精品一区在线| 婷婷六月久久综合丁香| 国产v大片淫在线免费观看| 又粗又爽又猛毛片免费看| 午夜老司机福利剧场| 天天一区二区日本电影三级| 免费大片18禁| 搡老熟女国产l中国老女人| 亚洲精品美女久久久久99蜜臀| 亚洲avbb在线观看| 国产真实伦视频高清在线观看 | 免费人成视频x8x8入口观看| 久久精品国产亚洲av涩爱 | 好男人在线观看高清免费视频| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩卡通动漫| 亚洲最大成人中文| 亚洲av一区综合| 真人做人爱边吃奶动态| 日本精品一区二区三区蜜桃| 国产高清三级在线| 免费av毛片视频| 国产精品久久久久久久久免 | 五月伊人婷婷丁香| 久久久久性生活片| 国产高清视频在线播放一区| 国产淫片久久久久久久久 | 日本免费一区二区三区高清不卡| 黄片大片在线免费观看| 免费av不卡在线播放| 亚洲欧美一区二区三区黑人| 国产伦在线观看视频一区| 长腿黑丝高跟| 脱女人内裤的视频| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看| 色吧在线观看| 日韩欧美国产在线观看| 91麻豆精品激情在线观看国产| 久久国产精品人妻蜜桃| 人妻夜夜爽99麻豆av| 在线观看午夜福利视频| 少妇高潮的动态图| 免费大片18禁| 国产在线精品亚洲第一网站| 日本与韩国留学比较| 一进一出抽搐动态| 欧美日韩精品网址| 波多野结衣高清作品| 亚洲天堂国产精品一区在线| 国产私拍福利视频在线观看| 尤物成人国产欧美一区二区三区| 午夜视频国产福利| 亚洲国产欧洲综合997久久,| 一级毛片女人18水好多| 一二三四社区在线视频社区8| 国产av一区在线观看免费| 精华霜和精华液先用哪个| 免费在线观看成人毛片| 中文字幕av成人在线电影| 久久久色成人| 午夜两性在线视频| 亚洲五月天丁香| 99久久九九国产精品国产免费| 欧美日韩乱码在线| 免费看光身美女| 听说在线观看完整版免费高清| 真人做人爱边吃奶动态| 成人特级av手机在线观看| 免费看a级黄色片| 国产淫片久久久久久久久 | 国产99白浆流出| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 色播亚洲综合网| 午夜日韩欧美国产| or卡值多少钱| 18+在线观看网站| 亚洲内射少妇av| 国内精品久久久久精免费| 99热只有精品国产| 国产高清videossex| 久久婷婷人人爽人人干人人爱| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月| 99热这里只有精品一区| av欧美777| 午夜福利成人在线免费观看| 亚洲片人在线观看| 精品久久久久久久久久久久久| 草草在线视频免费看| 内地一区二区视频在线| 男女做爰动态图高潮gif福利片| 亚洲男人的天堂狠狠| 久久精品国产自在天天线| 国产精品久久久久久久久免 | 国产欧美日韩一区二区三| 国产精品永久免费网站| 色吧在线观看| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 免费观看精品视频网站| 色综合站精品国产| 国产熟女xx| 免费大片18禁| 少妇高潮的动态图| 欧美成人a在线观看| 成人国产综合亚洲| 超碰av人人做人人爽久久 | 午夜精品一区二区三区免费看| xxxwww97欧美| 9191精品国产免费久久| 日本 av在线| 在线观看日韩欧美| 亚洲av成人不卡在线观看播放网| 国产97色在线日韩免费| 欧美av亚洲av综合av国产av| 精品久久久久久成人av| 欧美午夜高清在线| 国产色婷婷99| 久久久久久久午夜电影| 在线观看舔阴道视频| 久久久精品欧美日韩精品| 91九色精品人成在线观看| 国产精品爽爽va在线观看网站| netflix在线观看网站| 黄色视频,在线免费观看| 国产伦一二天堂av在线观看| 日本a在线网址| 在线十欧美十亚洲十日本专区| 午夜亚洲福利在线播放| 国产毛片a区久久久久| 母亲3免费完整高清在线观看| 成年版毛片免费区| 一本久久中文字幕| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 国产精品久久电影中文字幕| 色吧在线观看| 国产成人a区在线观看| 国产国拍精品亚洲av在线观看 | 欧美一区二区精品小视频在线| 51国产日韩欧美| 亚洲真实伦在线观看| 欧美中文日本在线观看视频| 日本 av在线| 国产综合懂色| 久久精品影院6| 中文字幕高清在线视频| 国产精品女同一区二区软件 | 天堂av国产一区二区熟女人妻| 久久久久久大精品| 国产成+人综合+亚洲专区| 日本a在线网址| 一个人看的www免费观看视频| 18美女黄网站色大片免费观看| 女同久久另类99精品国产91| 一级作爱视频免费观看| 午夜福利在线在线| 精品午夜福利视频在线观看一区| 欧美午夜高清在线| 国产欧美日韩精品一区二区| 国产精品女同一区二区软件 | 中文字幕av在线有码专区| 露出奶头的视频| 一本综合久久免费| 亚洲黑人精品在线| 夜夜看夜夜爽夜夜摸| 国产淫片久久久久久久久 | av国产免费在线观看| 法律面前人人平等表现在哪些方面| 欧美精品啪啪一区二区三区| 色播亚洲综合网| av福利片在线观看| 国产精品久久视频播放| 国产午夜福利久久久久久| 禁无遮挡网站| 国产精品久久久久久亚洲av鲁大| 蜜桃亚洲精品一区二区三区| 久久久久久久久大av| 久久久精品大字幕| 亚洲性夜色夜夜综合| 成人国产综合亚洲| 国产亚洲av嫩草精品影院| 我的老师免费观看完整版| 国内精品久久久久久久电影| avwww免费| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 99国产精品一区二区三区| 精品久久久久久久末码| 欧美三级亚洲精品| 精品无人区乱码1区二区| 91av网一区二区| 成人18禁在线播放| 床上黄色一级片| 成人永久免费在线观看视频| 最近最新免费中文字幕在线| 亚洲成人久久性| 亚洲欧美激情综合另类| 啦啦啦免费观看视频1| 国内久久婷婷六月综合欲色啪| 亚洲国产欧洲综合997久久,| 好看av亚洲va欧美ⅴa在| 一个人观看的视频www高清免费观看| 久久精品91蜜桃| bbb黄色大片| 在线视频色国产色| 欧美大码av| 国产av不卡久久| 亚洲无线观看免费| 中亚洲国语对白在线视频| 国产精品久久久久久久电影 | 午夜福利欧美成人| 国产 一区 欧美 日韩| 九色成人免费人妻av| 欧美日韩国产亚洲二区| 老鸭窝网址在线观看| 色哟哟哟哟哟哟| 两人在一起打扑克的视频| 91av网一区二区| 最近最新中文字幕大全电影3| 丰满乱子伦码专区| 成人国产综合亚洲| 国产欧美日韩一区二区精品| 久久国产乱子伦精品免费另类| 法律面前人人平等表现在哪些方面| 国产精品一区二区三区四区久久| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩卡通动漫| 国内精品美女久久久久久| 免费在线观看成人毛片| 国产精品av视频在线免费观看| 免费在线观看日本一区| 制服丝袜大香蕉在线| 在线观看66精品国产| 午夜精品久久久久久毛片777| 欧美日韩福利视频一区二区| 国产成人系列免费观看| 男女那种视频在线观看| 天天添夜夜摸| 小说图片视频综合网站| 美女 人体艺术 gogo| 男女下面进入的视频免费午夜| 免费观看精品视频网站| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲av涩爱 | 久久伊人香网站| 麻豆国产97在线/欧美| 欧美乱色亚洲激情| 日本 欧美在线| 99久久久亚洲精品蜜臀av| 女人被狂操c到高潮| 国产精品免费一区二区三区在线| 久久久久免费精品人妻一区二区| 色精品久久人妻99蜜桃| 亚洲精品亚洲一区二区| 国产成人啪精品午夜网站| 亚洲精品国产精品久久久不卡| 成人高潮视频无遮挡免费网站| 亚洲av免费高清在线观看| 91字幕亚洲| 亚洲国产精品久久男人天堂| 女生性感内裤真人,穿戴方法视频| 色老头精品视频在线观看| 一本一本综合久久| av国产免费在线观看| 国内精品久久久久精免费| 亚洲欧美一区二区三区黑人| 每晚都被弄得嗷嗷叫到高潮| 亚洲av电影不卡..在线观看| 国产欧美日韩精品亚洲av| 欧美精品啪啪一区二区三区| 别揉我奶头~嗯~啊~动态视频| 97人妻精品一区二区三区麻豆| xxx96com| 亚洲欧美一区二区三区黑人| 成人av一区二区三区在线看| 亚洲avbb在线观看| 久久久国产精品麻豆| 国产精品1区2区在线观看.| 热99re8久久精品国产| 久久久成人免费电影| netflix在线观看网站| 性色avwww在线观看| 日本与韩国留学比较| 一本精品99久久精品77| 免费看美女性在线毛片视频| 国产极品精品免费视频能看的| 国产成人欧美在线观看| АⅤ资源中文在线天堂| 网址你懂的国产日韩在线| 热99re8久久精品国产| 久久久久久久久大av| 亚洲一区二区三区不卡视频| 亚洲av免费高清在线观看| 3wmmmm亚洲av在线观看| 午夜视频国产福利| 99riav亚洲国产免费| 午夜影院日韩av| 国产高清三级在线| 91在线精品国自产拍蜜月 | 中出人妻视频一区二区| 床上黄色一级片| 国产精品1区2区在线观看.| 在线看三级毛片| 国产成年人精品一区二区| 又黄又爽又免费观看的视频| 99在线视频只有这里精品首页| 亚洲精品亚洲一区二区| 国产单亲对白刺激| 午夜免费观看网址| 丁香六月欧美| 听说在线观看完整版免费高清| 国产免费男女视频| 国产精品久久久久久人妻精品电影| 日韩欧美 国产精品| 日本三级黄在线观看| 亚洲av电影在线进入| 日本黄色视频三级网站网址| 亚洲av不卡在线观看| 露出奶头的视频| 精品国产超薄肉色丝袜足j| 午夜福利成人在线免费观看| 久久久久久大精品| 精品国产亚洲在线| 精品99又大又爽又粗少妇毛片 | 在线免费观看的www视频| 少妇熟女aⅴ在线视频| 麻豆国产av国片精品| 久久婷婷人人爽人人干人人爱| 香蕉久久夜色| 在线观看日韩欧美| 久久久久久久久大av| 国产探花极品一区二区| 国产美女午夜福利| 黄片小视频在线播放| 成人国产综合亚洲| aaaaa片日本免费| 亚洲av免费在线观看| 成年版毛片免费区| 日本黄色片子视频| 国产成人福利小说|