杜 懌,孫 旭,孫延?xùn)|,肖 鳳,朱孝勇,毛 怡,嚴(yán)序康
?農(nóng)業(yè)裝備工程與機(jī)械化?
電動(dòng)拖拉機(jī)PC-DSPM電機(jī)電子變極策略與分析
杜 懌1,孫 旭1,孫延?xùn)|2,肖 鳳1※,朱孝勇1,毛 怡1,嚴(yán)序康1
(1. 江蘇大學(xué)電氣信息工程學(xué)院,鎮(zhèn)江 212013;2. 中汽創(chuàng)智科技有限公司,南京 211100)
針對(duì)田間作業(yè)和轉(zhuǎn)場(chǎng)運(yùn)輸?shù)炔煌r時(shí)的行駛速度需求,該研究提出使用雙凸極變極永磁(pole-changing doubly-salient permanent magnet,PC-DSPM)電機(jī)作為電動(dòng)拖拉機(jī)的驅(qū)動(dòng)電機(jī),通過(guò)變極獲得驅(qū)動(dòng)電機(jī)的多種機(jī)械特性。基于氣隙磁場(chǎng)調(diào)制理論,將PC-DSPM電機(jī)氣隙磁場(chǎng)中的主要工作諧波分為2組,采用電子變極改變電樞繞組連接方式,從而選擇不同組別的氣隙磁場(chǎng)諧波參與機(jī)電能量轉(zhuǎn)換,形成PC-DSPM電機(jī)3種運(yùn)行模式。根據(jù)不同模式下的轉(zhuǎn)矩-轉(zhuǎn)速曲線(xiàn),選取電機(jī)在恒功率區(qū)的2個(gè)變極切換點(diǎn),并據(jù)此將拖拉機(jī)的運(yùn)行速度劃分為0~7.7、7.7~10.5和10.5~32.7 km/h共3個(gè)區(qū)間。為實(shí)現(xiàn)平滑變極,構(gòu)建自抗擾控制和跟蹤微分器的PC-DSPM電機(jī)變極策略。與采用自抗擾控制的階躍響應(yīng)變極相比,雖然2個(gè)切換點(diǎn)處的變極時(shí)間分別延長(zhǎng)至400和600 ms,但變極過(guò)程中軸電流過(guò)渡平穩(wěn),轉(zhuǎn)矩波動(dòng)分別下降8.5%和11.8%,轉(zhuǎn)速恒定在920和1 250 r/min。研究結(jié)果可為實(shí)現(xiàn)電動(dòng)拖拉機(jī)多工況高效運(yùn)行及變極永磁電機(jī)平滑切換提供理論參考。
拖拉機(jī);永磁電機(jī);電子變極;六橋臂逆變器;跟蹤微分器
電動(dòng)拖拉機(jī)采用電機(jī)提供動(dòng)力,具有高效率、零排放、低噪音等特點(diǎn),是實(shí)現(xiàn)高效和綠色可持續(xù)農(nóng)業(yè)生產(chǎn)的有效手段之一[1-2],特別對(duì)具有空間狹小、封閉,不利于廢氣、噪音等排放物耗散特征的設(shè)施農(nóng)業(yè)[3-5],電動(dòng)拖拉機(jī)的優(yōu)勢(shì)尤為突出[6-7]。與電動(dòng)汽車(chē)不同,拖拉機(jī)的運(yùn)行工況通常包括田間作業(yè)和道路運(yùn)行兩大類(lèi)[8],前者具有運(yùn)行速度低、轉(zhuǎn)矩需求大等特點(diǎn),行駛的典型速度為2~7和7~10 km/h;而后者主要用于轉(zhuǎn)場(chǎng)和運(yùn)輸?shù)裙r,典型運(yùn)行速度一般為20~35 km/h[9]。可見(jiàn),拖拉機(jī)的調(diào)速范圍高達(dá)10倍以上,遠(yuǎn)大于電動(dòng)汽車(chē)對(duì)驅(qū)動(dòng)電機(jī)擴(kuò)速能力的要求,且其運(yùn)行速度具有明顯的分段特征。近年來(lái),為實(shí)現(xiàn)電動(dòng)汽車(chē)驅(qū)動(dòng)電機(jī)寬調(diào)速范圍高效運(yùn)行,國(guó)內(nèi)外學(xué)者展開(kāi)了大量研究[10-11],為電動(dòng)拖拉機(jī)驅(qū)動(dòng)電機(jī)類(lèi)型選擇和優(yōu)化設(shè)計(jì)提供了有益借鑒,但由于兩者運(yùn)行工況的顯著差異,導(dǎo)致現(xiàn)有電動(dòng)汽車(chē)驅(qū)動(dòng)電機(jī)的設(shè)計(jì)思路和方法不能完全適用于電動(dòng)拖拉機(jī)。
改變電機(jī)極對(duì)數(shù)可以改變電機(jī)的特性參數(shù),進(jìn)而形成變極前后不同的機(jī)械特性,拓寬電機(jī)高效運(yùn)行速度范圍,符合電動(dòng)拖拉機(jī)典型運(yùn)行工況速度分段、寬調(diào)速范圍等需求。國(guó)內(nèi)外學(xué)者對(duì)變極感應(yīng)電機(jī)、變極永磁電機(jī)、變極磁阻電機(jī)均展開(kāi)了大量研究。對(duì)于感應(yīng)電機(jī)而言,僅需改變定子線(xiàn)圈間的連接,進(jìn)而改變電樞磁場(chǎng)的極對(duì)數(shù),即可實(shí)現(xiàn)電機(jī)的變極運(yùn)行。使用開(kāi)關(guān)器件能十分簡(jiǎn)單地改變線(xiàn)圈的連接[12],但該方案會(huì)在變極瞬間產(chǎn)生斷流現(xiàn)象,使變極過(guò)程不連續(xù)。為此,文獻(xiàn)[13-14]提出極相調(diào)制變極方案,采用六橋臂逆變器控制兩套定子繞組,在變極瞬間僅需改變其中一套繞組中電流的相位,從而實(shí)現(xiàn)了所謂電子變極。這種階躍式電子變極雖然能使轉(zhuǎn)矩連續(xù),但電流的突變必將導(dǎo)致較大的轉(zhuǎn)矩波動(dòng),使變極過(guò)程不平滑。文獻(xiàn)[15]提出斜坡響應(yīng)電子變極策略,試驗(yàn)表明,與階躍變極相比,斜坡變極雖然延長(zhǎng)了變極瞬態(tài)時(shí)間,但有效降低了轉(zhuǎn)矩波動(dòng)。另外,由于多相電機(jī)具有多個(gè)控制自由度,文獻(xiàn)[16-17]將基波平面電流與諧波平面電流進(jìn)行切換,并利用指數(shù)函數(shù)變化過(guò)程比較光滑的特點(diǎn)實(shí)施了五相感應(yīng)電機(jī)電子變極,實(shí)現(xiàn)了電機(jī)轉(zhuǎn)速和轉(zhuǎn)矩的平穩(wěn)過(guò)渡。基于感應(yīng)電機(jī)電子變極方法,并結(jié)合永磁同步電機(jī)的特點(diǎn),變極永磁同步電機(jī)[18]可通過(guò)控制電流角的變化實(shí)施變極操作,使得變極永磁電機(jī)既具有變極感應(yīng)電機(jī)寬調(diào)速范圍的優(yōu)點(diǎn),又具有永磁電機(jī)高效和高功率密度等特性。
文獻(xiàn)[19]提出了一種П型鐵心結(jié)構(gòu)的雙凸極變極永磁(pole-changing doubly-salient permanent magnet,PC-DSPM)電機(jī),該電機(jī)的永磁體和電樞繞組均位于電機(jī)定子,而電機(jī)轉(zhuǎn)子僅為設(shè)有凸極的鐵心,因此具有便于冷卻、高功率密度、高效率等特點(diǎn)。但該論文僅對(duì)電機(jī)結(jié)構(gòu)、運(yùn)行原理、電磁性能進(jìn)行了分析,并未具體給出電機(jī)的變極切換方法以及切換過(guò)程。本文以PC-DSPM電機(jī)為例,對(duì)變極永磁電機(jī)電子變極的平滑切換策略進(jìn)行研究。為了更清楚地說(shuō)明,首先對(duì)PC-DSPM電機(jī)結(jié)構(gòu)和運(yùn)行原理作簡(jiǎn)要討論,并給出電機(jī)在不同模式下的變極條件;其次提出利用跟蹤微分器控制電流角變化過(guò)程,使變極過(guò)程中的電流光滑無(wú)超調(diào)地過(guò)渡到給定值,實(shí)現(xiàn)電機(jī)的平滑變極切換。
本文以12/7極PC-DSPM電機(jī)為對(duì)象,如圖1所示,該電機(jī)定子上有6塊П型鐵心,形成的12個(gè)定子槽內(nèi)嵌有12個(gè)跨距為1的線(xiàn)圈,相鄰定子鐵心軛部間夾裝6塊切向充磁的永磁體,且相鄰永磁體充磁方向相反;轉(zhuǎn)子為設(shè)有7個(gè)凸極的鐵心結(jié)構(gòu)。
圖1 電機(jī)結(jié)構(gòu)
與感應(yīng)電機(jī)不同,PC-DSPM電機(jī)基于定轉(zhuǎn)子凸極齒對(duì)永磁磁場(chǎng)的調(diào)制作用[19],產(chǎn)生具有不同極對(duì)數(shù)且對(duì)應(yīng)不同槽距角的氣隙磁密諧波,進(jìn)而配合不同連接的電樞繞組,實(shí)現(xiàn)電機(jī)的變極運(yùn)行。因此,對(duì)PC-DSPM電機(jī)永磁磁場(chǎng)進(jìn)行分析,是獲取繞組連接方式和實(shí)施變極運(yùn)行的基礎(chǔ)。
圖2為PC-DSPM電機(jī)永磁氣隙磁密波形及諧波分析。從圖2中可以看出,極對(duì)數(shù)為2、3、4、9、10和16的諧波分量幅值較大。其中,3對(duì)極諧波由定子上靜止的永磁體直接產(chǎn)生,9對(duì)極諧波由12個(gè)定子齒對(duì)靜止的3對(duì)極永磁磁場(chǎng)調(diào)制產(chǎn)生,因此上述2種諧波分量均與繞組相對(duì)靜止,無(wú)法產(chǎn)生感應(yīng)電勢(shì);而2、4、10和16對(duì)極諧波分量則由轉(zhuǎn)子凸極對(duì)靜止諧波分量的調(diào)制作用產(chǎn)生,且隨轉(zhuǎn)子同步旋轉(zhuǎn)(電速度相同),因此可在定子繞組中產(chǎn)生感應(yīng)電勢(shì),為工作諧波。
圖2 永磁磁密及諧波分析
Fig.2 Permanent magnet flux density and harmonic analysis
圖3為2和10、4和16對(duì)極永磁諧波對(duì)應(yīng)的線(xiàn)圈感應(yīng)電勢(shì)矢量圖。從圖3中可以看出,逆時(shí)針為正方向時(shí),2和10對(duì)極永磁諧波對(duì)應(yīng)感應(yīng)電勢(shì)的槽距角為-60°,4和16對(duì)極永磁諧波對(duì)應(yīng)感應(yīng)電勢(shì)的槽距角為120°。因此,上述4種幅值較大的旋轉(zhuǎn)永磁諧波磁場(chǎng)可以按照槽距角分為2組。綜合考慮上述4種諧波得到的總感應(yīng)電勢(shì)如圖3c所示。當(dāng)定子線(xiàn)圈分別按圖3進(jìn)行繞制時(shí),即可基于電樞繞組的濾波作用[20],選取某1組或2組永磁磁場(chǎng)諧波參與機(jī)電能量轉(zhuǎn)換,進(jìn)而實(shí)現(xiàn)PC-DSPM電機(jī)的變極運(yùn)行。
注:1、2、3…表示線(xiàn)圈號(hào)。
觀察圖3可知,線(xiàn)圈1和7(線(xiàn)圈組1)、5和11(線(xiàn)圈組2)、3和9(線(xiàn)圈組3)、4和10(線(xiàn)圈組4)、2和8(線(xiàn)圈組5)、6和12(線(xiàn)圈組6)的感應(yīng)電勢(shì)矢量始終保持同相位,且線(xiàn)圈組1、2和3之間,線(xiàn)圈組4、5和6之間分別互差120°。因此,在考慮PC-DSPM電機(jī)變極過(guò)程中的繞組連接時(shí),可將12個(gè)定子線(xiàn)圈分為2套三相繞組,即同一線(xiàn)圈組的2個(gè)線(xiàn)圈正向串聯(lián)形成6個(gè)線(xiàn)圈組,線(xiàn)圈組1、2、3和線(xiàn)圈組4、5、6分別構(gòu)成三相繞組1和三相繞組2。為充分利用上述永磁諧波磁場(chǎng),獲得盡可能大的空載感應(yīng)電勢(shì),可以得到與圖3對(duì)應(yīng)的3種繞組連接方式,進(jìn)而獲得PC-DSPM電機(jī)3種運(yùn)行模式,如表1所示??梢?jiàn),在PC-DSPM電機(jī)變極運(yùn)行過(guò)程中,其繞組的不同連接方式,可由2套三相繞組之間不同方向的串聯(lián)實(shí)現(xiàn)。圖4給出了3種繞組的具體連接方式。
表1 不同模式的繞組連接方案
注:“+”和“-”分別代表線(xiàn)圈組同向和反向串聯(lián);1、2、3…表示線(xiàn)圈號(hào)。
Note: “+” and “-” represent that coil groups are connected in the same and reverse direction; 1, 2, 3… represent the coil No..
圖4 不同模式下的繞組連接方式
將2個(gè)線(xiàn)圈組正向或反向串聯(lián)可使2個(gè)線(xiàn)圈組中的電流方向相同或相反,因此可采用六橋臂逆變器對(duì)2套三相繞組6個(gè)線(xiàn)圈組中的電流進(jìn)行分別控制,以獲得與圖4繞組連接方式相同的效果,即電子變極,如圖5所示,此時(shí)PC-DSPM電機(jī)演化為雙三相電機(jī)。與傳統(tǒng)雙三相電機(jī)不同的是,PC-DSPM電機(jī)的2套三相繞組中的電流相位需根據(jù)圖3所示的線(xiàn)圈感應(yīng)電勢(shì)相位進(jìn)行控制。值得指出的是,PC-DSPM電機(jī)的軸電感十分接近,可以忽略凸極效應(yīng)[19],因此本文在恒轉(zhuǎn)矩區(qū)采用軸電流d=0控制策略,以提高電流利用率,即在不同的運(yùn)行模式下,電流相位與相應(yīng)的合成空載感應(yīng)電勢(shì)相位相同;在恒功率區(qū)采用弱磁控制以實(shí)現(xiàn)電機(jī)的不同運(yùn)行特性,即根據(jù)合成電流超前線(xiàn)圈空載感應(yīng)電勢(shì)計(jì)算參考電流的給定值。
注:Udc是電壓,V;“+”和“-”代表電壓正極和負(fù)極端;is1~is6是線(xiàn)圈組中電流,A。
基于繞組連接的切換,PC-DSPM電機(jī)可運(yùn)行于不同模式,以兼顧低速大轉(zhuǎn)矩和寬調(diào)速范圍。圖6為3種模式運(yùn)行時(shí)的機(jī)械特性曲線(xiàn),從圖6中可以看出,模式I的最大轉(zhuǎn)矩和轉(zhuǎn)速分別為4.3 N·m和3 900 r/min,其轉(zhuǎn)矩輸出能力最小,但轉(zhuǎn)速范圍最大;而模式III反之,其最大轉(zhuǎn)矩和轉(zhuǎn)速分別為7.6 N·m和2 370 r/min;模式II介于兩者之間,最大轉(zhuǎn)矩和轉(zhuǎn)速分別為6.2 N·m和3 100 r/min。為盡可能實(shí)現(xiàn)電機(jī)的平滑運(yùn)行,選擇不同模式機(jī)械特性曲線(xiàn)的交點(diǎn)作為模式的切換點(diǎn),即第一切換點(diǎn)(920 r/min,4.75 N·m)和第二切換點(diǎn)(1 250 r/min,3.4 N·m),進(jìn)而形成高速區(qū)、中速區(qū)和低速區(qū)3段式運(yùn)行模式,最終的運(yùn)行軌跡如圖6中的粗實(shí)線(xiàn)所示。
圖6 不同模式下的轉(zhuǎn)速-轉(zhuǎn)矩曲線(xiàn)
根據(jù)2個(gè)變極切換點(diǎn)將電機(jī)的轉(zhuǎn)速范圍劃為3個(gè)區(qū)間,分別適用于電動(dòng)拖拉機(jī)的不同運(yùn)行工況。轉(zhuǎn)速為1 250~3 900 r/min時(shí),電機(jī)運(yùn)行于模式Ⅰ,適用于電動(dòng)拖拉機(jī)道路運(yùn)行工況;轉(zhuǎn)速為920~1 250 r/min時(shí),電機(jī)運(yùn)行于模式Ⅱ,適合于水田耕作等低速小載荷田間作業(yè);轉(zhuǎn)速在0~920 r/min時(shí),電機(jī)運(yùn)行于模式Ⅲ,適用于旱田旋耕等低速大載荷田間作業(yè)。如表2所示,忽略機(jī)械損耗,當(dāng)PC-DSPM電機(jī)搭配固定齒輪傳動(dòng)比=18的變速箱以及7.50-20型號(hào)的輪胎,其半徑=0.4 m時(shí),電動(dòng)拖拉機(jī)相應(yīng)的運(yùn)行速度分別為0~7.7、7.7~10.5和10.5~32.7 km/h。
表2 電機(jī)和拖拉機(jī)的運(yùn)行參數(shù)
為實(shí)現(xiàn)PC-DSPM電機(jī)的平滑電子變極,構(gòu)建基于擴(kuò)張狀態(tài)觀測(cè)器的自抗擾控制策略,并采用跟蹤微分器控制電流角的過(guò)渡過(guò)程。
在電機(jī)的變極過(guò)程中,電機(jī)系統(tǒng)不可避免地面臨各種內(nèi)部和外部擾動(dòng),且擾動(dòng)的上界很難確定[21]。自抗擾控制將系統(tǒng)中異于標(biāo)準(zhǔn)型的部分視為總擾動(dòng),并把總擾動(dòng)擴(kuò)張為一個(gè)新的狀態(tài),利用擴(kuò)張狀態(tài)觀測(cè)器觀測(cè)出總擾動(dòng),并采用非線(xiàn)性誤差反饋律加以補(bǔ)償,從而對(duì)擾動(dòng)進(jìn)行實(shí)時(shí)消減與抑制[22-25]。
在同步旋轉(zhuǎn)坐標(biāo)系中,Π型PC-DSPM電機(jī)定子電壓方程可以表示為
式中d和q為同步旋轉(zhuǎn)坐標(biāo)系下定子電壓,V;d和q為軸電流,A;為時(shí)間,s;d和q為電樞電感分量,H;為電阻,Ω;f為永磁磁鏈,Wb;e是電機(jī)轉(zhuǎn)子角速度,r/min。
以軸定子電壓為例,令:
式中1和2分別視為內(nèi)部和外部擾動(dòng),d*為參考電壓,V;令d=1+2,d=1/d,由式(1)可得軸電流:
同理可得軸電流:
對(duì)于上述的狀態(tài)空間方程,可構(gòu)造如下一階擴(kuò)張狀態(tài)觀測(cè)器:
非線(xiàn)性誤差反饋律對(duì)參考輸入信號(hào)及擴(kuò)張狀態(tài)觀測(cè)器觀測(cè)信號(hào)的非線(xiàn)性組合誤差進(jìn)行控制,最終對(duì)擴(kuò)張狀態(tài)觀測(cè)器觀測(cè)出的總擾動(dòng)進(jìn)行補(bǔ)償,其結(jié)構(gòu)如下:
其中03,和為非線(xiàn)性誤差反饋律的參數(shù)。03的取值與系統(tǒng)響應(yīng)速度和負(fù)載突變時(shí)的速度變化有關(guān),在一定范圍內(nèi),數(shù)值越大,響應(yīng)越快。0為等效控制量,fal為跟蹤函數(shù),其結(jié)構(gòu)為
對(duì)于電子變極切換過(guò)程,最關(guān)鍵的是確定一種電流過(guò)渡方法,使電機(jī)在不同模式之間平滑切換,即要求電流角的切換快速、準(zhǔn)確和平滑。而對(duì)于常數(shù)值電流角的輸入,跟蹤微分器可以在有限時(shí)間內(nèi)無(wú)超調(diào)地跟蹤上給定值,實(shí)現(xiàn)電流角的平滑切換。跟蹤微分器的算法如下:
式中()為輸入信號(hào),1()為()的跟蹤信號(hào),為仿真步長(zhǎng);2()為1()的微分信號(hào),fhan是最速跟蹤函數(shù),可以使跟蹤微分器快速無(wú)超調(diào)地跟蹤上給定值,其結(jié)構(gòu)如下:
式中0是速度因子,可以決定跟蹤輸入信號(hào)的速度,0越大,跟蹤速度越快;0是濾波因子,其值應(yīng)適當(dāng)大于步長(zhǎng)。圖8為跟蹤微分器的結(jié)構(gòu)框圖。
圖8 跟蹤微分器結(jié)構(gòu)框圖
假設(shè)給定電流角的變化量為,0代表過(guò)渡的總時(shí)間,那么由跟蹤微分器確定的變化跟蹤曲線(xiàn)在前半段時(shí)間[0,0/2]內(nèi)將會(huì)沿著拋物線(xiàn)以0為加速度上升至/2,此時(shí)上升速度達(dá)到最大值。在后半段時(shí)間[0/2,0]內(nèi),曲線(xiàn)會(huì)以0的加速度做減速運(yùn)動(dòng),但當(dāng)繼續(xù)上升達(dá)到給定值之后,加速度和速度將同時(shí)變?yōu)?。最終跟蹤微分器確定的曲線(xiàn)會(huì)無(wú)超調(diào)地穩(wěn)定在給定值,且總過(guò)渡時(shí)間0、最大加速度0和給定電流角的變化量的關(guān)系為
圖9給出了不同0值時(shí)跟蹤微分器確定的曲線(xiàn)變化過(guò)程。可見(jiàn),變化曲線(xiàn)呈現(xiàn)先平緩、后劇烈,并最終趨于平緩的趨勢(shì)。當(dāng)給定電流角的變化量相同時(shí),隨著0的增大,總過(guò)渡時(shí)間0縮短。更為重要的是,從圖中可以看出,即使當(dāng)給定電流角的變化量不相等,也可通過(guò)調(diào)節(jié)0的取值,使兩者的過(guò)渡時(shí)間0相同。
圖9 跟蹤微分器曲線(xiàn)
不停電情況下實(shí)現(xiàn)PC-DSPM電機(jī)的變極操作,其基本思路是在電機(jī)變極過(guò)程中,通過(guò)轉(zhuǎn)子磁場(chǎng)定向矢量控制將電機(jī)定子電流分解為勵(lì)磁電流分量d1、d2和轉(zhuǎn)矩電流分量q1、q2,采用電流角切換的方式改變每個(gè)模式下各參考電流的大小,即勵(lì)磁電流參考值d1、d2和轉(zhuǎn)矩電流參考值q1、q2,從而使電機(jī)平穩(wěn)地運(yùn)行在給定模式下。式(12)給出了變極過(guò)程中各參考電流的變化。
式中是電流角,表示某一運(yùn)行模式時(shí),相應(yīng)線(xiàn)圈組中合成電流與該線(xiàn)圈組空載感應(yīng)電勢(shì)之間的夾角,下標(biāo)1和2表示2套三相繞組,=I、II、III代表電機(jī)的3種運(yùn)行模式。
為建立較為精確的仿真與控制模型,本節(jié)對(duì)PC-DSPM電機(jī)的電磁性能進(jìn)行計(jì)算和分析。圖10為PC-DSPM電機(jī)六相永磁磁鏈波形圖,由圖可見(jiàn),其幅值為0.0756Wb,波形正弦且對(duì)稱(chēng),并由此可以獲得正弦且對(duì)稱(chēng)的空載感應(yīng)電勢(shì),相比采用E型鐵心的傳統(tǒng)雙凸極永磁電機(jī),該電機(jī)的轉(zhuǎn)矩脈動(dòng)可得到有效抑制。圖11為軸電感波形,軸電感平均值為7.785 mH,軸電感平均值為7.73 mH,軸電感近似相同,可忽略電機(jī)的凸極效應(yīng),并在恒轉(zhuǎn)矩區(qū)可采用軸電流d=0控制策略,以提高電流利用率。
表3給出了電機(jī)的關(guān)鍵電磁參數(shù),其中轉(zhuǎn)動(dòng)慣量由轉(zhuǎn)子參數(shù)計(jì)算獲得,繞組電阻為室溫20 ℃時(shí)的估算值。
圖10 永磁磁鏈波形
圖11 電感波形
表3 電機(jī)參數(shù)
采用Matlab/Simulink對(duì)基于自抗擾控制的跟蹤微分器電子變極方案進(jìn)行仿真驗(yàn)證,其中自抗擾控制參數(shù)如表4所示。
表4 自抗擾控制參數(shù)
在驅(qū)動(dòng)電機(jī)轉(zhuǎn)速不斷變化且經(jīng)過(guò)第一切換點(diǎn)和第二切換點(diǎn)時(shí),PC-DSPM電機(jī)的運(yùn)行模式應(yīng)分別在模式III和模式II,模式II和模式I之間切換。由于電氣時(shí)間常數(shù)遠(yuǎn)小于機(jī)械時(shí)間常數(shù),可認(rèn)為切換過(guò)程中的電機(jī)負(fù)載轉(zhuǎn)矩和轉(zhuǎn)速保持不變。圖12a和圖13a為變極過(guò)程中A相電流波形,從圖中可以看出,2套線(xiàn)圈的電流相位分別經(jīng)歷了3種模式,與電機(jī)運(yùn)行原理一致。另外可以看出,電機(jī)在第二切換點(diǎn)進(jìn)行模式切換時(shí),2套線(xiàn)圈的電流相位差從0°變?yōu)?80°,變化幅度較大。另外,從圖12a與圖 13a局部放大圖可見(jiàn),2套線(xiàn)圈的電流相位變化平滑,且變極過(guò)程中電流無(wú)超調(diào),實(shí)現(xiàn)了電機(jī)的平滑變極切換。
圖12b、12c和圖13b、13c分別顯示了2次變極切換過(guò)程中軸電流的變化過(guò)程。由于電機(jī)在恒功率區(qū)采用弱磁控制,因此電機(jī)合成電流超前2套線(xiàn)圈反電勢(shì)的角度不同,從而使變極過(guò)程中兩套線(xiàn)圈軸電流的變化幅度以及變化方向各不相同。另外,從圖中可以看出,軸電流的變化曲線(xiàn)呈現(xiàn)先平緩、后劇烈,再趨于平緩的趨勢(shì),并且電流的大小最終無(wú)超調(diào)地過(guò)渡到穩(wěn)態(tài)值,實(shí)現(xiàn)了電機(jī)的平滑變極切換。
圖12 模式Ⅲ到模式Ⅱ的電子變極過(guò)程
為進(jìn)一步驗(yàn)證所提理論及仿真結(jié)果,基于RTU-box搭建了PC-DSPM電機(jī)變極試驗(yàn)平臺(tái),并對(duì)基于自抗擾控制的跟蹤微分器電子變極及傳統(tǒng)階躍響應(yīng)電子變極方法進(jìn)行試驗(yàn)對(duì)比,其中后者的電流環(huán)同樣采用自抗擾控制策略,且試驗(yàn)工況與仿真保持一致,以突出本文提出的跟蹤微分器電子變極的優(yōu)越性,試驗(yàn)平臺(tái)如圖14所示。
圖15為電機(jī)運(yùn)行在第一切換點(diǎn)(920 r/min,4.75 N·m)時(shí),模式III到模II的切換過(guò)程。從圖15a中可以看出,電機(jī)在變極前后電流的幅值均為4 A,且變極后2套繞組的電流相位相同,相位差為0°。另外,從圖15a中還可以看出,采用基于自抗擾控制的階躍響應(yīng)變極方法雖然能使電機(jī)較快地實(shí)現(xiàn)變極切換,但是電機(jī)在變極過(guò)程中轉(zhuǎn)速下降了10 r/min,轉(zhuǎn)矩從4.75 N·m下降至4.35N·m,下降8.5%。如圖15b所示,本文基于自抗擾控制的跟蹤微分器變極方法雖然將變極暫態(tài)時(shí)間延長(zhǎng)至400 ms,但是使電機(jī)的轉(zhuǎn)速和轉(zhuǎn)矩分別穩(wěn)定在920 r/min和4.75 N·m,有效降低了電機(jī)在變極過(guò)程中轉(zhuǎn)速和轉(zhuǎn)矩的波動(dòng),使電機(jī)的輸出不受影響。另外,2套線(xiàn)圈的電流相位逐步漸變到給定模式下,實(shí)測(cè)電流波形與仿真結(jié)果一致。
圖13 模式Ⅱ到模式Ⅰ的電子變極過(guò)程
圖15c和圖15d為2種變極策略下的軸電流變化波形,其中第一和第二套繞組的軸電流分別從3.6和3 A變化至4.6和0.2 A,而軸電流分別從2.7和3.2 A變化至1.5和4.7 A。采用階躍響應(yīng)方法時(shí),由于繞組電感的作用,電機(jī)的實(shí)際電流不會(huì)發(fā)生突變,因此電流在變極過(guò)程中呈現(xiàn)先快速后逐漸趨于平緩的趨勢(shì),但這也使得實(shí)際電流并不能迅速跟蹤給定電流,并進(jìn)而導(dǎo)致較大的轉(zhuǎn)速和轉(zhuǎn)矩脈動(dòng)。此外,跟蹤微分器方法將變極過(guò)程延長(zhǎng)至400 ms,但整體上降低了電流的變化率,從而使過(guò)渡過(guò)程更平滑。
圖14 試驗(yàn)平臺(tái)
圖16為電機(jī)運(yùn)行在第二切換點(diǎn)(1 250 r/min,3.4 N·m)時(shí),模式Ⅱ到模式Ⅰ的切換過(guò)程,2種控制策略的差異分析與第一切換點(diǎn)類(lèi)似。此外,由于從模式II切換為模式I時(shí),2套繞組中的電流相位差從0°切換為180°,遠(yuǎn)比模式III切換為模式II時(shí)的電流相位變化大,因此,采用階躍響應(yīng)變極方法導(dǎo)致的轉(zhuǎn)矩與轉(zhuǎn)速脈動(dòng)更為顯著,其中轉(zhuǎn)速下降了20 r/min,轉(zhuǎn)矩從3.4 N·m下降至3 N·m,下降11.8%,而如圖16b所示,基于自抗擾控制的跟蹤微分器變極方法則仍能使電機(jī)的轉(zhuǎn)速和轉(zhuǎn)矩保持1 250 r/min和3.4 N·m恒定值,進(jìn)一步了證明本文變極策略的有效性。圖16c和圖16d為2種變極策略下的軸電流變化波形,其中第一和第二套繞組的軸電流分別從4.2和1.2 A變化至0.2和4.2 A,而軸電流分別從0.2和4 A變化至4和0.2 A。另外,從圖中可以看出,此時(shí)采用跟蹤微分器變極方法使切換過(guò)程延長(zhǎng)至600 ms,但使電流整體的變化呈現(xiàn)先緩慢,后快速,再緩慢的特點(diǎn),實(shí)現(xiàn)軸電流的平滑過(guò)渡。
圖15 模式Ⅲ到模式Ⅱ的電子變極過(guò)程
圖16 模式Ⅱ到模式Ⅰ的電子變極過(guò)程
針對(duì)拖拉機(jī)田間作業(yè)和道路運(yùn)輸時(shí)運(yùn)行速度具有分段特征以及較寬的調(diào)速范圍,提出使用PC-DSPM(pole-changing doubly salient permanent magnet)電機(jī)作為電動(dòng)拖拉機(jī)的驅(qū)動(dòng)電機(jī),通過(guò)變極擴(kuò)寬電機(jī)運(yùn)行轉(zhuǎn)速,并對(duì)不同模式之間的平滑切換進(jìn)行研究,結(jié)論如下:
1)搭配傳動(dòng)比為18的變速箱以及半徑為0.4 m的輪胎時(shí),PC-DSPM電機(jī)的變極運(yùn)行可將電動(dòng)拖拉機(jī)運(yùn)行速度劃分為0~7.7、7.7~10.5和10.5~32.7 km/h,分別適合于旱田旋耕、水田耕作以及道路運(yùn)輸工況。
2)采用傳統(tǒng)階躍響應(yīng)變極時(shí),PC-DSPM電機(jī)在2個(gè)切換點(diǎn)處變極的過(guò)程中轉(zhuǎn)矩波動(dòng)分別為8.5%和11.8%;而提出的跟蹤微分器變極策略可使變極過(guò)程中軸電流平穩(wěn)過(guò)渡,轉(zhuǎn)矩穩(wěn)定在給定值4.75和3.4 N·m。
3)相比傳統(tǒng)階躍響應(yīng)變極,跟蹤微分器變極策略2個(gè)切換點(diǎn)處的變極時(shí)間分別延長(zhǎng)至400和600ms。
[1] 武仲斌,謝斌,遲瑞娟,等. 電動(dòng)拖拉機(jī)田間巡航作業(yè)驅(qū)動(dòng)轉(zhuǎn)矩管理模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):88-98. WU Zhongbin, XIE Bin, CHI Ruijuan, et al. Driving torque management model for electric tractor in field cruise condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 88-98. (in Chinese with English abstract)
[2] 劉孟楠,雷生輝,趙靜慧,等. 電動(dòng)拖拉機(jī)發(fā)展歷程與研究現(xiàn)狀綜述[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(S1):348-364. LIU Mengnan, LEI Shenghui, ZHAO Jinghui, et al. Review of development process and research status of electric tractors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 348-364. (in Chinese with English abstract)
[3] 付學(xué)謙,楊菲菲,周亞中,等. 設(shè)施農(nóng)業(yè)能源互聯(lián)網(wǎng)智能預(yù)警理論:評(píng)述與展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):24-33. FU Xueqian, YANG Feifei, ZHOU Yazhong, et al. Intelligent early warning theory of the facility agricultural energy internet: Review and prospect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 24-33. (in Chinese with English abstract)
[4] 吳晨,李發(fā)文,馮平,等. 設(shè)施農(nóng)業(yè)雨水集蓄利用與番茄灌溉方案優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):153-162. WU Chen, LI Fawen, FENG Ping, et al. Rainwater harvesting and tomato irrigation schemes optimization for facilities agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 153-162. (in Chinese with English abstract)
[5] 付學(xué)謙,周亞中,孫宏斌,等. 園區(qū)農(nóng)業(yè)能源互聯(lián)網(wǎng):概念、特征與應(yīng)用價(jià)值[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(12):152-161. FU Xueqian, ZHOU Yazhong, SUN Hongbin, et al. Park-level agricultural energy internet: Concept, characteristic and application value[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 36(12): 152-161. (in Chinese with English abstract)
[6] 王元杰,劉永成,楊福增,等. 溫室微型遙控電動(dòng)拖拉機(jī)研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):23-29. WANG Yuanjie, LIU Yongcheng, YANG Fuzeng, et al. Development and test of tiny remotely controlled electric tractor for greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 23-29. (in Chinese with English abstract)
[7] 謝斌,張超,毛恩榮,等. 基于myRIO的電動(dòng)拖拉機(jī)驅(qū)動(dòng)控制器設(shè)計(jì)與室內(nèi)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):55-62. XIE Bin, ZHANG Chao, MAO Enrong, et al. Motor controller design and indoor experiment for electric tractor based on myRIO[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 55-62. (in Chinese with English abstract)
[8] 朱鎮(zhèn),賴(lài)龍輝,王登峰,等. 油電混合機(jī)械液壓式拖拉機(jī)動(dòng)力系統(tǒng)節(jié)能性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(17):52-60. ZHU Zhen, LAI Longhui, WANG Dengfeng, et al. Energy saving characteristics of the mechanical hydraulic tractor power system with oil electric hybrid power[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 52-60. (in Chinese with English abstract)
[9] DU Y, HE Z F, ZHU X Y, et al. A novel pole-changing permanent magnet vernier motor[J]. IEEE Transactions on Industrial Electronics, 2022, 70(6): 6110-6120.
[10] LI F H, CHAU K T, LIU C H, Pole-changing flux-weakening DC-Excited dual-memory machines for electric vehicle[J]. IEEE Transactions on Energy Conversion, 2016, 31(1): 27-36.
[11] 楊玉波. 變極永磁同步電機(jī)的研究[D]. 濟(jì)南:山東大學(xué),2007. YANG Yubo. Research of Pole-Changing Permanent Magnet Synchronous Motor[D]. Jinan: Shandong University, 2007. (in Chinese with English abstract)
[12] TSUNEO K, TAKANOBU I, TOSHIHIRO S, et al. A wide constant power range vector-controlled ac motor drive using winding changeover technique[J]. IEEE Transactions on Industry Applications, 1991, 27(5): 934-939.
[13] MOHAMED O, THOMAS A L. Modeling and analysis of a wide-speed-range induction motor drive based on electronic pole changing[J]. IEEE Transactions on Industry Applications, 1997, 33(5): 1177-1184.
[14] GE B M, SUN D S, WU W L, et al. Winding design, modeling, and control for pole-phase modulation induction motors[J]. IEEE Transactions on Magnetics, 2013, 49(2): 898-911.
[15] PHANI K C, VENU S, SACHIN J. Gradual electronic pole changing technique to minimize the circulating currents during pole/mode transition in induction motor drive[J]. IEEE Transactions on Industry Applications, 2023, 59(1): 959-969.
[16] 楊家強(qiáng),高健,黃進(jìn). 多相感應(yīng)電機(jī)指數(shù)響應(yīng)電子變極方法研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2013,33(27):105-111. YANG Jiaqiang, GAO Jian, HUANG Jin. Electronic pole-changing methods of multiphase induction motors based on exponent response[J]. Proceedings of the CSEE, 2013, 33(27): 105-111. (in Chinese with English abstract)
[17] YANG J Q, YIN R S, ZHANG X J, et al. Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy[J]. Frontiers Information Technology Electronic Engineering, 2017, 18(8): 1151-1166.
[18] 楊公德,李捷,周楊忠,等. 變極永磁電機(jī)研究綜述與展望[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2021,41(S1):303-314. YANG Gongde, LI Jie, ZHOU Yangzhong, et al. Overview and prospect of pole-changing permanent magnet machines[J]. Proceedings of the CSEE, 2021, 41(S1): 303-314. (in Chinese with English abstract)
[19] DU Y, MAO Y, XIAO F, et al. A pole-changing doubly salient permanent magnet motor[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 2479-2849.
[20] 程明,文宏輝,花為,等. 電機(jī)氣隙磁場(chǎng)調(diào)制統(tǒng)一理論及其典型應(yīng)用[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2021,41(24):8261-8283. CHENG Ming, WEN Honghui, HUA Wei, et al. General airgap field modulation theory for electrical machines and its typical applications[J]. Proceedings of the CSEE, 2021, 41(24): 8261-8283. (in Chinese with English abstract)
[21] HOU Q K, DING S H, YU X H. Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer[J]. IEEE Transactions on Energy Conversion, 2020, 36(4): 2591-2599.
[22] 張學(xué)軍,李茜,朱興亮,等. 基于自抗擾-動(dòng)態(tài)矩陣的油葵聯(lián)合收獲機(jī)脫粒滾筒轉(zhuǎn)速控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(15):9-16. ZHANG Xuejun, LI Qian, ZHU Xingliang, et al. Rotational speed control of threshing cylinder of oil sunflower combine harvester based on active disturbance rejection controller-dynamic matrix predictive[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 9-16. (in Chinese with English abstract)
[23] 陳學(xué)深,方貴進(jìn),馬旭,等. 基于線(xiàn)性自抗擾的稻田除草對(duì)行控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(6):19-27. CHEN Xueshen, FANG Guijin, MA Xu, et al. Design and experiment of control system for weeding alignment in rice field based on linear active disturbance rejection control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(6): 19-27. (in Chinese with English abstract)
[24] 姜海勇,姜文光,邢雅周,等. 果園巡檢機(jī)器人長(zhǎng)臂抖動(dòng)抑制方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(17):12-20. JIANG Haiyong, JIANG Wenguang, XING Yazhou, et al. Suppression method for the long flexible arm vibration of orchard inspection robots[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(17): 12-20. (in Chinese with English abstract)
[25] 黃大山,張進(jìn)秋,劉義樂(lè),等. 車(chē)輛懸掛系統(tǒng)自抗擾控制器改進(jìn)及其性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):61-72. HUANG Dashan, ZHANG Jinqiu, LIU Yile, et al. Improved active disturbance rejection controller on suspension system and its performance analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 61-72. (in Chinese with English abstract)
[26] 耿強(qiáng),李亮,周湛清,等. 雙永磁電機(jī)系統(tǒng)擾動(dòng)轉(zhuǎn)速同步控制[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2021,41(19):6787-6796. GENG Qiang, LI Liang, ZHOU Zhanqiang, et al. Speed synchronization control of disturbance rejection of dual-PMSM system[J]. Proceedings of the CSEE, 2021, 41(19): 6787-6796. (in Chinese with English abstract)
Electronic pole-changing strategy and analysis for PC-DSPM motor in electric tractors
DU Yi1, SUN Xu1, SUN Yandong2, XIAO Feng1※, ZHU Xiaoyong1, MAO Yi1, YAN Xukang1
(1.,,212013,; 2.,211100,)
Benefiting from driving by an electric motor, an electric tractor is one of the most effective means to realize green agricultural production with high efficiency, zero emission, and low noise. The field and road operating conditions can usually occur in electric tractors. Specifically, the typical speed of the former is 2-7, and 7-10 km/h, whereas, the latter is mainly used in the condition of transportation with the speed of 20-35 km/h. The speed of an electric tractor can be in the discrete form in the very wide range of speed regulation. In this study, a pole-changing doubly-salient permanent magnet (PC-DSPM) motor was proposed using the PC operation. Different output characteristics were also obtained to meet the special operation of electric tractors. The working components were firstly selected as the 2, 4, 10, and 16 pole-pairs harmonics with the higher amplitude, according to the general air-gap field modulation. Then, four working harmonics were divided into two groups, in terms of the slot pitch angles. As such, the coil electromotive force (EMF) phasor graphs under the working harmonics of Group 1 were totally different from that of Group 2, in order to achieve the PC operation using different winding connections. Three kinds of armature winding connections were then designed using the coil EMF phasor graphs. Thus, three operating modes of the PC-DSPM motor were achieved to select one or two groups of working harmonics in the electromechanical energy conversion using the filtering effect of armature winding. Two PC switching points were determined in the constant power region with the mechanical characteristic curves of the PC-DSPM motor under three modes. The motor speed was divided into low (0-920 r/min), medium (920-1 250 r/min), and high speed (1 250-3 900 r/min). In terms of the gear-box with a fixed ratio of 18 and the wheels with a diameter of 0.8 m, the speeds of electric tractors in the three modes were 0-7.7, 7.7-10.5, and 10.5-32.7 km/h, respectively, in order to meet the speed demands of field and road operations. Furthermore, an electronic PC method was proposed to change the current angles and the armature winding connection for continuous PC operation. Two sets of three-phase windings were controlled by a six-leg inverter under the dual three-phase control theory. The current angle in each coil was then controlled independently. Active disturbance rejection control (ADRC) was designed in the current loop of the control system for the PC-DSPM motor. The real-time disturbance was reduced and then suppressed during the PC process. In addition, a tracking differentiator (TD) was also used to arrange the switching of the current angle. The current was smoothed without overshoot after arrangement. The simulation and experimental analysis of the PC-DSPM motor were performed at the first PC switching point (920 r/min, 4.75 N·m), and the second one (1 250 r/min, 3.4 N·m). The operation transitions were shifted from mode Ⅲ to Ⅱ, and the mode Ⅱ toⅠ in the PC-DSPM motor under the current phase. The performances during TD-based electronic PC operation using ADRC were compared with the traditional step response. The current loop of the latter also adopted the ADRC strategy, indicating the better performance of TD electronic PC. The results showed that during the PC processes at the first switching points, although the PC transient time were prolonged to 400 ms when the tracking differentiator electric PC strategy was adopted, the switching of current in-axis presented a smooth trend from 3.6 and 3 A to 4.6 and 0.2 A, and current in-axis also presented a smooth trend from 2.7 and 3.2 A to 1.5 and 4.7 A. Similarly, the PC transient time were prolonged to 600 ms when the tracking differentiator electric PC strategy was adopted at the second PC switching point, but the switching of current in-axis presented a smooth trend from 4.2 and 1.2 A to 0.2 and 4.2 A, and current in-axis also presented a smooth trend from 0.2 and 4 A to 4 and 0.2 A, respectively, so that the torque ripple of PC-DSPM motor were reduced 8.5% and 11.8%, respectively, compared with those of the step PC method. Thus, the speed of motor can be stable at 920 and 1 250 r/min. The research provided a better solution to expend speed range for field operations and road operations of electric tractors and realize a smooth PC switching of PC permanent magnet motors.
tractor; permanent magnet motor; electronic pole-changing; six-leg inverter; tracking differentiator
2022-12-12
2023-03-24
國(guó)家自然科學(xué)基金項(xiàng)目(52177045);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(21)3147);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程(三期)資助項(xiàng)目(PAPD-2018-87)
杜懌,博士,教授,研究方向?yàn)樘胤N電機(jī)系統(tǒng)設(shè)計(jì)與分析。Email:duyie@ujs.edu.cn
肖鳳,博士,高級(jí)實(shí)驗(yàn)師,研究方向?yàn)樘胤N電機(jī)系統(tǒng)設(shè)計(jì)與分析。Email:xiaofeng@ujs.edu.cn
10.11975/j.issn.1002-6819.202212084
S219.4,TM351
A
1002-6819(2023)-08-0044-10
杜懌,孫旭,孫延?xùn)|,等. 電動(dòng)拖拉機(jī)PC-DSPM電機(jī)電子變極策略與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(8):44-53. doi:10.11975/j.issn.1002-6819.202212084 http://www.tcsae.org
DU Yi, SUN Xu, SUN Yandong, et al. Electronic pole-changing strategy and analysis for PC-DSPM motor in electric tractors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 44-53. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202212084 http://www.tcsae.org