• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Embedding-Based Anomalous Density Searching for Multi-Group Collaborative Fraudsters Detection in Social Media

    2019-07-18 02:00:00ChengzhangZhuWentaoZhaoQianLiPanLiandQiaoboDa
    Computers Materials&Continua 2019年7期

    Chengzhang Zhu , Wentao Zhao, , Qian Li Pan Li and Qiaobo Da

    Abstract: Detecting collaborative fraudsters who manipulate opinions in social media is becoming extremely important in order to provide reliable information, in which, however, the diversity in different groups of collaborative fraudsters presents a significant challenge to existing collaborative fraudsters detection methods.These methods often detect collaborative fraudsters as the largest group of users who have the strongest relation with each other in the social media, consequently overlooking the other groups of fraudsters that are with strong user relation yet small group size.This paper introduces a novel network embedding-based framework NEST and its instance BEST to address this issue.NEST detects multiple groups of collaborative fraudsters by two steps.In the first step, to disclose user collaboration, it represents users according to their social relations.Then, in the second step, to identify the collaborative fraudsters, it detects the user groups with anomalous large group density in its representation space.BEST instantiates NEST by using a bipartite network embedding method to represent users and adopting a fast density group detection method based on the k-dimensional tree.Our experiments show BEST (i) performs significantly better in detecting fraudsters on four real-word social media data sets, and (ii) effectively detects multiple groups of collaborative fraudsters, compared to three state-of-the-art competitors.

    Keywords: Fraudster detection, network embedding, social media.

    1 Introduction

    The reliability of social media content is becoming increasingly significant because social media heavily affects people every day.Unfortunately, a large proportion of social media content is proposed by fraudsters who collaborate to manipulate social opinions driven by huge profit and incentives of reputation [Mukherjee, Venkataraman, Liu et al.(2013); Xiang, Li, Hao et al.(2018)].As a result, effectively detecting such collaborative fraudsters is critical and with great bossiness values [Akoglu, Chandy and Faloutsos (2013)].

    Recent year has seen significant progress made in fraudsters detection.Current efforts mainly focused on extracting fraudster indicators and/or features from users’ behavior [Mukherjee, Liu and Glance (2012); Ye and Akoglu (2015); Hooi, Shin, Song et al.(2017)] or users’ proposed content [Mukherjee, Venkataraman, Liu et al.(2013); Wang, Liu and Zhao (2017); You, Qian and Liu (2018)].Because of the great distinguishing ability of anomalous behavior and content, these indicators and/or features have shown remarkable performance in detecting individual fraudsters [Rayana and Akoglu (2016)].However, identifying fraudsters with collaborative manipulation is a challenging task.Specifically, the collaborative manipulation poses the two major challenges below: (i) The content of collaborative fraudsters may not be anomalous because the collaborative manipulation may dominate social opinions.(ii) The professional fraudsters will imitate the behavior of honest users to evade inspection [Hooi, Song, Beutel et al.(2016)].These two challenges cause the failure of current behavior and content-based fraudsters detection methods in detecting collaborative fraudsters.

    To detect collaborative fraudsters, the dense subgraph mining methods [Hooi, Song, Beutel et al.(2016); Hooi, Shin, Song et al.(2017); Wu, Hu, Morstatter et al.(2017); Liu, Hooi and Faloutsos (2017); Xiang, Shen, Qin et al.(2018); Xiang, Zhao, Li et al.(2018)] are the major solutions, which detect collaborative fraudsters according to the significant collaboration footprint.Specifically, the dense subgraph mining methods always detect collaborative fraudsters as the largest group of users who have the strongest relation with each other in the social media.However, in this way, they may overlook the other groups of fraudsters that are with strong user relation yet small group size.In reality, social media may contain multiple groups of collaborative fraudsters instead of only the largest group of collaborative fraudsters.

    In this paper, we introduce a novel Network Embedding-based denSiTy subgraph mining (NEST for short) framework for multi-group collaborative fraudsters detection in social media.Specifically, NEST first represents users according to their social relations to dis- close user collaboration.In this process, users who have similar activities will be embed- ded near to each other in the representation space.NEST then detects the user groups with anomalous large group density in its representation space to identify the collaborative fraudsters.Accordingly, any group of collaborative fraudsters with large joint activities can be effectively detected.

    Essentially, this detection procedure simultaneously tackles three challenges brought by collaborative fraudsters: content domination, behavior camouflage, and multiple fraudsters groups, resulting in a robust and comprehensive collaborative fraudsters detecting result.In the first step, NEST solves the content domination and behavior camouflage problems by distilling user social relations which are reflected in users’ joint activities.The rationale is that the cooperation of collaborative fraudsters to manipulate opinions cannot be avoided.In the second step, NEST discovers fraudsters groups by analyzing the outlier of group density in its representation space.The intuition is that the joint activities of collaborative fraudsters must be more frequent than honest users, but the number of fraudsters is much less than honest users.

    We further implement NEST by proposing a Bipartitie networking Embedding-based fast denSiTy subgraph mining method based on the k-dimensional tree structure, termed BEST.Specifically, BEST first models the users and their activities as a bipartite network as demonstrated in Fig.1.In the bipartite network, the nodes on each side are users and activities, and a link refers to a user participates in an activity.Then, to comprehensively capture user collaborations, BEST represents users by embedding both the explicit and implicit relations in the bipartite network.Lastly, to fast detect the collaborative fraudsters, BEST builds a k-dimensional tree for the representation space and searches the anomalous density group based on the k-dimensional tree.

    Accordingly, this paper makes two major contributions:

    ● We introduce a novel network embedding-based framework NEST for identifying collaborative fraudsters in social media.NEST represents users according to their social relations and detects fraudsters by analyzing the outlier of group density in the representation space.It results in a more reliable and comprehensive collaborative fraudsters detection, compared to existing dense subgraph mining-based solutions.

    ● We instantiate NEST to an effective and efficient multi-group collaborative fraudsters detection method, BEST, by introducing bipartite network embedding and k- dimensional tree-based anomalous density group searching.The bipartite network embedding captures both explicit and implicit user relations, and the k-dimensional tree-based method guarantees the efficiency of density groups searching.

    Extensive empirical results show that (i) BEST performs significantly better in detecting fraudsters on four large real-world social media data sets; and (ii) BEST effectively detects multiple groups of collaborative fraudsters, compared to three state-of-the-art competitors.

    2 Related work

    2.1 Fraudster detection

    Current efforts on fraudster detection can be roughly classified into two categories:

    individual characteristics-based methods and relational characteristics-based methods.The individual characteristics-based methods use the user proposed content and/or user’s behavior to identify whether a user is a fraudster.The information used by these methods mainly include the statics and linguistic characteristics of a content [Li, Huang, Yang et al.(2011); Mukherjee, Kumar, Liu et al.(2013); Wang, Liu and Zhao (2017); You, Qian and Liu (2018)], and the historical actions of a user [Fei, Mukherjee, Liu et al.(2013); Mukherjee, Venkataraman, Liu et al.(2013)].These individual characteristics are designed as features for fraudster detection [Jindal and Liu (2008); Lim, Nguyen, Jindal et al.(2010); Zhao, Resnick and Mei (2015); Li, Fei, Wang et al.(2017)].However, as evidenced by Hooi et al.[Hooi, Song, Beutel et al.(2016)], the individual characteristics are not robust for collaborative fraudsters who jointly manipulate social opinions and fraudsters may imitate the behavior of honest users.

    The relational characteristics-based methods capture user-activity, user-user, and activity-activity relations, typically via a graph [Pandit, Chau, Wang et al.(2007); Stringhini, Kruegel and Vigna (2010); Akoglu, Chandy and Faloutsos (2013); Junqué de Fortuny, Stankova, Moeyersoms et al.(2014); Akoglu, Tong and Koutra (2015); Shehnepoor, Salehi, Farahbakhsh et al.(2017)].They hold an assumption that fake reviews are manipulated by groups of fraudsters.With this assumption, they assume a group of fraudsters will have dense links to a group of manipulated activities (useractivity relation) [Akoglu, Chandy and Faloutsos (2013); Wang, Xie, Liu et al.(2011)], a group of fraudsters will co-occur in many activities (user-user relation) [Wu, Hu, Morstatter et al.(2017); Sun, Qu, Chakrabarti et al.(2005); Xu, Zhang, Chang et al.(2013)], and different manipulated activities will have overlapped linked fraudsters (activity-activity relation) [Hovy (2016)].

    Although current methods show their strengths to disclose fraudsters, most of them fail to discover multiple groups of collaborative fraudsters in social network.In this paper, we propose a networking-embedding based framework NEST to fill the gaps of multi- group collaborative fraudsters detection.The proposed NEST achieves a more reliable and comprehensive detection by revealing users within density groups in its representation space, which delicately embeds the user’s social relationships.

    2.2.Network embedding

    Our proposed method is based on network embedding, which can be categorized into two types: matrix factorization (MF)-based and neural network-based methods.

    MF-based methods involve linear [Cox and Cox (2000)] and nonlinear [Nedich and Ozdaglar (2008)] procedures in the embedding process.While the linear procedures adopt linear transformations, such as singular value decomposition (SVD) and multiple dimensional scaling (MDS), to generate low-dimensional embedding [Cox and Cox (2000)], the non- linear methods utilize nonlinear transformations, e.g.kernel PCA and manifold learning, to capture complicated data structures.However, both have high computational cost because of their eigen-decomposition operation on data matrix.Accordingly, these methods do not suit for large social network embedding.

    Recently, neural network-based methods have shown the state-of-the-art performance.Followed by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)] and Node2Vec [Grover and Leskovec (2016)], most of neural network-based methods reformulate a network embedding task as a word embedding task via performing truncated random walks in a network to convert the network to sentences.More recently, advanced work embeds both explicit and implicit relations in a network and shows its significance [Tang, Qu, Wang et al.(2015); Wang, Cui and Zhu (2016); Cao, Lu and Xu (2015); Xu, Wei, Cao et al.(2017)].However, the above methods are not designed for social network embedding.They treat the nodes in a network homogeneously, and thus, cannot capture the difference between user and activity in social media.In addition, the truncated random walks used in these methods do not consider the user-activity joint distribution in social network.

    In this paper, we instantiate NEST as an effective and efficient method, BEST, via a bipartite network embedding method.This Bipartitie network embedding method is tailored for social media.Accordingly, it captures user-activity relations better in its user representation space, which provides a solid foundation for collaborative fraudsters detection.

    3 NEST for collaborative fraudster detection

    NEST framework adopts a two-steps procedure to detect collaborative fraudsters in social media.The workflow of NEST framework is shown in Fig.1.For a social media S with a set of usersand a set of activitiesin the first step, NEST extracts a bipartite network G from S aswhere U and A are the nodes on the two sides of G, respectively, and E U V? × defines the inter-set edges.Here, each edge in E carries a non-negative weightijw , reflecting the strength between a useriu and an activityja , and theijw will be zero if the useriu does not join the activityja .Accordingly, the weights in the bipartite network can be represented by a n × m matrix W =[ wij].Then, NEST learns an embedding function f(?):U→ Rd, which maps a useriu to a d dimensional vector representationiu .The embedding function f(?) should capture and embed the social relations of users in the bipartite network into their representation space.In the second step, NEST finds the anomalous density groups in the user representation space and treats the users in the anomalous density groups as collaborative fraudsters.

    Formally, NEST detects a set of collaborative fraudster groupsaccording to

    NEST has a good generalizability since it can be instantiated by specifying any network embedding method and any anomalous density groups searching method.We introduce an instance of NEST in next section and then verify its performance by empirical analyses.

    4 A NEST instance: BEST

    BEST instantiates NEST by a bipartite network embedding method catering for social net- work, and a k-dimensional tree-based anomalous density group searching method for efficient fraudsters detection.

    Figure 1: NEST Framework.In the first step, NEST extracts a bipartite network from social media data, and represents user into a vector space by embedding their social relation in the bipartite network.In the second step, NEST searches the anomalous density group of users in the representation space for collaborative fraudsters detection.The detected collaborative fraudsters are illustrated with a grey background, and their corresponding groups are highlighted by a dotted circle

    4.1 Bipartite network embedding

    The network embedding reveals and embeds social relations of a user into the user’s vector representation, which reflects the cooperation of users in social media.We introduce a bipartite network embedding method to jointly capture the explicit and implicate relations of users in social media.

    4.1.1 Explicit relations embedding

    The explicit relations refer to the direct links between users and activities, which reflect the activities a user jointed.If two users always joint similar activities, their similarity should be large in the representation space.

    To preserve the explicit relations, we keep the preference of users in their representation space.Specifically, we measure the preference of a user in both social media and representation space, and make the preference of a user in representation space similar to that in social media.For the preference measurement in social media, we consider the probability of a user join in an activity.Given the bipartite network, this probability can be calculated as follows:

    where wijis the weight of edge eij.The measurement reflects the preference distribution of users.We follow the setting of word2vec to use the sigmoid function to measure the interaction of a user and an activity in their representation space in a probability space:

    where ui∈Rdand aj∈Rdare the embedding vectors of uiand aj, respectively.Then, we adopt KL-divergence to measure the difference between P andand optimize the user and activity representation to minimize the KL-divergence as follows:

    Considering P(i,j) is a constant, minimizing the Eq.(4) equals to follows:

    4.1.2 Implicit relations embedding

    The implicit relations refer to the relations between users and activities that are not directly connected.For two users, if there exist a path between them in the bipartite network, they may have an implicit relation, and the weight of the path reflects the strength of this implicit relation.However, counting the paths between two nodes in a bipartite network has a great high complexity, which is impracticable in social media.

    Inspired by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)], we also perform a truncated random walks on the network to generate nodes corpus as random walk paths, which contain higher order implicit relations between nodes.We move a step further to reconstruct the bipartite network G as two networks where each network only contains users G(u)or activitiesG(a), and conduct random walks on these two transformed networks.It results in a stationary distribution of random walks on social media data [Gao, Chen, He et al.(2018)].InG(u), uiand ujwill have an edgeif exists a tkthat∈ E and∈ E where E is the edge set ofG.InG(a), aiand ajwill have an edgeif exists a ukthat∈ E and∈ E where E is the edge set ofG.

    The random walk paths generation procedure is illustrated in Algorithm 1, which generates a set of random walk paths D(u)ofU, a set of random walk paths D(a)of A.The implicit relations embedding aims to maximize the conditional probability of the context of a node.For user corpus()u

    D , it maximizes the conditional probability as follows:

    where S refers to the sequence in the context,refers the context nodes of node uiin sequence s.Similarly, for activities corpusthe implicit embedding maximizes the conditional probability as:

    ?

    BEST jointly considers the explicit and implicit relations embedding, forming a joint embedding objective function:

    where α , β and γ are the hyper-parameters to trade-off the effects of the three components.This objective function can be effectively solved by stochastic optimization methods.By solving the objective function (8), BEST represents users into a vector space where user’s social relations have been embedded.

    4.2 K-dimensional tree-based anomalous density group searching

    To fast search the anomalous density group, BEST first builds a k-dimensional tree (kdtree for short) for the user representation space, and then estimates the density around each user in that space.Finally, it adopts the criteria Eq.(1) in NEST to identify the anomalous density groups.

    Figure 2: Example of kd-tree.The illustrated kd-tree is built on the user representation space shown in Fig.1.Each level splits one dimension of the space into two parts

    4.2.1 Building kd-tree

    For user representation set u ={u1,u2???, un}, BEST builds a kd-tree, v, by Algorithm 2.As illustrated in Fig.2, the kd-tree v is a binary tree storing the user representation with their structure information, which enables the fast searching of anomalous density groups.

    Algorithm 2: Building kd-tree Procedure name: BUILDKDTREE(u,depth) Input: A set of point u, and the current depth.Output: The root of the kd-tree, v, storing u 1 if u contains only one point then 2 return a leaf storing this point.3 else 4 l ←depth%d+1; 5 Split u into two subsets according to the median value q in the l th-dimension of the points inu.Let (1)u be the set of points which l th-dimension value is smaller or equal to the q, and let (2)u be the set of other points ; 6 leftv← BUILDKDTREE( (1)u , depth+1) ; 7 rightv← BUILDKDTREE( (2)u , depth+1) ; 8 Create a node v storing the q in the l th-dimension, make leftvleftv the left child of v, and make rightv the right child of v ; 9 return v.10 end

    4.2.2 Density estimation

    BEST estimates the density around each user in its representation space based on the kd- tree v according to the Algorithm 3, where the function SEARCHKDTREE(iu ,v,ρ) returns a set of users that around the useriu within the range η based on the kd-tree v.Essentially, BEST estimates the density around a user by the number of users close to the user within a certain distance in the representation space.If a user has a large density, the user should have a lot of collaborations with others.Accordingly, BEST uses the density as an important evidence to identify collaborative fraudsters.

    Algorithm 3: Density estimation based on kd-tree Input : A set of point u, the kd-tree v and η.Output: A set of densities around each user ρ, a set of user sets S.1 {}ρ ← 2 foreach iu in u do 3 iS ←SEARCHKDTREE( iu , v, η) ; 4 iiS ρ ← ; 5 { }i ρρρ← ∪; 6 { }i S SS← ∪; 7 end 8 return ρ,S.

    4.2.3 Collaborative fraudsters detection

    BEST detects collaborative fraudsters after estimating density around users in the user representation space.Specifically, it treats the density larger than a thresholdε , e.g.five times of the averaged density, as anomalous, and assigns the users in the density areas as fraudsters.The procedure is summarized in the Algorithm 4.

    Algorithm 4: Collaborative fraudsters detection Input : A set of densities around each user ρ, a set of user sets S, a threshold ε Output: A set of fraudster users F..1 {}ρ ← 2 foreach iS in S do 3 if iρ ε> then; 4 i FF S← ∪ 5 end 6 return F

    5 Experiments

    5.1 Data sets

    The experiments are carried on two large scale real word social media data sets, including Yelp restaurant and Yelp hotel data sets used in Mukherjee et al.[Mukherjee, Venkataraman, Liu et al.(2013)].All the activities in these data sets have been assigned authenticity labels given by commercial filters.

    5.2 Evaluation metrics

    We evaluate their performance by three metrics - precision, recall, and F-score.While precision evaluates the fraction of true fraudsters among detected fraudsters, recall reflects the fraction of true fraudsters that have been detected over the total amount of true fraudsters.The precision and recall should be jointly considered since fraudsters detection is an imbalance problem [Luca and Zervas (2016)], i.e., fraudsters are much less than honest users.Thus, we use F-score, which balances the precision and recall, as an averaged indicator.Higher F-score indicates a better performance of a fraudsters detection method.We report these three metrics per ground-truth honest user and fraudster classes to illustrate the performance for different categories.We further average them to show overall performance.

    We follow the literature [Wang, Liu and Zhao (2017)] to use the results of the Yelp commercial fraud filter to evaluate the performance.Because the Yelp commercial fraud filter only give the authenticity labels of activities, we transform the authenticity labels to the honest labels of users as the ground-truth.Considering the fraud activities distribution per each user assigned by the commercial filters, we assign the fraudster label to a user if more than 80% of the activities of the user have been labeled as fraud.The rationale is that we need to filter the false positive made by the commercial filters [Li, Chen, Liu et al.(2014)].In other words, we assume that a user with a higher proportion of the assigned fraud activities will be more likely a real fraudster.

    5.3 Parameters settings

    In the experiments, we set the parameters of BEST as follows.To balance the explicit and implicit social relations, we set the hyper-parameters α , β , and γ is the network embedding objective function Eq.(8) as 0.5, 0.25, and 0.25, respectively.We train the network embedding by Adam [Kingma and Ba (2014)] with embedding dimension 128 and batch size 32.For the density estimation, we set the distance range η as 1.For the anomalous density detection, we set the threshold s as the five times of the averaged density.For the parameters in the compared methods, we take their recommended settings.

    5.4 Evaluation of BEST effectiveness on fraudster detection

    5.4.1 Experimental settings

    BEST is compared with two state-of-the-art competitors: Frauder [Hooi, Song, Beutel et al.(2016)] and HoloScope [Liu, Hooi and Faloutsos (2017)] in detecting collaborative fraudsters.These two competitors are both based on dense subgraph mining, but with different setting on the graph construction.

    ● Fixed weighting dense subgraph mining-based method - FRAUDER [Hooi, Song, Beutel et al.(2016)].FRAUDER is a fraudsters detection method by dense subgraph mining.To detect camouflage and hijacked accounts, it adopts a fixed weighting strategy.

    ● Dynamic weighting dense subgraph mining-based method-HoloScope [Liu, Hooi and Faloutsos (2017)].HoloScope uses information from graph topology and temporal spikes to detect groups of fraudsters, and employs a dynamic weighting approach to allow a more accurately fraud detection.

    5.4.2 Findings-BEST significantly improving fraudsters detection performance, especially recall

    The precision, recall and F-score of BEST, Frauder, and HoloScope are reported in Tab.1.Overall, BEST significantly outperforms the competitors.It improves 21.8% and 10.03% compared with the best-performing method in terms of F-score on two data sets.

    Table 1: Collaborative fraudsters detection performance of different methods

    5.5 Evaluation of BEST-generated user representation quality

    5.5.1 Experimental settings

    We visualize the user representation in a two-dimensional space trough TSNE [Maaten and Hinton (2008)].To evaluate the user representation quality, we plot the ground-truth labels of each user at their positions in the representation space.A high-quality user representation will enable a dense distribution for the collaborative fraudsters.The behavior representation generated by BEST is compared with that generated by JETB [Wang, Liu and Zhao (2017)], which is the state-of-the-art user representation method for fraudsters detection.

    5.5.2 Findings-BEST generated user representation embeds fraudsters into groups with anomalous high density

    The user representations generated by BEST and JETB are visualized in Fig.3.In the JETB generated representation space, the users with large density are not consistent to the ground-truth fraudster label.In contrast, the density of BEST generated representation is consistent with the ground-truth fraudsters distribution.This qualitative illustrates that BEST effectively captures the social relation of users in social media, which is essential for the collaborative fraudsters detection.

    Figure 3: User representation with density of different methods on Yelp-hotel and Yelp- restaurant.The sub-figures (a), (b), (c), (d) contain the user representation information with the ground-truth labels, and the sub-figures (e), (f), (g), (h) show the density in the representation space

    6 Conclusion

    This paper introduces a network-embedding collaborative fraudsters detection framework NEST and its instance BEST.They perform an anomalous density searching procedure on a network embedding space which enables the detecting multiple groups of collaborative fraudsters.Two large real-world data sets demonstrate the performance of BEST is substantially better than the state-of-the-art competitors.

    Acknowledgements:The work is supported by National Natural Science Foundation of China under Grant No.U1811462.

    References

    Akoglu, L.; Chandy, R.; Faloutsos, C.(2013): Opinion fraud detection in online reviews by network effects.Proceedings of the International AAAI Conference on Web and Social Media, vol.13, pp.2-11.

    Akoglu, L.; Tong, H.; Koutra, D.(2015): Graph based anomaly detection and description: a survey.Data Mining and Knowledge Discovery, vol.29, no.3, pp.626-688.

    Cao, S.; Lu, W.; Xu, Q.(2015): GraRep: learning graph representations with global structural information.Proceedings of the ACM International on Conference on Information and Knowledge Management, pp.891-900.

    Cox, T.F.; Cox, M.A.(2000): Multidimensional scaling.Chapman and Hall/CRC.

    Fei, G.; Mukherjee, A.; Liu, B.; Hsu, M.; Castellanos, M.et al.(2013): Exploiting burstiness in reviews for review spammer detection.Proceedings of the International AAAI Conference on Web and Social Media, vol.13, pp.175-184.

    Gao, M.; Chen, L.; He, X.; Zhou, A.(2018): BiNE: bipartite network embedding.Proceedings of the International ACM SIGIR Conference on Research & Development in Information Retrieval, pp.715-724.

    Grover, A.; Leskovec, J.(2016): node2vec: scalable feature learning for networks.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.855-864.

    Hooi, B.; Shin, K.; Song, H.A.; Beutel, A.; Shah, N.et al.(2017): Graph-based fraud detection in the face of camouflage.ACM Transactions on Knowledge Discovery from Data, vol.11, no.4, pp.44:1-44:26.

    Hooi, B.; Song, H.A.; Beutel, A.; Shah, N.; Shin, K.; Faloutsos, C.(2016): FRAUDAR: Bounding graph fraud in the face of camouflage.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.895-904.

    Hovy, D.(2016): The enemy in your own camp: how well can we detect statistically- generated fake reviews-an adversarial study.Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol.2, pp.351-356.

    Jindal, N.; Liu, B.(2008): Opinion spam and analysis.Proceedings of the ACM International WSDM Conference, pp.219-230.

    Junqué de Fortuny, E.; Stankova, M.; Moeyersoms, J.; Minnaert, B.; Provost, F.et al.(2014): Corporate residence fraud detection.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.1650-1659.

    Kingma, D.P.; Ba, J.(2014): Adam: a method for stochastic optimization.arXiv preprint arXiv:1412.6980.

    Li, F.; Huang, M.; Yang, Y.; Zhu, X.(2011): Learning to identify review spam.Proceedings of the International Joint Conference on Artificial Intelligence, pp.2488-2493.

    Li, H.; Chen, Z.; Liu, B.; Wei, X.; Shao, J.(2014): Spotting fake reviews via collective positive-unlabeled learning.Proceedings of the IEEE International Conference on Data Mining, pp.899-904.

    Li, H.; Fei, G.; Wang, S.; Liu, B.; Shao, W.et al.(2017): Bimodal distribution and cobursting in review spam detection.Proceedings of the International Conference on World Wide Web, pp.1063-1072.

    Lim, E.P.; Nguyen, V.A.; Jindal, N.; Liu, B.; Lauw, H.W.(2010): Detecting product review spammers using rating behaviors.Proceedings of the ACM International Conference on Information and Knowledge Management, pp.939-948.

    Liu, S.; Hooi, B.; Faloutsos, C.(2017): Holoscope: topology-and-spike aware fraud detection.Proceedings of the ACM International Conference on Information and Knowledge Management, pp.1539-1548.

    Luca, M.; Zervas, G.(2016): Fake it till you make it: reputation, competition, and yelp review fraud.Management Science, vol.62, no.12, pp.3412-3427.

    Maaten, L.v.d.; Hinton, G.(2008): Visualizing data using t-SNE.Journal of Machine Learning Research, vol.9, pp.2579-2605.

    Mukherjee, A.; Kumar, A.; Liu, B.; Wang, J.; Hsu, M.et al.(2013): Spotting opinion spammers using behavioral footprints.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.632-640.

    Mukherjee, A.; Liu, B.; Glance, N.(2012): Spotting fake reviewer groups in consumer reviews.Proceedings of the International Conference on World Wide Web, pp.191-200.

    Mukherjee, A.; Venkataraman, V.; Liu, B.; Glance, N.S.(2013): What yelp fake review filter might be doing? Proceedings of the International AAAI Conference on Web and Social Media, pp.409-418.

    Nedich, A.; Ozdaglar, A.(2008): A geometric framework for nonconvex optimization duality using augmented lagrangian functions.Journal of Global Optimization, vol.40, no.4, pp.545-573.

    Pandit, S.; Chau, D.H.; Wang, S.; Faloutsos, C.(2007): Netprobe: a fast and scalable system for fraud detection in online auction networks.Proceedings of the International Conference on World Wide Web, pp.201-210.

    Perozzi, B.; Al-Rfou, R.; Skiena, S.(2014): Deepwalk: Online learning of social representations.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.701-710.

    Rayana, S.; Akoglu, L.(2016): Collective opinion spam detection using active inference.Proceedings of the IEEE International Conference on Data Mining, pp.630-638.

    Shehnepoor, S.; Salehi, M.; Farahbakhsh, R.; Crespi, N.(2017): Netspam: a networkbased spam detection framework for reviews in online social media.IEEE Transactions on Information Forensics and Security, vol.12, no.7, pp.1585-1595.

    Stringhini, G.; Kruegel, C.; Vigna, G.(2010): Detecting spammers on social networks.Proceedings of the Annual Computer Security Applications Conference, pp.1-9.

    Sun, J.; Qu, H.; Chakrabarti, D.; Faloutsos, C.(2005): Neighborhood formation and anomaly detection in bipartite graphs.Proceedings of the IEEE International Conference on Data Mining, pp.1-8.

    Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.et al.(2015): Line: large-scale information network embedding.Proceedings of the International Conference on World Wide Web, pp.1067-1077.

    Wang, D.; Cui, P.; Zhu, W.(2016): Structural deep network embedding.Proceedings of the 22nd ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, pp.1225-1234.

    Wang, G.; Xie, S.; Liu, B.; Philip, S.Y.(2011): Review graph based online store review spammer detection.ICDM, pp.1242-1247.

    Wang, X.; Liu, K.; Zhao, J.(2017): Handling cold-start problem in review spam detection by jointly embedding texts and behaviors.Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol.1, pp.366-376.

    Wu, L.; Hu, X.; Morstatter, F.; Liu, H.(2017): Adaptive spammer detection with sparse group modeling.Proceedings of the International AAAI Conference on Web and Social Media, pp.319-326.

    Xiang, L.; Li, Y.; Hao, W.; Yang, P.; Shen, X.(2018): Reversible natural language watermarking using synonym substitution and arithmetic coding.Computers, Materials & Continua, vol.55, no.3, pp.541-559.

    Xiang, L.; Shen, X.; Qin, J.; Hao, W.(2018): Discrete multi-graph hashing for largescale visual search.Neural Processing Letters.

    Xiang, L.; Zhao, G.; Li, Q.; Hao, W.; Li, F.(2018): TUMK-ELM: A fast unsupervised heterogeneous data learning approach.IEEE Access, vol.6, pp.35305-35315.

    Xu, C.; Zhang, J.; Chang, K.; Long, C.(2013): Uncovering collusive spammers in Chinese review websites.Proceedings of the ACM International on Conference on Information and Knowledge Management, pp.979-988.

    Xu, L.; Wei, X.; Cao, J.; Yu, P.S.(2017): Embedding of embedding (EOE): Joint embedding for coupled heterogeneous networks.Proceedings of the ACM International Conference on Web Search and Data Mining, pp.741-749.

    Ye, J.; Akoglu, L.(2015): Discovering opinion spammer groups by network footprints.Proceedings of the European Conference on Machine Learning, pp.267-282.

    You, Z.; Qian, T.; Liu, B.(2018): An attribute enhanced domain adaptive model for cold- start spam review detection.Proceedings of the International Conference on Computational Linguistics, pp.1884-1895.

    Zhao, Z.; Resnick, P.; Mei, Q.(2015): Enquiring minds: early detection of rumors in social media from enquiry posts.Proceedings of the International Conference on World Wide Web, pp.1395-1405.

    亚洲精品国产av成人精品| 亚洲美女搞黄在线观看| 97在线人人人人妻| 国产在线视频一区二区| 18在线观看网站| 精品午夜福利在线看| 日日摸夜夜添夜夜爱| 性色av一级| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av高清一级| 精品久久久久久电影网| 美女福利国产在线| 久久久久久久国产电影| 亚洲成av片中文字幕在线观看 | 99热网站在线观看| 91在线精品国自产拍蜜月| 国产乱来视频区| 国产免费又黄又爽又色| 亚洲第一区二区三区不卡| 国产极品粉嫩免费观看在线| 中文字幕av电影在线播放| 啦啦啦啦在线视频资源| 亚洲精品一二三| 人体艺术视频欧美日本| 免费观看av网站的网址| 欧美最新免费一区二区三区| 午夜福利一区二区在线看| 啦啦啦中文免费视频观看日本| 色婷婷久久久亚洲欧美| 天堂8中文在线网| 国产精品久久久久久av不卡| 一级毛片我不卡| 在线 av 中文字幕| 黄网站色视频无遮挡免费观看| 中文字幕制服av| 波多野结衣av一区二区av| 考比视频在线观看| 九草在线视频观看| 香蕉丝袜av| 丝袜人妻中文字幕| 国产精品秋霞免费鲁丝片| 免费不卡的大黄色大毛片视频在线观看| 夫妻午夜视频| 国产成人免费无遮挡视频| 亚洲av免费高清在线观看| 亚洲一区中文字幕在线| 夜夜骑夜夜射夜夜干| 最近的中文字幕免费完整| 美国免费a级毛片| 亚洲,一卡二卡三卡| 天天躁夜夜躁狠狠久久av| 成人毛片60女人毛片免费| 婷婷色麻豆天堂久久| 男人操女人黄网站| 少妇人妻 视频| 精品午夜福利在线看| 久久精品国产综合久久久| 丝袜美足系列| www.熟女人妻精品国产| 97在线视频观看| 亚洲欧洲日产国产| 啦啦啦在线观看免费高清www| 久久精品国产自在天天线| 欧美日韩精品成人综合77777| 欧美xxⅹ黑人| 亚洲av国产av综合av卡| av在线观看视频网站免费| 亚洲色图 男人天堂 中文字幕| 最新中文字幕久久久久| 爱豆传媒免费全集在线观看| 欧美日韩亚洲国产一区二区在线观看 | 丝袜脚勾引网站| 亚洲四区av| 久久久久精品性色| 日本91视频免费播放| 精品酒店卫生间| 日韩中字成人| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区蜜桃| 午夜福利在线免费观看网站| 欧美日韩精品成人综合77777| 色视频在线一区二区三区| 日韩一区二区三区影片| 午夜免费男女啪啪视频观看| 一级片免费观看大全| 亚洲综合色惰| 咕卡用的链子| 久久久久久久亚洲中文字幕| 男女下面插进去视频免费观看| 亚洲av福利一区| 老司机亚洲免费影院| 亚洲伊人色综图| 五月开心婷婷网| 久久久久精品久久久久真实原创| 热re99久久国产66热| 亚洲av在线观看美女高潮| 老汉色av国产亚洲站长工具| 婷婷色综合大香蕉| 国产免费一区二区三区四区乱码| 亚洲国产精品国产精品| 黄频高清免费视频| 少妇的丰满在线观看| 2021少妇久久久久久久久久久| 一边摸一边做爽爽视频免费| 成年女人在线观看亚洲视频| 日韩人妻精品一区2区三区| 多毛熟女@视频| 亚洲五月色婷婷综合| 国产精品国产av在线观看| 亚洲精品aⅴ在线观看| 国产男人的电影天堂91| www日本在线高清视频| 亚洲国产毛片av蜜桃av| 永久网站在线| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 两个人免费观看高清视频| av网站免费在线观看视频| 国产亚洲最大av| 性色av一级| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 久久精品夜色国产| 在线天堂中文资源库| 精品一区二区免费观看| 国产精品久久久久成人av| 一区福利在线观看| 如日韩欧美国产精品一区二区三区| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 大话2 男鬼变身卡| 天堂8中文在线网| 黑人巨大精品欧美一区二区蜜桃| 永久免费av网站大全| 国产亚洲最大av| 晚上一个人看的免费电影| 国产成人精品在线电影| 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| 国产在线视频一区二区| 美女大奶头黄色视频| 国产亚洲精品第一综合不卡| 飞空精品影院首页| 黑人巨大精品欧美一区二区蜜桃| 精品一区二区三卡| 亚洲久久久国产精品| 成人手机av| 天堂8中文在线网| 欧美日韩精品网址| 男人添女人高潮全过程视频| www.熟女人妻精品国产| 国产国语露脸激情在线看| 午夜久久久在线观看| 精品卡一卡二卡四卡免费| 一级a爱视频在线免费观看| 免费黄频网站在线观看国产| 成人免费观看视频高清| av在线观看视频网站免费| 又粗又硬又长又爽又黄的视频| 我的亚洲天堂| 婷婷色综合www| 婷婷色综合www| 国产成人欧美| 国产精品久久久av美女十八| kizo精华| 欧美日韩综合久久久久久| 最近最新中文字幕大全免费视频 | 美女视频免费永久观看网站| 日韩视频在线欧美| 亚洲久久久国产精品| 国产高清不卡午夜福利| 久久久亚洲精品成人影院| 日韩精品有码人妻一区| 国产片内射在线| 王馨瑶露胸无遮挡在线观看| 国产成人欧美| 午夜影院在线不卡| 色网站视频免费| 久久99精品国语久久久| 久久韩国三级中文字幕| 日韩电影二区| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 国产精品不卡视频一区二区| 一本色道久久久久久精品综合| 久久精品夜色国产| 国产精品av久久久久免费| 性少妇av在线| 中文乱码字字幕精品一区二区三区| 国产精品二区激情视频| 久久久国产一区二区| 另类精品久久| 大话2 男鬼变身卡| 久久 成人 亚洲| 精品视频人人做人人爽| 日韩不卡一区二区三区视频在线| 少妇熟女欧美另类| 人体艺术视频欧美日本| 色视频在线一区二区三区| 久久久国产欧美日韩av| 中文欧美无线码| 亚洲婷婷狠狠爱综合网| 18禁国产床啪视频网站| 日日撸夜夜添| 热re99久久精品国产66热6| 欧美日韩综合久久久久久| 欧美精品av麻豆av| 日本91视频免费播放| 青草久久国产| 国产片特级美女逼逼视频| 99re6热这里在线精品视频| av免费在线看不卡| 亚洲国产欧美日韩在线播放| 成人毛片a级毛片在线播放| 日本av手机在线免费观看| 欧美av亚洲av综合av国产av | 欧美另类一区| 极品少妇高潮喷水抽搐| 国产一区二区三区av在线| 夜夜骑夜夜射夜夜干| 欧美+日韩+精品| 亚洲成国产人片在线观看| 亚洲三区欧美一区| 边亲边吃奶的免费视频| 丰满少妇做爰视频| 国产一区二区三区综合在线观看| 亚洲av福利一区| 欧美日韩亚洲高清精品| 日韩人妻精品一区2区三区| 好男人视频免费观看在线| 国产午夜精品一二区理论片| 国产成人免费观看mmmm| 亚洲国产成人一精品久久久| 国产极品天堂在线| a级毛片黄视频| 九草在线视频观看| 国产一区二区 视频在线| 午夜福利视频在线观看免费| 波多野结衣一区麻豆| 国产精品久久久久久精品电影小说| 国产精品.久久久| 欧美精品av麻豆av| 国产淫语在线视频| 搡女人真爽免费视频火全软件| 一二三四在线观看免费中文在| 色94色欧美一区二区| 国产人伦9x9x在线观看 | av一本久久久久| 精品人妻一区二区三区麻豆| 26uuu在线亚洲综合色| 777久久人妻少妇嫩草av网站| 国产男女超爽视频在线观看| 精品少妇久久久久久888优播| 国产xxxxx性猛交| 国产国语露脸激情在线看| 国产日韩欧美视频二区| 中文字幕人妻丝袜制服| 午夜福利视频精品| 欧美日本中文国产一区发布| 女人精品久久久久毛片| 亚洲国产成人一精品久久久| 欧美精品一区二区免费开放| 少妇熟女欧美另类| a级毛片在线看网站| 王馨瑶露胸无遮挡在线观看| 黄色一级大片看看| 黑人欧美特级aaaaaa片| 欧美在线黄色| 成人国产av品久久久| 少妇精品久久久久久久| 99热国产这里只有精品6| 一级黄片播放器| 叶爱在线成人免费视频播放| 校园人妻丝袜中文字幕| 久久av网站| 啦啦啦在线观看免费高清www| 美女视频免费永久观看网站| 性高湖久久久久久久久免费观看| 亚洲男人天堂网一区| 免费在线观看视频国产中文字幕亚洲 | 中国三级夫妇交换| 亚洲av电影在线观看一区二区三区| 久久久久精品性色| 国产一区有黄有色的免费视频| 最近中文字幕2019免费版| 日本午夜av视频| 国产一区二区 视频在线| 男人爽女人下面视频在线观看| 男女无遮挡免费网站观看| 美女大奶头黄色视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美一区二区三区黑人 | 18禁动态无遮挡网站| 丝袜美足系列| 亚洲欧美一区二区三区国产| 国产av一区二区精品久久| 波多野结衣一区麻豆| 亚洲成人手机| 国产不卡av网站在线观看| 日本午夜av视频| 中国三级夫妇交换| 美国免费a级毛片| 国产色婷婷99| 天天操日日干夜夜撸| 七月丁香在线播放| 亚洲欧美一区二区三区久久| 久久人人97超碰香蕉20202| 欧美+日韩+精品| 中文字幕人妻丝袜一区二区 | 黑人巨大精品欧美一区二区蜜桃| 久久这里有精品视频免费| 国产黄色免费在线视频| 欧美精品av麻豆av| 人妻系列 视频| 成年女人在线观看亚洲视频| 人体艺术视频欧美日本| 国产一区亚洲一区在线观看| 老汉色∧v一级毛片| 黄频高清免费视频| 久久久精品94久久精品| 欧美日韩av久久| 伦精品一区二区三区| 欧美人与性动交α欧美精品济南到 | 少妇猛男粗大的猛烈进出视频| 亚洲精品国产av蜜桃| 久久久国产精品麻豆| 精品国产乱码久久久久久小说| 亚洲国产最新在线播放| 青春草视频在线免费观看| 一区二区三区精品91| 日本爱情动作片www.在线观看| 人妻 亚洲 视频| 色婷婷av一区二区三区视频| 91成人精品电影| 看非洲黑人一级黄片| 黄色 视频免费看| 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 天天操日日干夜夜撸| 色婷婷久久久亚洲欧美| 久久99一区二区三区| 亚洲综合精品二区| 肉色欧美久久久久久久蜜桃| 色婷婷久久久亚洲欧美| 制服丝袜香蕉在线| 两个人看的免费小视频| 国产色婷婷99| 国产欧美日韩综合在线一区二区| 五月天丁香电影| 大香蕉久久网| 国产精品一区二区在线不卡| 十八禁高潮呻吟视频| 免费观看a级毛片全部| 丰满少妇做爰视频| 热99久久久久精品小说推荐| 亚洲人成电影观看| 久久国内精品自在自线图片| 国产成人一区二区在线| 一本色道久久久久久精品综合| av不卡在线播放| 亚洲国产日韩一区二区| 欧美中文综合在线视频| 女的被弄到高潮叫床怎么办| 日本免费在线观看一区| 两个人看的免费小视频| 亚洲国产看品久久| 精品国产乱码久久久久久小说| 丝袜脚勾引网站| 国产高清不卡午夜福利| 两个人看的免费小视频| 国产精品久久久av美女十八| 波多野结衣一区麻豆| 曰老女人黄片| 国产成人精品在线电影| 丰满迷人的少妇在线观看| 久久久国产欧美日韩av| 午夜av观看不卡| 下体分泌物呈黄色| 人体艺术视频欧美日本| 久久人人爽av亚洲精品天堂| 尾随美女入室| 久久99热这里只频精品6学生| 国产一区二区三区综合在线观看| 毛片一级片免费看久久久久| 色94色欧美一区二区| 国产成人免费无遮挡视频| 久久久精品免费免费高清| 亚洲av男天堂| 女人被躁到高潮嗷嗷叫费观| 91国产中文字幕| 狂野欧美激情性bbbbbb| 90打野战视频偷拍视频| 久久久久久久精品精品| 少妇的逼水好多| 最近最新中文字幕免费大全7| 久久久久久免费高清国产稀缺| 老鸭窝网址在线观看| 色婷婷久久久亚洲欧美| 老司机影院毛片| 亚洲色图综合在线观看| 高清视频免费观看一区二区| 亚洲精品国产色婷婷电影| 亚洲国产看品久久| 日本vs欧美在线观看视频| 在线亚洲精品国产二区图片欧美| 免费高清在线观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 久久久精品免费免费高清| 七月丁香在线播放| 久热久热在线精品观看| 亚洲av欧美aⅴ国产| av卡一久久| 中文字幕人妻丝袜一区二区 | 黑人欧美特级aaaaaa片| 精品一区二区三卡| 精品一区二区免费观看| 久久久久久人人人人人| 久久99精品国语久久久| 亚洲一区中文字幕在线| 成人18禁高潮啪啪吃奶动态图| 国产爽快片一区二区三区| 麻豆av在线久日| 欧美人与性动交α欧美软件| 国产在线免费精品| 美女xxoo啪啪120秒动态图| 久久这里有精品视频免费| av片东京热男人的天堂| av女优亚洲男人天堂| 午夜老司机福利剧场| 在线观看免费视频网站a站| 男人操女人黄网站| 超碰成人久久| 亚洲国产日韩一区二区| 国产精品欧美亚洲77777| 自线自在国产av| 成人手机av| 秋霞在线观看毛片| 成人毛片a级毛片在线播放| 国产在视频线精品| 久久精品人人爽人人爽视色| 色视频在线一区二区三区| 国产成人午夜福利电影在线观看| 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 一区二区av电影网| 成人二区视频| 亚洲精品,欧美精品| 欧美日韩精品网址| 国产免费福利视频在线观看| 嫩草影院入口| 国产在线免费精品| 国产成人av激情在线播放| 考比视频在线观看| 大片电影免费在线观看免费| 十八禁高潮呻吟视频| 最近手机中文字幕大全| 老司机影院毛片| 国产老妇伦熟女老妇高清| 国产成人精品久久二区二区91 | 国产高清国产精品国产三级| 欧美变态另类bdsm刘玥| 男女边吃奶边做爰视频| 午夜福利,免费看| av卡一久久| 亚洲av日韩在线播放| 国产乱来视频区| 人人妻人人澡人人看| 日本91视频免费播放| 国产精品 欧美亚洲| 亚洲精品美女久久久久99蜜臀 | 亚洲色图综合在线观看| 久久人妻熟女aⅴ| 亚洲欧美日韩另类电影网站| 中文欧美无线码| 亚洲av在线观看美女高潮| 国产亚洲欧美精品永久| 成人午夜精彩视频在线观看| 日日爽夜夜爽网站| 欧美xxⅹ黑人| 妹子高潮喷水视频| 亚洲综合色惰| 亚洲视频免费观看视频| 午夜日韩欧美国产| 天天躁夜夜躁狠狠久久av| 黄色 视频免费看| 日韩大片免费观看网站| 18禁国产床啪视频网站| videossex国产| 成人毛片a级毛片在线播放| 蜜桃国产av成人99| 最近最新中文字幕免费大全7| 少妇被粗大的猛进出69影院| av国产精品久久久久影院| 国产av码专区亚洲av| 少妇人妻精品综合一区二区| 精品国产一区二区久久| 青春草视频在线免费观看| 色视频在线一区二区三区| 国产av码专区亚洲av| 一级黄片播放器| 少妇人妻 视频| 日韩精品免费视频一区二区三区| av国产精品久久久久影院| 黄频高清免费视频| 另类精品久久| 成年女人毛片免费观看观看9 | 超碰97精品在线观看| 桃花免费在线播放| 亚洲,欧美精品.| av国产久精品久网站免费入址| 美女大奶头黄色视频| 中文字幕亚洲精品专区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美网| 电影成人av| 精品99又大又爽又粗少妇毛片| 大码成人一级视频| 日本黄色日本黄色录像| 亚洲四区av| 亚洲色图 男人天堂 中文字幕| 午夜福利视频在线观看免费| 黑人欧美特级aaaaaa片| 免费女性裸体啪啪无遮挡网站| 亚洲精品成人av观看孕妇| 欧美bdsm另类| 精品视频人人做人人爽| 国产免费视频播放在线视频| 久久免费观看电影| 天天躁夜夜躁狠狠躁躁| 一级毛片电影观看| 国产高清不卡午夜福利| 亚洲三区欧美一区| 一本色道久久久久久精品综合| 亚洲男人天堂网一区| 又黄又粗又硬又大视频| 亚洲熟女精品中文字幕| 国产日韩欧美在线精品| 啦啦啦中文免费视频观看日本| 久久99一区二区三区| 女人被躁到高潮嗷嗷叫费观| 国产激情久久老熟女| 在线天堂中文资源库| a级毛片黄视频| 日韩精品有码人妻一区| 亚洲人成网站在线观看播放| 欧美日韩国产mv在线观看视频| 亚洲激情五月婷婷啪啪| 极品少妇高潮喷水抽搐| 人人澡人人妻人| 久久精品国产亚洲av高清一级| 国产精品久久久久久久久免| av网站在线播放免费| 黄色配什么色好看| a 毛片基地| 最新中文字幕久久久久| 欧美变态另类bdsm刘玥| 性色avwww在线观看| 欧美亚洲 丝袜 人妻 在线| 国产亚洲av片在线观看秒播厂| 欧美日韩视频高清一区二区三区二| 制服丝袜香蕉在线| 中文字幕制服av| 一级毛片电影观看| 叶爱在线成人免费视频播放| 亚洲成人一二三区av| 久久久国产一区二区| 日韩熟女老妇一区二区性免费视频| 97精品久久久久久久久久精品| av片东京热男人的天堂| 国产精品二区激情视频| 美女国产高潮福利片在线看| 亚洲美女视频黄频| 亚洲,欧美精品.| 欧美国产精品va在线观看不卡| 久久精品国产自在天天线| 少妇的逼水好多| 亚洲欧美清纯卡通| 亚洲熟女精品中文字幕| 精品视频人人做人人爽| 亚洲国产欧美网| 中文欧美无线码| 青春草视频在线免费观看| av卡一久久| 久久精品亚洲av国产电影网| 在线观看一区二区三区激情| 国产成人免费无遮挡视频| 汤姆久久久久久久影院中文字幕| 国产乱人偷精品视频| 黄片播放在线免费| 久久99一区二区三区| 欧美成人午夜免费资源| 久久热在线av| 午夜福利网站1000一区二区三区| 久久精品国产a三级三级三级| 亚洲情色 制服丝袜| 美女脱内裤让男人舔精品视频| 国产精品99久久99久久久不卡 | 亚洲一级一片aⅴ在线观看| 午夜免费男女啪啪视频观看| 中文字幕av电影在线播放| 亚洲一码二码三码区别大吗| 欧美日韩精品网址| 香蕉国产在线看| 国产亚洲av片在线观看秒播厂| 国产人伦9x9x在线观看 | 一本久久精品| 亚洲一区二区三区欧美精品| 久久人人97超碰香蕉20202| 亚洲内射少妇av| 日韩,欧美,国产一区二区三区| 久久午夜综合久久蜜桃| 亚洲中文av在线| 欧美国产精品va在线观看不卡| 亚洲精品久久久久久婷婷小说| 久热久热在线精品观看|