• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New NTRU-Type Public-Key Cryptosystem over the Binary Field

    2019-07-18 01:59:58YouyuGuXiongweiXieandChunshengGu
    Computers Materials&Continua 2019年7期

    Youyu Gu, Xiongwei Xie and Chunsheng Gu

    Abstract: As the development of cloud computing and the convenience of wireless sensor netowrks, smart devices are widely used in daily life, but the security issues of the smart devices have not been well resolved.In this paper, we present a new NTRU-type public-key cryptosystem over the binary field.Specifically, the security of our scheme relies on the computational intractability of an unbalanced sparse polynomial ratio problem (DUSPR).Through theoretical analysis, we prove the correctness of our proposed cryptosystem.Furthermore, we implement our scheme using the NTL library, and conduct a group of experiments to evaluate the capabilities and consuming time of encryption and decryption.Our experiments result demonstrates that the NTRU-type public-key cryptosystem over the binary field is relatively practical and effective.

    Keywords: Public key cryptosystem, NTRU, lattice attack, meet in the middle attack.

    1 Introduction

    In the past few years, cloud computing has attracted a lot of research efforts.At the same time, more and more companies start to move their data and operations to public or private clouds.For example, out of 572 business and technology executives that were surveyed in Berman et al.[Berman, Lynn, Marshall et al.(2012)],51% relied on cloud computing for business model innovation.These demands also become a driving force for the development of cloud security and wireless security, which ranges from very theoretical efforts such as homomorphic encryption to very engineering mechanisms defending against side channel attacks through memory and cache sharing [Xie and Wang (2013b); Xie, Wang and Qin (2015); Pan, Lei, Zhang et al.(2018)].

    As the development of cloud computing and the convenience of wireless sensor netowrks, smart devices are widely used in daily life, such as smart phones, but the security issues of the smart devices have not been well resolved [Xie and Wang (2013a); Ren, Shen, Liu et al.(2016)].One reason is that smart devices do not have enough computing resource, and they are not suitable for the use of traditional cryptographic schemes directly, such as RSA,ECC.Therefore, in order to design a lightweight cryptographic scheme suitable for smart devices, this paper constructs a candidate public key encryption scheme based on NTRU over the binary field to partially solve the security problems in smart device applications.The NTRU public-key cryptosystem was introduced by Hoffstein, Pipher and Silverman in 1996 [Hoffstein, Pipher and Silverman (1998)].Unlike more classical public-key cryptosystems such as RSA, ECC or ElGamal, its security is based on the hardness of finding the shortest vector problem (SVP) and the closest vector problem (CVP) in a cyclic modular lattice, which are not known to be susceptible to quantum attack.As a consequence, it is considered as one of the most viable quantum-resistant public-key cryptosystems, whereas the classical cryptosystems based on the hardness of integer factorization, or the discrete logarithm over finite fields are no longer secure once the quantum computer becomes a reality[Shor(1997)].

    The NTRU system is determined by a set of parameters(n,q,p,χf,χg,χr,χe).First,the parameter n is set to be prime and used to define the polynomial ring R = ?[x]/〈xn-1〉.Second,p and q are relatively prime,q is much larger than p,and they are used to define the quotient polynomial rings Rq=R/qR and Rp=R/pR that form the ciphertext space and message space of NTRU,respectively.Finally,(χf,χg,χr,χe)are probability distributions defined in certain subsets of R,and output random polynomials with most coefficients being 0 and the rest in the set{1,-1}.

    Given these parameters of NTRU, Alice samples g from χg, and f from χfso that f is invertible in Rqand Rp.Alice publishes h = g/f ∈Rqas his public key, and keep f as his private key.To encrypt a message polynomial m ∈Rp,Bob takes Alice's public key h,samples r from χrand e from χe,computes the ciphertext c = p(hr+e)+m ∈Rq,and sends it to Alice.To decrypt the ciphertext c,Alice computes a=fc mod q,and outputs the message polynomialmod p.

    Related work.Since NTRU is the most efficient lattice-based public-key cryptosystem,many variants of NTRU were presented by replacing the ring of integers ? with other rings.Gaborit, Ohler, and Solé introduced CTRU as an analogue to NTRU where the coefficients of polynomials are frominstead of ?.However,Kouzmenko[Kouzmenko(2006)] presented a polynomial time algorithm which breaks CTRU.This is because the CTRU system uses low-degree polynomials instead of "small norm" polynomials.As a consequence, the CTRU system is no longer secure.Several variants of NTRU are proposed by using the Dedekind domains, including GNTRU over the Gaussian integers?[i][Kouzmenko(2006)],ETRU over the Eisenstein integers ?[ζ3][Nevins,Karimianpour and Miri (2010); Jarvis and Nevins (2015)], NTRUSIGN [Hoffstein, Howgrave-Graham,Pipher et al.(2003)]and NTRU Signature Scheme(NSS)[Hoffstein,Pipher and Silverman(2001)].The security of these variants is equivalent to the security of NTRU in general.On the other hand, some non-commutative versions of NTRU are also described over the non-commutative ring, including MaTRU over integer matrices [Coglianese and Goi(2005)], QTRU and BQTRU over quaternion algebras [Malekian, Zakerolhosseini and Mashatan(2009,2011);Bagheri,Sadeghi and Panario(2017)].

    Recently, Aggarwal et al.[Aggarwal, Joux, Prakash et al.(2017)] presented a new public-key cryptosystem via Mersenne numbers (AJPS) that is an integer version of the NTRU system.The security of the AJPS system relies on the conjectured hardness of the Mersenne low hamming ratio assumption.However, Beunardeau et al.[Beunardeau,Connolly,Géraud et al.(2017)]described a practical LLL-based algorithm that recovering the secret key from the public key is much faster than the security estimates in Aggarwal et al.[Aggarwal,Joux,Prakash et al.(2017)].Furthermore,de Boer et al.[de Boer,Ducas,Jeffery et al.(2017)]further refined the attack analysis of Beunardeau et al.[Beunardeau,Connolly,Géraud et al.(2017)].

    Although there are many research results related to variants of NTRU in the past few years,secure NTRU-type public key cryptosystem over the binary field has not attracted a lot of research afforts.

    1.1 Our contribution

    We propose a new NTRU-type public key cryptosystem over the binary field.As a warmup,Alice chooses two sparse polynomials f,g ∈R2=?2[x]/〈xn+1〉,and sets f as the secret key and h = g/f ∈R2as the public key.For encrypting a bit b ∈{0,1}, Bob chooses sparse polynomials r,e,generates a ciphertext c=rh+e+bm,where m is the polynomial of all coefficients 1, and sends c to Alice.For decryption, Alice computes a = cf and outputs b=0 if the number of the non-zero coefficients of a is less than a fixed value(e.g.,n/4),otherwise b=1.The advantage of this scheme is simple,but it can not be extended to multi-bit schemes easily.In this paper,we propose a multi-bit scheme by using unbalanced sparse polynomials.Namely,Alice chooses two sparse polynomials f,g ∈R2so that the degree of f is at most β, and sets the public keyand the secret key f,where β,θ are positive integers and β +θ <n.It is not difficult to construct a multi-bit scheme by using these unbalanced sparse polynomials.Concrete construction is described in Section 2.However,the use of unbalanced polynomials in the construction makes it more vulnerable to man-in-the-middle attacks.Therefore,we will take large enough parameters to resist this attack.

    Furthermore,we observe that the distribution of coefficients“1”in the product of two sparse polynomials is almost uniform.If the number of coefficients “1” in the product of two sparse polynomials is k,the probability that each coefficient is“1”is approximately equal to k/n.As a consequence, we assume that this distribution is uniform to improve the efficiency of our scheme.

    1.2 Organization

    The remainder of the paper is organized as follows.Firstly,we propose a NTRU-type public key cryptosystem and theoretically prove the correctness of it in Section 2.In Section 3,we analyze the security of our scheme and discuss the resistance to popular known attacks.In Section 4, we implement our NTRU-type scheme,and evaluate the capabilities and the consuming time for encryption and decryption.Finally,Section 5 concludes the paper.

    2 NTRU-type public key cryptosystem

    In this section,we present the details of our new NTRU-type public key cryptosystem over the binary field.Our construction is similar in form to the variant of NTRU [Stehlé and Steinfeld (2011)].However, our scheme works over the binary field ?2, and their variant works over ?qwith q ?2.It is not trivial to generalize their construction from ?qto ?2.For simplicity,we concretely define the notations of our scheme as follows:

    λ: the security parameter.

    ρ=λ/4: the number of coefficients"1"of random polynomials.

    α=4ρ: the length of message vectors.

    δ =2ρ: the extended length of plaintext bits.

    β =4ρ2: the degree of secret key polynomials.

    n ≥20ρ2+1: the degree of modulo polynomial defined the ring.

    R=?2[x]/〈xn+1〉: the working polynomial ring.

    R?: the set of all invertible polynomials in R.

    P =?2[x]: the ring of sampling random polynomials.

    P<β: the set of all polynomials of degree less than β in P.

    m ?1: the tensor product of two vectors m and 1.

    2.1 Construction

    Key generation:(pk,sk)←KeyGen(1λ).

    (1)Choose a prime n ≥20ρ2+1 so that

    GCD(xn+1,x2β+1)=x+1 mod 2,xn+1=(x+1)k(x) mod 2,

    where k(x)has at most two irreducible factors modulo 2.

    (4)Output the public key pk ={λ,ρ,n,β,h},and the secret key sk ={s}.

    Encryption:(c)←Enc(pk,m).

    (1)Given the public key pk,and a plaintext vector m ∈{0,1}α,compute d = m ?1,and set

    c=rh+e+d mod (xn+1) mod 2

    (3)Output the ciphertext c.

    Decryption:m ←Dec(sk,c).

    (1)Given the secret key sk,and a ciphertext c,compute over R

    w =fc mod (xn+1) mod 2

    v =w mod (x2β+1) mod 2

    (2)For i=0,1,··· ,α-1

    (2.2)If ui≥ρ,then mi=1,otherwise mi=0.

    (3)Output the plaintext vector m.

    Remark 2.1(1)To improve the efficiency of our construction,we can relax the condition of the factor number of xn+1 over the polynomial ring P.Namely,for a large enough prime n,the factor number of x is only required to be a small constant.In this case,in addition to factor x+1 of xn+1,other factors need to be able to resist man-in-the-middle attacks.

    (2) Our scheme uses unbalanced sparse polynomials to encrypt multi-bit plaintexts.If we construct a single-bit scheme, we only require to use sparse polynomials instead of unbalanced sparse polynomials.

    2.2 Correctness

    For the correctness of our scheme, it requires to prove that the algorithm Dec correctly recovers the plaintext from a ciphertext with high probability.

    We first give the following Chernoff bound.

    Lemma 2.2Let X1,··· ,Xδbe independent identically distributed random variables such that Xi←Berτ,where Berτdenotes the Bernoulli distribution with the parameter 0 ≤τ ≤1.Ifthen

    Pr[X ≥(τ +?)δ]≤e-2δ?2.

    Lemma 2.3Given sk and a ciphertext c,the algorithm Dec correctly decrypts the plaintext vector m.

    Proof.According to Dec,we have

    w =fc mod (xn+1) mod 2=f(rh+e+d) mod (xn+1) mod 2=rg+fe+fd mod (xn+1) mod 2

    By KeyGen,we have deg(f)=deg(s(x2β+1)+1)<3β =12ρ2.

    Again through deg(d)≤2β-1 <8ρ2,we get deg(fd)<20ρ2<n.

    So,the polynomial fd remains unchanged in modulo xn+1.Namely,fd mod xn+1=fd.

    Without loss of generality, let e = e(1)+x2βe(2).Similarly, the polynomial fe(1)also remains unchanged in modulo xn+1 since deg(e(1))≤2β-1.

    So,w =u+fe(1)+fd mod 2,where u=(rg+fx2βe(2)) mod (xn+1).

    As a result,v =w =(u mod (x2β+1))+e(1)+d mod (x2β+1) mod 2.

    In the following analysis, we assume that the coefficients "1" of noise polynomials are uniformly distributed.Concretely speaking, the probability that any coefficient of a noise polynomial y with length k is"1"is equal to

    Since z = u mod (x2β+1)+e(1)is a noise polynomial in v, the probability that any coeffciient of z is"1"is equal to

    Therefore,the expected number of"1"in a polynomial of length 2ρ is

    By Lemma 2.2,we have

    So,the probability that mican be correctly recovered is about

    3 Security

    In this section, we will define decisional unbalanced sparse polynomial ratio problem(DUSPR)and the DUSPR assumption,and analyze some known attacks.

    The security of the NTRU variant [Stehlé and Steinfeld (2011)] is reduced to worst-case problems over ideal lattices, but the security of NTRU is still based on the computational hardness assumption generated by NTRU.Similarly,the security of our NTRU-type scheme is also based on the new DUSPR hardness assumption.

    3.1 Hardness assumption

    Definition 3.1 Decisional unbalanced sparse polynomial ratio problem (DUSPR).

    Given the above parameters{λ,ρ,β,n},a distinguisher D is said to(λ,ρ,β,n,t,?)-solve the DUSPRλ,ρ,β,nproblem if

    where h=g/f ∈R?,f =s(x2β+1)+1,g ←,s ←with s,g ∈R?,and a ←R?,and D runs in time at most t.

    Our public key cryptosystem is based on the following assumption.

    Definition 3.2 DUSPR assumption.For any probabilistic distinguisher D that(λ,ρ,β,n,t,?)-solves the DUSPRλ,ρ,β,nproblem for all large enough λ, where ρ = λ/4,β =4ρ2,n=20ρ2+1,and t is polynomial in λ,the advantage ? that D holds is negligible as a function of λ.

    Lemma 3.3Under the DUSPR assumption, the public key encryption scheme(Enc,Dec)described in Section 2 is secure against chosen plaintext attack.

    Proof.Given two polynomials d0,d1∈P<2βcorresponding to plaintext vectors m0,m1,for i=0,1 let ci=rih+ei+dimod (xn+1) mod 2,be the ciphertexts of di,where

    Note that for simplicity we assume that c1,c2∈R?.The reason is that if GCD(ci,xn+1)1,we can flip the 0-th coefficient of ci.

    By contradiction,assume that there exists a polynomial time algorithm B,so that

    Let b ←R?.According to the DUSPR assumption,for any polynomial time algorithm A we have

    Table 1: The concrete parameter settings of our NTRU-type scheme

    Since B is a polynomial time algorithm,we get

    where negl0(λ),negl1(λ),and negl(λ)are negligible functions in λ.

    This generates a contradiction for the expression(1)and(3).

    3.2 Known attacks

    In the following subsection, we theoretically analyze how our proposed scheme prevents known attacks, including NTRU-type lattice attack, meet in the middle attack, and attack of factoring modulo xn+1.Our analysis result demonstrates that our scheme can resist all these known attacks.

    NTRU-type lattice attack.For the NTRU system, given the public key h = g/f over the ring ?q[x]/(xn-1),it is easy to construct the NTRU public lattice[Coppersmith and Shamir(1997);Hoffstein,Pipher and Silverman(1998)]as follows:

    where H is a circulant matrix generated from h.

    According to the parameter settings of NTRU,the vector(g,f)in L1has size(df+dg)1/2,where df,dgare the number of the non-zero coefficients of f,g, respectively.Since det(L1) = qn, the Gaussian heuristic suggests that(g,f)is in general the shortest vector in L1.However,the current lattice reduction algorithm that find(g,f)requires exponential in the security parameter n.

    Similarly,for our NTRU-type system,given the public key h = g/f over ?2[x]/(xn+1),we can also construct a lattice from h.Owing to using the unbalanced private key f, we only need to use the 2β rows of the circulant matrix H generated by h.The reaseon is thatfh=(s+1)h+s(x2βh)=f1h+f2h.As a reasult,we write a matrix form as follows:

    Table 2: The performance of our NTRU-type scheme

    where H is a circulant matrix generated from h, H[i : j]represents the sub-matrix of the i-th row to the j-th row of H.

    By our parameter settings,the vector(g,f1,f2)in L2has size(3ρ+1)1/2or(3ρ-1)1/2.Since det(L2) = 2n,the Gaussian heuristic suggests that(g,f1,f2)is usually the shortest vector in L2.When n is large enough, the lattice reduction algorithm that computes(g,f1,f2)requires time complexity at about 2O(n).

    Meet in the middle attack.The idea of the meet-in-the-middle attack on NTRU[Howgrave-Graham (2007)] is that if f1+ f2= f, then (f1+ f2)h = g mod q.In other words, the entries of y1= f1h and y2= -f2h differ only by 0 or 1 mod q.According to this property,the meet-in-the-middle attack performs sampling f1with df/2"1" coefficients, and storing them in boxes dependent on the y1.If two binary elements f1,f2are satisfied f =f1+f2,then we hope that this can be detected by a collision in a box.For any collisions, we can retrieve the f1,f2from the stored box, and determine whether(f1+f2)h is binary or not.Once we find a very small vector in the NTRU public lattice,it is very likely one of the rotation of(g,f).According to the analysis,the classical(resp.quantum)meet-in-the-middle attack requires the time complexity and space complexity at least[Howgrave-Graham (2007)] (resp.[de Boer,Ducas,Jeffery and Wolf(2017)]).

    Similarly, for our NTRU-type system, it is not difficult to verify that the classical (resp.quantum)meet-in-the-middle attack requires the time complexity and space complexity at least

    Attack of factoring xn+1 modulo 2.According to our parameter settings,the xn+1 has at most three factors modulo 2.In other words, xn+1 = (x+1)k(x) mod 2 such that k(x) is irreducible or k(x) = k1(x)k2(x) modulo 2.As far as we know, when n is large enough,no effective algorithm can use the factors of xn+1 to attack our system.

    4 Implementation

    To evaluate the encryption and decryption capabilities of the proposed approach,and access its consuming time on different security level,we conduct one group of experiments.The experiment environment setup is as follows.We implemented our NTRU-type public key cryptosystem over the NTL library.All programs were run on the physical machine,which has a 3.20 GHz Intel Core i5-3470 processor,and 8 GB of RAM.

    Tab.1 is our concrete parameter settings.We define different security level with different parameter values.Tab.2 is the performance result of our NTRU-type scheme.Note that the estimate of the security level mainly relies upon the time complexity of the classical meet-in-the-middle attack on our NTRU-type scheme.

    When security level is 80 (λ=120, ρ=30, β=3600, n=18013), we have 100% successful rate for testing frequency=2000,and average excryption/decryption time is about 3 ms with 150 expansion rate.When security level is 160 (λ=200, ρ=50, β=10000, n=50021), we have 100%successful rate for testing frequency=2000,and average excryption/decryption time is about 15ms with 250 expansion rate.From our experiments result, we can notice that if we directly encrypt plaintexts by applying our public key scheme,its performance is relatively weak,especially for the ciphertext expansion rate.However,if we use our public key scheme for key encapsulation mechanism, our scheme will be relatively practical and effective.

    It should be noted that we did not optimize our implementation and only illustrate the relative practicality of our construction.

    5 Conclusions

    In this paper,we propose a new NTRU-type public-key cryptosystem over the binary field,whose security relies on the computational intractability on the DUSPR problem.We present the details of our new NTRU-type plublic key cryptosystem with the theoretical analysis,and prove our decryption algorithm correctly recovers the plaintext from a ciphertext with high probability.We also theoretically analyze and prove that our proposed cryptosystem could avoid known attacks,including NTRU-type lattice attack,meet in the middle attack,and and attack of factoring modulo xn+1.Furthermore,we implement our scheme using the NTL library,and conduct a group of experiments in different security level.Our result demonstrates that our proposed NTRU-type public-key cryptosystem over ?2is relatively practical.

    Immediate extensions to our approach consist of the following aspects.First, we plan to experiment our approach with cell phone so that we can evaluate its improvements comparing to traditional cryptosystem.Second, we plan to study the feasibility and security of digital signature and authentication through conducting NTRU-type public key cryptosystem over the binary field.Finally, we plan to reduce the security of our scheme to the learning parity with noise(LPN)[Pietrzak(2012)]problem theoretically,so that we could get rid of the assumption of DUSPR.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China (Nos.61672270, 61702236 and 61602216) and Changzhou Sci&Tech Program(Grant No.CJ20179027).We thank anonymous reviewers for their helpful suggestions which greatly improved the presentation of this paper.

    Conflict of Interest

    We declare that the funding in the Acknowledgment section did not lead to any conflict of interests regarding the publication of this manuscript.Also,there is no any other conflict of interests in the manuscript.

    成人av在线播放网站| 精品一区二区免费观看| 欧美一区二区亚洲| 国产乱来视频区| 日韩一区二区视频免费看| 人人妻人人澡人人爽人人夜夜 | 国内揄拍国产精品人妻在线| 精品一区在线观看国产| 国产人妻一区二区三区在| 国产精品麻豆人妻色哟哟久久 | 午夜福利网站1000一区二区三区| 七月丁香在线播放| 女人十人毛片免费观看3o分钟| 韩国av在线不卡| 国产日韩欧美在线精品| 免费观看在线日韩| 国产伦精品一区二区三区视频9| 久久久精品欧美日韩精品| 亚洲国产色片| 日韩视频在线欧美| 日本-黄色视频高清免费观看| 日本wwww免费看| 国产av国产精品国产| 国产视频内射| 久久这里有精品视频免费| 亚洲第一区二区三区不卡| 色综合亚洲欧美另类图片| 在线观看免费高清a一片| 麻豆av噜噜一区二区三区| 国产在线男女| 久久久亚洲精品成人影院| 床上黄色一级片| 日韩亚洲欧美综合| 久久久久久久亚洲中文字幕| 亚洲国产高清在线一区二区三| 国产成人91sexporn| 男女视频在线观看网站免费| 亚洲精品乱码久久久v下载方式| 国产成人精品福利久久| 看非洲黑人一级黄片| 国产精品女同一区二区软件| 免费看日本二区| 人妻一区二区av| 日日啪夜夜撸| 99九九线精品视频在线观看视频| 青春草国产在线视频| 在线播放无遮挡| 免费看a级黄色片| 亚洲精品国产成人久久av| 乱系列少妇在线播放| 免费观看精品视频网站| 男女啪啪激烈高潮av片| 国产一区二区亚洲精品在线观看| 国产黄色视频一区二区在线观看| 欧美变态另类bdsm刘玥| 在线观看av片永久免费下载| 淫秽高清视频在线观看| 成人鲁丝片一二三区免费| 欧美人与善性xxx| 91aial.com中文字幕在线观看| 亚洲欧洲日产国产| 三级毛片av免费| 亚洲av中文字字幕乱码综合| 自拍偷自拍亚洲精品老妇| 最近视频中文字幕2019在线8| 99热6这里只有精品| 免费看不卡的av| 日产精品乱码卡一卡2卡三| 国产视频首页在线观看| 国产视频内射| 国内精品一区二区在线观看| 最新中文字幕久久久久| 毛片一级片免费看久久久久| 日韩欧美国产在线观看| 日本-黄色视频高清免费观看| 国产成年人精品一区二区| 婷婷色综合www| 亚洲在线观看片| 两个人的视频大全免费| 国产一区二区亚洲精品在线观看| 国产中年淑女户外野战色| 欧美日本视频| 日本与韩国留学比较| 超碰av人人做人人爽久久| 欧美3d第一页| 99re6热这里在线精品视频| 亚洲欧美日韩无卡精品| av在线播放精品| 欧美 日韩 精品 国产| 日韩,欧美,国产一区二区三区| 看非洲黑人一级黄片| av卡一久久| 亚洲av在线观看美女高潮| 在线a可以看的网站| 日韩欧美三级三区| 亚洲精品日本国产第一区| 国产激情偷乱视频一区二区| 日日啪夜夜撸| 久久97久久精品| 精品99又大又爽又粗少妇毛片| 国产精品1区2区在线观看.| 最近最新中文字幕免费大全7| 大香蕉97超碰在线| 日韩欧美一区视频在线观看 | 午夜精品国产一区二区电影 | 天天躁夜夜躁狠狠久久av| 国产亚洲最大av| 国产精品一二三区在线看| 国产成人freesex在线| 少妇被粗大猛烈的视频| 插阴视频在线观看视频| 青春草视频在线免费观看| 国产爱豆传媒在线观看| 免费看美女性在线毛片视频| 熟妇人妻不卡中文字幕| 欧美三级亚洲精品| 日韩强制内射视频| 亚洲av不卡在线观看| 免费av不卡在线播放| 亚洲av免费在线观看| 国产淫片久久久久久久久| 国产在线男女| 男人舔女人下体高潮全视频| 国语对白做爰xxxⅹ性视频网站| 国产成人精品一,二区| 男的添女的下面高潮视频| 精品一区在线观看国产| 成人亚洲精品av一区二区| 波野结衣二区三区在线| 床上黄色一级片| 国产视频内射| 老司机影院毛片| 亚洲av福利一区| 亚洲精品第二区| 国产成人freesex在线| 国产精品久久久久久精品电影| 男人和女人高潮做爰伦理| 80岁老熟妇乱子伦牲交| 亚洲成人中文字幕在线播放| 男插女下体视频免费在线播放| 国产欧美日韩精品一区二区| 国产真实伦视频高清在线观看| 久久韩国三级中文字幕| 日韩视频在线欧美| 97超碰精品成人国产| av播播在线观看一区| 少妇猛男粗大的猛烈进出视频 | 人妻夜夜爽99麻豆av| 久久精品综合一区二区三区| 国产精品蜜桃在线观看| 日本黄大片高清| 久久久精品94久久精品| 成年av动漫网址| 肉色欧美久久久久久久蜜桃 | 亚洲精品第二区| 日韩,欧美,国产一区二区三区| 亚洲av.av天堂| 午夜爱爱视频在线播放| 精品酒店卫生间| 亚洲av免费在线观看| 午夜激情福利司机影院| 大香蕉久久网| 国产国拍精品亚洲av在线观看| 日本黄色片子视频| 全区人妻精品视频| 99九九线精品视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 日韩人妻高清精品专区| 久久97久久精品| 99热这里只有是精品50| 亚洲成人精品中文字幕电影| 亚洲va在线va天堂va国产| 久久久欧美国产精品| 看非洲黑人一级黄片| 亚洲最大成人手机在线| 熟妇人妻久久中文字幕3abv| 我的女老师完整版在线观看| 日本黄色片子视频| 永久网站在线| 最近中文字幕高清免费大全6| 十八禁国产超污无遮挡网站| 亚洲成人精品中文字幕电影| 最近手机中文字幕大全| 国产伦理片在线播放av一区| 爱豆传媒免费全集在线观看| 蜜桃亚洲精品一区二区三区| 日本黄大片高清| 校园人妻丝袜中文字幕| 国产淫语在线视频| 少妇丰满av| 国产精品熟女久久久久浪| 亚洲欧美成人精品一区二区| 亚洲国产精品专区欧美| 日本黄色片子视频| 亚洲欧美精品自产自拍| 一级二级三级毛片免费看| 国产久久久一区二区三区| 亚洲成色77777| 国产 一区精品| 美女cb高潮喷水在线观看| 亚洲国产成人一精品久久久| 网址你懂的国产日韩在线| 国产av不卡久久| 欧美成人精品欧美一级黄| 天堂中文最新版在线下载 | 亚洲va在线va天堂va国产| 亚洲精华国产精华液的使用体验| 国产精品一及| 欧美3d第一页| 边亲边吃奶的免费视频| 六月丁香七月| 久久久久免费精品人妻一区二区| 免费不卡的大黄色大毛片视频在线观看 | 超碰97精品在线观看| 天堂中文最新版在线下载 | 日本一二三区视频观看| 高清视频免费观看一区二区 | 久久久欧美国产精品| 亚洲国产av新网站| 久久精品国产亚洲网站| 身体一侧抽搐| 日韩av在线大香蕉| 中文资源天堂在线| 2018国产大陆天天弄谢| 伊人久久国产一区二区| av播播在线观看一区| 2021少妇久久久久久久久久久| 欧美+日韩+精品| 爱豆传媒免费全集在线观看| 国产91av在线免费观看| 国产三级在线视频| 在现免费观看毛片| 久久久久久久久久人人人人人人| 免费大片18禁| 午夜免费观看性视频| 日韩精品有码人妻一区| 韩国高清视频一区二区三区| 国产精品综合久久久久久久免费| 亚洲综合精品二区| 免费大片黄手机在线观看| 国产精品三级大全| 丝袜喷水一区| 男人舔女人下体高潮全视频| 成年免费大片在线观看| 久久热精品热| 美女cb高潮喷水在线观看| 免费看光身美女| 国产成人精品婷婷| 中文在线观看免费www的网站| 亚洲欧美日韩无卡精品| 亚洲精品第二区| 你懂的网址亚洲精品在线观看| 午夜亚洲福利在线播放| 久久久精品免费免费高清| 亚洲综合色惰| 精品久久久久久成人av| 黄片无遮挡物在线观看| 51国产日韩欧美| 老司机影院毛片| 在线观看美女被高潮喷水网站| 午夜精品一区二区三区免费看| 男人舔女人下体高潮全视频| 成年免费大片在线观看| 日韩av在线免费看完整版不卡| 18禁裸乳无遮挡免费网站照片| 高清视频免费观看一区二区 | 日韩国内少妇激情av| 日本猛色少妇xxxxx猛交久久| 高清毛片免费看| 男人舔奶头视频| 日本欧美国产在线视频| 最近中文字幕2019免费版| 嫩草影院新地址| 国产在线男女| 精品久久久久久久久av| 天堂网av新在线| 亚洲欧美成人综合另类久久久| 秋霞在线观看毛片| 久久久久久九九精品二区国产| 一级毛片我不卡| 日韩,欧美,国产一区二区三区| 男女国产视频网站| 免费观看精品视频网站| 99久久中文字幕三级久久日本| 国产一级毛片在线| 亚洲乱码一区二区免费版| 成年人午夜在线观看视频 | 亚洲精品久久午夜乱码| 日韩成人伦理影院| av一本久久久久| 国产成人精品一,二区| 搡女人真爽免费视频火全软件| 麻豆精品久久久久久蜜桃| 纵有疾风起免费观看全集完整版 | 久久久久国产网址| 观看美女的网站| 午夜免费观看性视频| 日韩欧美三级三区| 国产大屁股一区二区在线视频| 国产不卡一卡二| 99热全是精品| 男人舔奶头视频| 神马国产精品三级电影在线观看| 午夜爱爱视频在线播放| 边亲边吃奶的免费视频| 国产片特级美女逼逼视频| 夫妻性生交免费视频一级片| 日韩av在线大香蕉| 国产精品一区二区三区四区免费观看| av在线播放精品| 亚洲性久久影院| 男女边吃奶边做爰视频| 午夜免费观看性视频| 国产一区亚洲一区在线观看| 日本一本二区三区精品| 亚州av有码| 精品久久久久久久久久久久久| 3wmmmm亚洲av在线观看| 成人亚洲精品av一区二区| av播播在线观看一区| 亚洲精品成人av观看孕妇| 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 色网站视频免费| 毛片一级片免费看久久久久| 人人妻人人澡人人爽人人夜夜 | 国产成人精品一,二区| 亚洲国产精品专区欧美| 又爽又黄a免费视频| 久久精品夜夜夜夜夜久久蜜豆| 啦啦啦啦在线视频资源| 国产 一区精品| 韩国高清视频一区二区三区| 亚洲成人精品中文字幕电影| 亚洲精品456在线播放app| 国产黄频视频在线观看| 国产69精品久久久久777片| 国产乱人视频| 久久人人爽人人片av| 精品人妻偷拍中文字幕| 少妇人妻精品综合一区二区| 日韩av在线免费看完整版不卡| 简卡轻食公司| 男女边摸边吃奶| 亚洲国产精品成人久久小说| 国产免费一级a男人的天堂| 亚洲综合精品二区| 欧美xxⅹ黑人| 国产精品久久久久久精品电影小说 | 亚洲精品乱码久久久v下载方式| 五月伊人婷婷丁香| 欧美成人午夜免费资源| 美女国产视频在线观看| 真实男女啪啪啪动态图| 亚洲熟妇中文字幕五十中出| 联通29元200g的流量卡| 成人特级av手机在线观看| 国产淫语在线视频| 成人特级av手机在线观看| 国产伦精品一区二区三区四那| 床上黄色一级片| 一级毛片aaaaaa免费看小| 高清av免费在线| 联通29元200g的流量卡| 成人特级av手机在线观看| 波多野结衣巨乳人妻| 国产精品三级大全| 国产精品不卡视频一区二区| 欧美一区二区亚洲| 看免费成人av毛片| 天天躁日日操中文字幕| 高清午夜精品一区二区三区| 精品欧美国产一区二区三| 午夜福利在线观看免费完整高清在| 毛片女人毛片| 国产爱豆传媒在线观看| 国产精品国产三级国产专区5o| 国产亚洲5aaaaa淫片| 青春草国产在线视频| 国产精品福利在线免费观看| 女的被弄到高潮叫床怎么办| 久久精品夜夜夜夜夜久久蜜豆| 丝瓜视频免费看黄片| 免费播放大片免费观看视频在线观看| 欧美成人午夜免费资源| 丰满人妻一区二区三区视频av| 亚洲人成网站高清观看| 精品久久国产蜜桃| 尾随美女入室| 日本爱情动作片www.在线观看| 免费大片黄手机在线观看| 91久久精品国产一区二区成人| 精品酒店卫生间| 亚洲精品影视一区二区三区av| 欧美日韩综合久久久久久| 精品久久久精品久久久| 永久网站在线| 亚洲人与动物交配视频| 街头女战士在线观看网站| 国产一级毛片在线| 日韩制服骚丝袜av| 免费少妇av软件| 床上黄色一级片| 亚洲人成网站在线观看播放| 日本免费a在线| 日本熟妇午夜| 欧美日韩国产mv在线观看视频 | 白带黄色成豆腐渣| 国语对白做爰xxxⅹ性视频网站| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 免费高清在线观看视频在线观看| 欧美 日韩 精品 国产| 亚洲av成人精品一二三区| 国产在视频线在精品| 最近最新中文字幕免费大全7| 一级爰片在线观看| 国产亚洲最大av| 伦精品一区二区三区| 亚洲欧美日韩卡通动漫| 在线天堂最新版资源| 国产精品熟女久久久久浪| 91久久精品电影网| 亚洲一区高清亚洲精品| 精品国产三级普通话版| 国产成人a区在线观看| 色哟哟·www| 18+在线观看网站| 在线观看美女被高潮喷水网站| www.av在线官网国产| 好男人视频免费观看在线| 日本免费在线观看一区| 51国产日韩欧美| 中文欧美无线码| 中文字幕制服av| 亚洲综合色惰| 秋霞伦理黄片| 久久综合国产亚洲精品| 人人妻人人澡人人爽人人夜夜 | 网址你懂的国产日韩在线| 一级毛片我不卡| 麻豆久久精品国产亚洲av| 熟女人妻精品中文字幕| 亚洲熟女精品中文字幕| 日韩欧美国产在线观看| 少妇的逼好多水| 中文资源天堂在线| 一个人观看的视频www高清免费观看| 波野结衣二区三区在线| 亚洲国产色片| 日韩欧美精品v在线| 亚洲不卡免费看| 亚洲自偷自拍三级| 久久亚洲国产成人精品v| 最近中文字幕高清免费大全6| 夫妻性生交免费视频一级片| 蜜臀久久99精品久久宅男| 女人被狂操c到高潮| 亚洲精品乱码久久久久久按摩| 欧美丝袜亚洲另类| 国产精品福利在线免费观看| av线在线观看网站| 床上黄色一级片| 91狼人影院| 日日摸夜夜添夜夜爱| av天堂中文字幕网| 亚洲国产色片| 91av网一区二区| 国产在视频线在精品| 国产黄a三级三级三级人| 久久亚洲国产成人精品v| 91久久精品国产一区二区成人| 日本免费在线观看一区| 免费在线观看成人毛片| 搡女人真爽免费视频火全软件| 天堂网av新在线| 最近视频中文字幕2019在线8| 国产精品一区二区三区四区免费观看| 亚洲最大成人手机在线| 国产亚洲5aaaaa淫片| 精品久久久久久成人av| 久久久国产一区二区| 91精品一卡2卡3卡4卡| 亚洲欧美日韩卡通动漫| 大话2 男鬼变身卡| 又爽又黄无遮挡网站| 亚洲av成人精品一二三区| 精品一区二区三卡| 校园人妻丝袜中文字幕| 欧美三级亚洲精品| 麻豆av噜噜一区二区三区| 精品一区二区免费观看| 午夜免费观看性视频| 国产黄片视频在线免费观看| 久久久久久久久久人人人人人人| 免费不卡的大黄色大毛片视频在线观看 | 亚洲美女视频黄频| 国产欧美日韩精品一区二区| 一区二区三区四区激情视频| 亚洲电影在线观看av| 麻豆乱淫一区二区| 菩萨蛮人人尽说江南好唐韦庄| 成人欧美大片| 亚洲aⅴ乱码一区二区在线播放| 寂寞人妻少妇视频99o| 麻豆乱淫一区二区| 久久久久久伊人网av| 波多野结衣巨乳人妻| 女人十人毛片免费观看3o分钟| 亚洲欧美精品自产自拍| 婷婷色av中文字幕| 日韩大片免费观看网站| 日日摸夜夜添夜夜添av毛片| 亚洲国产最新在线播放| 亚洲精品久久久久久婷婷小说| 中文字幕免费在线视频6| 国产av不卡久久| 国产成人freesex在线| 亚洲四区av| 只有这里有精品99| 老女人水多毛片| 国产精品精品国产色婷婷| 亚洲成色77777| 精品人妻熟女av久视频| 国产精品无大码| 久久久a久久爽久久v久久| 中国国产av一级| 夫妻性生交免费视频一级片| 非洲黑人性xxxx精品又粗又长| 欧美日韩在线观看h| av在线老鸭窝| 精品一区在线观看国产| 成人亚洲欧美一区二区av| 非洲黑人性xxxx精品又粗又长| 国产伦精品一区二区三区视频9| a级一级毛片免费在线观看| 一二三四中文在线观看免费高清| 午夜福利高清视频| 欧美成人午夜免费资源| av一本久久久久| 免费av不卡在线播放| 午夜激情福利司机影院| 亚洲国产精品专区欧美| 久久亚洲国产成人精品v| 亚洲va在线va天堂va国产| 免费看a级黄色片| 观看免费一级毛片| 一个人免费在线观看电影| 国产免费福利视频在线观看| 如何舔出高潮| 一级a做视频免费观看| 国产毛片a区久久久久| 午夜爱爱视频在线播放| 国产精品av视频在线免费观看| 国产午夜精品一二区理论片| 天天躁日日操中文字幕| 久久久午夜欧美精品| 精品久久久久久久久久久久久| 青春草亚洲视频在线观看| 夜夜看夜夜爽夜夜摸| 又爽又黄无遮挡网站| 亚洲国产欧美在线一区| 九草在线视频观看| 国产麻豆成人av免费视频| 日韩不卡一区二区三区视频在线| 久久久欧美国产精品| 最后的刺客免费高清国语| 亚洲欧美精品专区久久| 亚洲在线观看片| 久久6这里有精品| 寂寞人妻少妇视频99o| 中文字幕制服av| 久久久精品94久久精品| 精品国产露脸久久av麻豆 | 22中文网久久字幕| 丝瓜视频免费看黄片| 最近视频中文字幕2019在线8| 欧美日韩一区二区视频在线观看视频在线 | 男人和女人高潮做爰伦理| 黄片wwwwww| 亚洲av中文字字幕乱码综合| 丰满少妇做爰视频| 少妇人妻一区二区三区视频| 欧美潮喷喷水| 国模一区二区三区四区视频| 91aial.com中文字幕在线观看| 青春草视频在线免费观看| 性插视频无遮挡在线免费观看| 日产精品乱码卡一卡2卡三| av在线老鸭窝| 亚洲欧美日韩卡通动漫| 亚洲av中文av极速乱| 又爽又黄a免费视频| 日本免费a在线| 久久久久久九九精品二区国产| 精品亚洲乱码少妇综合久久| 欧美性猛交╳xxx乱大交人| 国产一级毛片七仙女欲春2| 亚洲久久久久久中文字幕| 我要看日韩黄色一级片| 日本黄大片高清| 高清毛片免费看| 美女xxoo啪啪120秒动态图| 两个人的视频大全免费| 亚洲精品一区蜜桃| 偷拍熟女少妇极品色| 欧美日韩一区二区视频在线观看视频在线 | 麻豆成人午夜福利视频| 精品久久久久久电影网| 99re6热这里在线精品视频| 水蜜桃什么品种好| 免费电影在线观看免费观看| 免费看光身美女| 午夜激情欧美在线| 五月玫瑰六月丁香|