朱曉雪,龔綿紅,楊秉坤,莊 姣,李亞鳳,丁雨紅,唐立和,魏曉斌,劇 檸
不同種類及加工方式對雜糧酸奶體外抗氧化活性的比較
朱曉雪1,龔綿紅1,楊秉坤1,莊 姣1,李亞鳳1,丁雨紅1,唐立和2,魏曉斌2,劇 檸1※
(1. 寧夏大學食品與葡萄酒學院,銀川 750021;2. 寧夏北方乳業(yè)有限責任公司,銀川 750101)
為探究雜糧品種及加工方式對雜糧酸奶體外抗氧化活性的影響,選擇小米、黃米、燕麥、藜麥、糙米、蕎麥、高粱米7種雜糧為原料,經過蒸制、煮制、打漿3種常見加工方式,比較其多酚含量及抗氧化活性,對特性較好的雜糧經恰當處理后與牛奶共發(fā)酵制備酸奶,研究該雜糧酸奶的多酚含量及抗氧化活性,開發(fā)具備抗氧化活性的雜糧酸奶。結果表明,7種雜糧之間的抗氧化能力存在顯著(<0.05)差異,采用抗氧化綜合(antioxidant potency composite,APC)指數法評定雜糧的抗氧化活性,發(fā)現抗氧化活性最高的雜糧為蕎麥。進一步對蕎麥進行加工處理,發(fā)現蒸制處理后其抗氧化活性優(yōu)于煮制和打漿。將蒸制的蕎麥與牛奶混合制備酸奶,制成的蕎麥酸奶總酚含量為52.85 mg/100g,是普通酸奶的5.16倍;且其抗氧化能力顯著高于普通酸奶(<0.05)。該研究為功能性雜糧酸奶的開發(fā)提供借鑒。
農產品;雜糧;加工方式;酸奶;抗氧化活性
研究表明,雜糧中富含酚酸、單寧、花青素、植物甾醇等多酚類化合物,比傳統(tǒng)主糧有更高的抗氧化活性[1-2]。這些多酚類化合物能夠通過阻斷自由基導致的鏈式反應延緩或抑制脂質及其他生物膜氧化的過程,起到預防衰老和輔助治療慢性疾病的保健作用[3]。不同地域的雜糧多酚類化合物含量不同,其抗氧化效果也存在差異[4]。中國西北地區(qū)晝夜溫差大,日照時間長,太陽輻射強的自然條件有利于農作物酚類化合物的形成與積累[5-8]。近年來雜糧酸奶(青稞、黑米等)因其良好的風味及口感深受消費者歡迎[9]。研究表明,添加雜糧的酸奶抗氧化性能顯著高于普通酸奶[10],且其抗氧化效果受雜糧種類、比例及加工方式的影響[11-13]。目前關于雜糧的功能活性及雜糧酸奶已有較多研究[14-16],而針對中國西北地區(qū)種植的雜糧及雜糧酸奶的抗氧化特性尚未見系統(tǒng)報道。本文采用抗氧化綜合(antioxidant potency composite,APC)指數法綜合評價西北重要省份—寧夏地區(qū)種植的7種雜糧體外抗氧化活性,探究不同加工方式對雜糧酸奶抗氧化特性的影響,從而篩選出抗氧化活性強、加工方式適宜的雜糧酸奶并對其抗氧化特性進行表征。試驗結果為西北地區(qū)雜糧的開發(fā)利用提供數據支持及參考,同時為功能性酸奶的開發(fā)提供借鑒。
小米、黃米、燕麥、藜麥、糙米、蕎麥、高粱米,寧夏山逗子雜糧綠色食品科技開發(fā)有限公司。1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)、2,2-聯氮-二(3-乙基-苯并噻唑-6-磺酸)二銨鹽(2,2'- Azinobis-(3-ethylbenzthiazoline-6-sulphonate),ABTS)、2,4,6-三吡啶基三嗪(2,4,6-Tri(2-pyridyl)-s-triazine,TPTZ)、福林酚試劑、水溶性VE(Trolox)、蘆丁(純度>99%),上海麥克林生化科技有限公司;沒食子酸(純度>99%),德國默克集團有限公司;甲醇、丙酮、亞硝酸鈉、硝酸鋁、碳酸鈉、氫氧化鈉等均為市售分析純。
WFJ72系列721型可見分光光度計,上海光譜儀器有限公司;RE-52AA 旋轉蒸發(fā)儀,上海亞榮生化儀器廠;PHSJ-3F pH計,上海儀電科學儀器股份有限公司;冷凍干燥機,美國LABCONCO公司;BSP-150恒溫培養(yǎng)箱,上海博迅實業(yè)有限公司醫(yī)療設備廠。
1.3.1 樣品制備(蒸、煮、打漿)
顆粒完整飽滿、色澤鮮亮的雜糧,經除雜清洗后分別進行蒸、煮、打漿。蒸雜糧時料液比1∶1.5(g/mL)、100 ℃、10 min。煮雜糧時料液比1∶20(g/mL)、100 ℃、20 min。打漿:以1∶5(g/mL)的料水比加入30 ℃水中浸泡1 h于打漿機打漿至充分磨勻,備用。最后使用凍干機凍干樣品,-80 ℃預凍4 h,凍干后將其儲藏于-20 ℃冰箱中。
1.3.2 樣品的提取
1)谷物中多酚的提取
游離酚的提取參照康子悅等[17-18]的方法略有改動。樣品粉碎過0.3 mm篩網,精確稱取2 g樣品于離心管中,加30 mL 80%丙酮溶液20 ℃超聲提取30 min,每隔5 min 漩渦混勻,4 500 r/min離心10 min,收集上清液,殘渣按上述方法重復提取2次,合并提取液于45 ℃下真空旋轉蒸發(fā)至干,甲醇復溶至10 mL,即為游離型多酚提取物,密封-80 ℃低溫保存,每個樣品提取3次。游離型多酚提取后的殘渣,加30 mL 2 mol/L NaOH溶液25 ℃搖床振蕩水解1 h。用 6 mol/L HCl 調pH值至2~3,加入正己烷萃取,離心去除上清液,然后用30 mL乙酸乙酯萃取3次。合并上層乙酸乙酯萃取相于45 ℃下真空旋轉蒸發(fā)至干,甲醇定容至10 mL,即為結合型多酚提取物,密封-80 ℃低溫保存。每個樣品提取3次。
2)酸奶中多酚的提取
參照SILVA等的方法略有改動[19],稱酸奶樣品5 g與15 mL 85%甲醇水混合,40 kHz(25 ℃,30分鐘)超聲水浴提取并離心(4 500 r/min,10 min,4 ℃)。萃取進行2次,將上清液混合并用旋轉真空蒸發(fā)器在30 ℃下蒸發(fā)至干。甲醇定容至10 mL,并將提取殘渣用20 mL 2 mol/L的NaOH在軌道振蕩器上振蕩(250 r/min,4 h)水解,以獲得結合酚類化合物的提取物。逐漸加入6 mol/L HCl將所得水解物酸化至pH 值1.5~2.0。離心后用30 mL乙酸乙酯提取上清液3次。提取液用旋轉真空蒸發(fā)器在30 ℃下蒸發(fā)至干。將所得殘余物溶解在甲醇中,最終體積為10 mL。每個樣品提取3次。
1.3.3 總酚含量的測定
采用Folin-Ciocalteu法[11]測定樣品的總酚含量。以沒食子酸為標樣制作標準曲線,結果以100 g干基中所含沒食子酸的毫克數表示(簡寫為mg/100g)。計算公式如下:
式中為總酚質量分數,mg/100g;0為空白樣吸光度值;1為樣品吸光度值;為沒食子酸標準曲線的截距;為沒食子酸標準曲線的斜率;為提取液體積,mL;為樣品質量,g。
1.3.4 總黃酮含量的測定
采用NaNO2-Al(NO3)3法[20],略有改動。取0.5 mL 提取液加入4.5 mL 70%乙醇和0.3 mL 5% NaNO2溶液混勻反應6 min,再加入0.3 mL 10% Al(NO3)3溶液混勻,反應6 min,最后加入4 mL 4% NaOH 溶液混勻,定容至10 mL,反應15 min,510 nm 波長處測其吸光度。以蘆丁為標樣制作標準曲線,結果以100 g干基中所含蘆丁的毫克數表示(簡寫為mg/100g)。測定重復3次。計算公式如下:
式中為總黃酮質量分數,mg/100g;1為蘆丁標準曲線的截距;1為蘆丁標準曲線的斜率。
1.3.5 抗氧化活性測定
DPPH自由基清除能力測定參照趙霞等的方法[21]。ABTS+·自由基清除能力測定參照楊瑞等的方法[22-23]。鐵離子還原能力(FRAP Ferricion Reducing Antioxidant Power)測定參照ZHANG等的方法[24]。
抗氧化能力以每100 g樣品中Trolox當量表示(μmol/100g),計算公式如下[25]:
式中為Trolox當量,μmol/100g;2為Trolox標準曲線的截距;2為Trolox標準曲線的斜率;為樣品稀釋倍數。
1.3.6 酸奶工藝流程及操作要點
選取經1.3.1加工,并通過1.3.5測定抗氧化活性較好的加工工藝的雜糧進行酸奶的制備。具體工藝:將鮮牛乳與處理過的雜糧、白砂糖按一定比例混合;預熱,于70 ℃、20 MPa 條件下均質5 min,均質后將混合液加熱至95 ℃、滅菌10 min,滅菌結束后,迅速冷卻至42 ℃。無菌條件下,將發(fā)酵劑按一定比例接種至混合發(fā)酵液中,42 ℃條件下發(fā)酵6 h。4 ℃冷藏后熟12~24 h后即得雜糧酸奶。
1.3.7 感官評價
參照彭小霞等[26]的方法對酸奶產品進行評價。
數據用Excel整理并采用平均值±標準偏差表示;采用Origin2021b及RStudio軟件進行顯著性及相關性分析并做圖(<0.05)。使用抗氧化活性綜合(antioxidant potency composite,APC)指數法[27]進行不同雜糧及不同加工方式蕎麥中抗氧化活性比較,按照下式計算APC 綜合指數。
式中為APC 綜合指數,%;x為方法測定值;max為該方法測定的最大值;為使用的方法總數。
以DPPH·清除能力、ABTS+?清除能力。鐵離子還原能力3種檢測方法表征雜糧的抗氧化能力。由表1可知,在7種雜糧中藜麥游離酚提取物的DPPH自由基清除能力最強,達332.31 μmol /100g,蕎麥次之。結合酚提取物的DPPH自由基清除能力中糙米最強,達173.51 μmol/100g,小米和燕麥次之。在ABTS+·清除能力中蕎麥的游離酚提取物顯著高于其他雜糧(<0.05),糙米的清除能力最低;而結合酚提取物中糙米的ABTS+·清除能力最強,蕎麥最低。在鐵離子還原能力中,蕎麥游離酚提取物的鐵離子還原能力(1 056.69 μmol /100g)最強,顯著高于其他雜糧(<0.05),是其他雜糧的2~4倍,高粱米次之,小米、黃米最低;在結合酚提取物中,糙米的還原鐵離子能力最強,小米和燕麥次之,蕎麥最低。根據以往雜糧抗氧化的相關報道[23,28-29],西北地區(qū)雜糧如藜麥、糙米、蕎麥等具有更好的抗氧化能力。
表1 不同種類雜糧的抗氧化能力及APC綜合指數
注:同列不同小寫字母表示差異顯著(<0.05)。下表同。
Note: Different lowercase in the same column indicate significant difference (< 0.05). The following table is the same.
由于3種抗氧化檢測機理不同,不同抗氧化活性評價方法所得到的結論也存在差異,因此本研究采用APC指數法對不同雜糧的抗氧化活性進行評價,結果見表1。APC指數由大到小的順序是:蕎麥、高粱米、藜麥、糙米、燕麥、小米、黃米。因此針對不同加工方式對雜糧抗氧化能力的影響,選擇綜合指數較高的蕎麥進行下一步研究。
2.2.1 不同加工方式下蕎麥的多酚含量
蕎麥中的酚類物質在不同熱加工過程中受到不同程度的綜合作用力,與結合態(tài)酚類化合物相比,游離態(tài)酚類化合物結構不穩(wěn)定,更易被破壞和分解[30],因此處理過的蕎麥游離酚均會有所損失,這可能是由于部分可溶性游離多酚在加工時溶解于水中,也可能是由于熱處理過程中產生的熱量或氧化反應導致游離酚的損失或降低[31]。由表2可知,蒸制、煮制和打漿3種加工方式顯著影響蕎麥多酚提取物中游離酚和總酚含量(<0.05)。蒸制、煮制和打漿3種方式下,蕎麥多酚提取物中游離酚質量分數分別減少了35.38%、48.02%、59.21%;結合酚質量分數分別增加了71.96%、12.87%、104.02%。加工后蕎麥的游離酚出現不同程度的降低,這可能是由于蒸制和煮制2種熱處理方式導致部分游離酚發(fā)生氧化或降解反應[32-33];打漿則可能是物理破壞導致了游離酚的損失。蕎麥中的結合酚多與谷物中蛋白質及膳食纖維中不溶性纖維基質結合[34],因此,在高溫作用下蛋白質及纖維素結構發(fā)生變化,使結合酚得到釋放[35],從而導致蕎麥加工后的結合酚增加。與未處理的蕎麥相比,蒸制相較于其它方式對總酚的損失率更小。
黃酮含量方面,蒸制使蕎麥的游離黃酮含量顯著高于未處理及其他加工方式的蕎麥(<0.05)。與未處理過的蕎麥相比,蒸制蕎麥中的游離黃酮、總黃酮分別增加了50.90%、34.57%。未處理及加工后蕎麥的結合黃酮無顯著性差異(>0.05)。有報道稱,高溫作用會導致細胞壁破裂,有利于溶劑與細胞內部的相互滲透,增加黃酮在溶劑中的溶解,使黃酮類物質更易被提取出來,但加熱時間過長會使游離黃酮被破壞和分解[35-37]。本試驗中蒸制使得游離黃酮、總黃酮均增加的原因可能是較高溫度,較短蒸制時間(10 min)使得游離黃酮得以保留的同時,總黃酮含量顯著增加(<0.05)。
表2 不同加工方式下蕎麥的多酚及黃酮含量比較
2.2.2 不同加工方式下蕎麥的抗氧化能力
由表3可知,在經過蒸制、煮制和打漿處理后處理后,蕎麥的DPPH自由基清除能力顯著降低。其中蕎麥游離酚提取物的DPPH自由基清除能力分別減少26.18%、39.53%、55.49%;結合酚提取物的DPPH自由基清除能力分別增加了104.42%、264.53%、272.54%。根據分析,游離酚提取物的DPPH自由基清除能力與游離酚含量具有一致的變化規(guī)律,表明游離酚的含量可以很好地反映游離酚提取物的DPPH自由基清除能力,這與王耀紅的結論一致[38]。ABTS+·自由基清除能力方面,蒸制方式下蕎麥游離酚提取物的ABTS+·清除能力下降不明顯(>0.05),煮制和打漿的方式顯著低于蒸制和未處理(<0.05);結合酚提取物中蒸制、煮制和打漿的方式顯著高于未處理的ABTS+·自由基清除能力(<0.05)。鐵離子還原能力方面,蒸煮方式下游離酚提取物的鐵離子還原能力變化不明顯(>0.05),打漿的方式使鐵離子還原能力顯著降低了34%;3種加工方式下蕎麥結合酚提取物的鐵離子還原能力變化不顯著(>0.05)。
通過APC綜合指數法評價不同方式的抗氧化性,其抗氧化活性由高到低依次為蒸制、未處理、煮制、打漿。因此,將蕎麥以蒸制的方式加入酸奶里,研究其抗氧化能力。
表3 不同加工方式下蕎麥的抗氧化能力比較
2.2.3 蒸制方式下蕎麥多酚含量與抗氧化能力的相關性分析
對蒸制方式下蕎麥多酚含量與抗氧化能力進行相關性分析,結果由表4可知,總酚、結合黃酮與DPPH自由基清除能力、ABTS+·清除能力、鐵離子還原能力具有良好相關性,其中總酚與ABTS+·清除能力、鐵離子還原能力存在極顯著正相關性(<0.001),結合黃酮與DPPH自由基清除能力存在極顯著正相關性(<0.01)。
表4 蕎麥多酚含量與抗氧化能力相關性分析
注:**代表在<0.01 水平上極顯著相關,***代表在<0.001 水平上極顯著相關。
Note: ** represents extremely significant correlation at the level of<0.01, *** represents extremely significant correlation at the level of<0.001.
2.3.1 蕎麥酸奶的多酚含量
將蒸制好的蕎麥與牛奶共同發(fā)酵成蕎麥酸奶。研究蕎麥酸奶的多酚含量及抗氧化性能,結果如圖1所示。蕎麥酸奶中游離酚、結合酚及總酚的含量均顯著高于普通酸奶(<0.05),其中總酚的質量分數(52.85 mg/100g)是普通酸奶(10.94 mg/100g)的5.16倍。蕎麥酸奶中的游離黃酮、結合黃酮分別為10.29、2.20 mg/100g,顯著高于普通酸奶(<0.05);總黃酮質量分數為12.49 mg/100g,是普通酸奶的4.23倍。
注:不同小寫字母表示同一酚類物質在不同樣品間的差異。下同。
Fig .1 Content of polyphenol and flavonoid in yoghurt
2.3.2 蕎麥酸奶體外抗氧化特性表征
酸奶體外抗氧化能力如圖2可知,DPPH自由基清除能力方面,蕎麥酸奶游離酚提取物達30.28 μmol/100g,約是普通酸奶的(15.17 μmol/100g)的2倍;蕎麥結合酚提取物為13.45 μmol/100g,普通酸奶為7.35 μmol/100g。有研究報道酸奶中小分子肽類、氨基酸及乳酸菌對DPPH自由基也具有一定的清除作用[39]。ABTS+?清除能力方面,蕎麥酸奶游離酚提取物、結合酚提取物的ABTS+?清除能力分別為81.57、36.45 μmol/100g,顯著高于普通酸奶(<0.05)。在鐵離子還原能力中,蕎麥酸奶游離酚提取物的鐵離子還原能力(81.208 μmol/100g)顯著高于普通酸奶(30.91 μmol/100g);結合酚提取物(33.49 μmol/100g)與普通酸奶的還原鐵離子能力沒有顯著差異(>0.05)。可見,蕎麥酸奶的3種抗氧化能力均不同程度的高于普通酸奶,具有良好的抗氧化活性。
圖2 酸奶的體外抗氧化能力
2.3.3 蕎麥酸奶感官評價
經過感官評定,結果由圖3可知,添加蕎麥顆粒的酸奶總體接受性高于普通酸奶,蕎麥的添加主要提升了酸奶的口感和氣味,酸奶中的蕎麥顆粒增加了酸奶的咀嚼感,同時使酸奶具有自然的發(fā)酵風味和獨特的麥香味,酸甜可口,口感細膩。
圖3 酸奶的感官評價
Fig .3 Sensory evaluation of yoghurt
通過對7種雜糧的抗氧化能力進行篩選,對不同加工方式下雜糧的多酚含量及抗氧化能力進行比較,將抗氧化優(yōu)異的雜糧以最優(yōu)的加工方式加入牛奶中發(fā)酵成酸奶,研究其雜糧酸奶的抗氧化活性。結果表明:
1)不同種類雜糧的抗氧化能力存在顯著差異。根據APC指數進行綜合評價,抗氧化能力從高到低依次為:蕎麥、高粱米、藜麥、糙米、燕麥、小米、黃米。
2)將抗氧化能力最強的蕎麥,經過蒸制、煮制、打漿3種方式加工后,發(fā)現蒸制對蕎麥的抗氧化性影響最小,多酚損失率最小??偡雍忘S酮含量從高到低為:蒸制、煮制、打漿,根據APC指數計算,抗氧化活性大小排序:蒸制、煮制、打漿。
3)將蒸制的蕎麥與牛奶發(fā)酵成酸奶,其多酚含量及抗氧化效果顯著高于普通酸奶(<0.05),相比于普通酸奶,其總酚的質量分數(52.85 mg/100g)是普通酸奶(10.94 mg/100g)的5.16倍,總黃酮質量分數(12.49 mg/100g)是普通酸奶的4.23倍,抗氧化能力顯著高于普通酸奶。
此研究結果為雜糧篩選及其抗氧化雜糧酸奶的開發(fā)利用提供了參考。下一步關于雜糧酸奶體內多酚利用率及抗氧化性如何,在今后的研究中應繼續(xù)深入探索。
[1] QIN H, WU H, SHEN K, et al. Fermented minor grain foods: Classification, functional components, and probiotic potential[J]. Foods, 2022, 11(20): 3155.
[2] ALHAITHLOUL HAS, GALAL FH, SEUFI AM. Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings()[J]. PeerJ, 2021, 9: e11193.
[3] TORBICA A, BELOVI? M, POPOVI? L, et al. Comparative study of nutritional and technological quality aspects of minor cereals[J]. Journal of Food Science and Technology, 2021, 58(5): 311-322.
[4] MAANTE-KULJUS M, R?TSEP R, MOOR U, et al. Effect of vintage and viticultural vractices on the phenolic content of hybrid winegrapes in very cool climate[J]. Agriculture, 2020, 10(5): 169-169.
[5] 張青雯,崔寧博,馮禹,等. 基于氣象資料的日輻射模型在中國西北地區(qū)適用性評價[J]. 農業(yè)工程學報,2018,34(2):189-196. ZHANG Qingwen, CUI Ningbo, FENG Yu, et al. Evaluation on applicability of daily solar radiation model in Northwest China based on meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 189-196. (in Chinese with English abstract)
[6] 白雪冰,楊佳寧,姜醒睿,等. 西北地區(qū)干紅葡萄酒產地與酒齡的理化判別方法[J]. 農業(yè)工程學報,2022,38(13):319-326. BAI Xuebing, YANG Jianing, JIANG Xingrui, et al. Discrimination method for the origin and age of dry red wine by physico-chemical indices in northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(13): 319-326. (in Chinese with English abstract)
[7] YE Y, LI P, ZHOU J, et al. The improvement of sensory and bioactive properties of yogurt with the introduction of tartary buckwheat[J]. Foods, 2022, 11(12): 1774.
[8] YANG M, LI N, TONG L, et al. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt[J]. LWT, 2021, 152: 112390.
[9] 方芳,王文玉,吳炫,等. 谷物酸奶的研制及其抗氧化特性研究[J]. 中國食品,2019,761(1):149-151.
[10] FAN X, LI X, ZHANG T, et al. Novel millet-based flavored yogurt enriched with superoxide dismutase[J]. Frontiers in Nutrition, 2022, 8(1): 791886.
[11] 韓玲玉,汪麗萍,譚斌,等. 7種雜糧抗氧化活性及其擠壓雜糧粉體外消化特性研究[J]. 中國糧油學報,2019,34(6):45-52. HAN Lingyu, WANG Liping, TAN Bin, et al. Comparative study of 7 kinds of cereals on antioxidant activity and in vitro digestion characteristics of extruded cereal powders[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(6): 45-52. (in Chinese with English abstract)
[12] 王紅迪,嚴文霞,蔣兵,等. 超聲輔助萌芽聯合超高壓處理對花生-黑豆芽復合汁品質的影響[J]. 農業(yè)工程學報,2023,39(2):222-232. WANG Hongdi, YAN Wenxia, JIANG Bing, et al. Effects of ultrasonic-assisted germination combined with high hydrostatic pressure treatment on the quality of compound peanut-black bean sprout juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 222-232. (in Chinese with English abstract)
[13] 劉翀,張瑞婷,劉本國,等. 蒸汽爆破處理對麥麩的酚酸組成及其抗氧化活性的影響(英文)[J]. 農業(yè)工程學報,2016,32(6):308-314. LIU Chong, ZHANG Ruiting, LIU Benguo, et al. Effect of steam explosion treatment on phenolic acid composition of wheat bran and its antioxidant capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 308-314. (in Chinese with English abstract)
[14] 任長忠,陜方,王敏,等. 蕎麥營養(yǎng)與功能性研究及其產品開發(fā)[J]. 中國糧油學報,2022,37(11):261-269. REN Changzhong, SHAN Fang, WANG Min, et al. Review on the nutrition and functionality and the food product development of buckwheat[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(11): 261-269. (in Chinese with English abstract)
[15] 段慶松,段玉敏,肖志剛,等. 擠壓穩(wěn)定化處理對米糠各組分蛋白結構及功能性質的影響[J]. 農業(yè)工程學報,2020,36(19):283-290. DUAN Qingsong, DUAN Yumin, XIAO Zhigang, et al. Effects of extrusion stabilization on protein structure and functional properties of rice bran components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 283-290. (in Chinese with English abstract)
[16] 王娟,孫瑞琳,劉欣,等. 藜麥黑枸杞酸奶的工藝優(yōu)化及其抗氧化活性研究[J]. 食品工業(yè)科技,2022,43(12):240-245. WANG Juan, SUN Ruilin, LIU Xin, et al. Study on the optimization of quinoa black medlar yogurt and its antioxidant activity[J]. Science and Technology of Food Industry, 2022, 43(12): 240-245. (in Chinese with English abstract)
[17] 康子悅,沈蒙,葛云飛,等. 基于植物廣泛靶向代謝組學技術探究小米粥中酚類化合物組成及其抗氧化性[J]. 食品科學,2021,42(4):206-214. KANG Ziyue, SHEN Meng, GE Yunfei, et al. Analysis of phenolic composition in millet porridge using widely-targeted metabolomics and evaluation of antioxidant activity[J]. Food Science, 2021, 42(4): 206-214. (in Chinese with English abstract)
[18] TI H, LI Q, ZHANG R, et al. Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China[J]. Food Chemistry, 2014, 159(18): 166-174.
[19] SILVA F, QUEIROGA R, SOUZA E D, et al. Incorporation of phenolic-rich ingredients from integral valorization of Isabel grape improves the nutritional, functional and sensory characteristics of probiotic goat milk yogurt[J]. Food Chemistry, 2022, 369(4): 130957.
[20] 段夢杰,王振華,托合提薩伊普·圖爾蓀托合提,等. 小米粉添加量對生鮮面條品質與多酚含量及抗氧化活性的影響[J]. 食品科學技術學報,2022,40(3):137-144. DUAN Mengjie, WANG Zhenhua, TUOHETISAYIPU Tuersuntuoheti, et al. Effect of millet flour ratio on fresh noodles quality, polyphenol content and antioxidant activities[J]. Journal of Food Science and Technology, 2022, 40(3): 137-144. (in Chinese with English abstract)
[21] 趙霞. 熱加工和發(fā)芽處理對燕麥多酚含量和抗氧化性的影響[D]. 無錫:江南大學,2016. ZHAO Xia. Effect of Thermal Processing and Germination on Oat Polyphenols and Antioxidant Activities[D]. Wuxi: Jiangnan University, 2016. (in Chinese with English abstract)
[22] 楊瑞,黨斌,張杰,等. 青海青稞、燕麥、藜麥營養(yǎng)品質及抗氧化活性比較研究[J]. 中國糧油學報,2022,37(5):63-69. YANG Rui, DANG Bin, ZHANG Jie, et al. A comparative study on the nutritional quality and antioxidant activity of barley, oats, and quinoa in qinghai[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(5): 63-69. (in Chinese with English abstract)
[23] LIU Y, LIU Y, ZHANG J, et al. Effects of degree of milling on phenolics and antioxidant activity of cooked rice during in vitro digestion[J]. Cereal Chemistry, 2022, 99(2): 393-404.
[24] ZHANG R, KHAN S A, CHI J, et al. Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice[J]. LWT - Food Science and Technology, 2018, 88: 64-70.
[25] LI D, ZHANG X M, ZHANG J J. Antioxidant activity in vitro guided screening and identification of flavonoids antioxidants in the extract from tetrastigma hemsleyanum diels et gilg[J]. International Journal of Analytical Chemistry, 2021, 2021: 1-11.
[26] 彭小霞. 全谷物酸牛奶的發(fā)酵技術及營養(yǎng)功能研究[D]. 廣州:華南理工大學,2019. PENG Xiaoxia. Studies on the Fermentation Technology and Nutritional Functionality of Whole Grain Yogurt[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)
[27] 張玲艷,李潔瑩,韓飛,等. 蒸煮對小米營養(yǎng)成分及抗氧化活性的影響[J]. 食品科學,2017,38(24):113-117. ZHANG Lingyan, LI Jieying, HAN Fei, et al. Effects of steaming and boiling on the nutrients and antioxidant activity of millet[J]. Food Science, 2017, 38(24): 113-117. (in Chinese with English abstract)
[28] ZENG Z C, HU X T, MCCLEMENTS D J, et al. Hydrothermal stability of phenolic extracts of brown rice[J]. Food Chemistry, 2019, 271: 114-121.
[29] 楊紅葉,柴巖,王玉堂,等. 不同種類蕎麥中各種存在形式多酚含量的研究[J]. 食品科學,2011,32(17):60-64. YANG Hongye, CHAI Yan, WANG Yutang, et al. Analysis of free and bound phenolics in different buckwheat varieties[J]. Food Science, 2011, 32(17): 60-64. (in Chinese with English abstract)
[30] 楊洋,范蓓,李楊,等. 不同加工方式對青稞中酚類物質的影響[J]. 食品工業(yè)科技,2023,44(1):11-18. YANG Yang, FAN Bei, LI Yang, et al. Influence of different processing methods on phenols in hulless barley[J]. Science and Technology of Food Industry, 2023, 44(1): 11-18. (in Chinese with English abstract)
[31] 張歡. 蒸煮方式對糙米多酚抗氧化性、淀粉酶和葡萄糖苷酶活性的影響研究[D]. 沈陽:沈陽師范大學,2021. ZHANG Huan. Effect of Different Cooking Methods on Antioxidant Activities and Amylase and Glucoside Activities of Phenolic Compounds in Brown Rice[D]. Shenyang: Shenyang Normal University, 2021. (in Chinese with English abstract)
[32] YU Y, ZHANG B, XI Y, et al. Bioaccessibility and transformation pathways of phenolic compounds in processed mulberry () leaves after in vitro gastrointestinal digestion and faecal fermentation[J]. Journal of Functional Foods, 2019, 60: 1-10.
[33] ZHONG Y J, ZHANG Y Q, ZHU Z Y, et al. Comparative study on physicochemical and nutritional properties of black rice influenced by superheated steam, far infrared radiation, and microwave treatment[J]. Innovative Food Science & Emerging Technologies, 2023, 84: 103282.
[34] ZHANG X W, DONG L H, JIA X C, et al. Bound phenolics ensure the antihyperglycemic effect of rice bran dietary fiber in db/db mice via activating the insulin signaling pathway in skeletal muscle and altering gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2020, 68(15): 4387-4398.
[35] 田懷香,陳霜,陳小燕,等. 不同提取方式對萱草花中酚類物質及抗氧化活性的影響[J]. 農業(yè)工程學報,2021,37(20):303-312. TIAN Huaixiang, CHEN Shuang, CHEN Xiaoyan, et al. Effects of different extraction methods on phenolic compounds and antioxidant activity in Hemerocallis flower[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 303-312. (in Chinese with English abstract)
[36] 洪晴悅. 不同熱加工對青稞主要生物活性成分和體外消化與腸菌發(fā)酵特性的影響[D]. 重慶:西南大學,2021. HONG Qingyue. Effects of Different Thermal Processing on Main Bioactive Components, in Vitro Digestion and Fermentation Characteristics of Qingke[D]. Chongqing: Southwest University, 2021. (in Chinese with English abstract)
[37] 趙萌萌,張文剛,黨斌,等. 超微粉碎對青稞麩皮粉多酚組成及抗氧化活性的影響[J]. 農業(yè)工程學報,2020,36(15):291-298. ZHAO Mengmeng, ZHANG Wengang, DANG Bin, et al. Effects of ultra-micro-crushing on composition of polyphenols and antioxidant activity of barley bran powder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 291-298. (in Chinese with English abstract)
[38] WANG Q, SHAO H J, ZHANG Z, et al. Phenolic profile and antioxidant properties of sand rice () as affected by cooking and in vitro digestion[J]. Journal of the Science of Food & Agriculture, 2019, 99(8): 3871-3878.
[39] YANG M, LI N, TONG L, et al. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt[J]. LWT, 2021, 152: 112390.
Comparative study on antioxidant activity of multigrain yoghurt by different types and processing methods of coarse cereals
ZHU Xiaoxue1, GONG Mianhong1, YANG Bingkun1, ZHUANG Jiao1, LI Yafeng1, DING Yuhong1, TANG Lihe2, WEI Xiaobin2, JU Ning1※
(1.,,750021,; 2..,750101,)
Coarse cereals rich in polyphenol compounds (such as polyphenolic acids, tannin, anthocyanin, and phytosterols) can soften the blood vessels, and lower the blood sugar, blood lipids, and superoxide free radicals for anti-aging and the increasing physiological activity. In this study, a comparison was performed on the polyphenol content and antioxidant activity of seven coarse cereals grown in Northwest China. A systematic investigation was carried out to explore the effects of different processing on the antioxidant activity in vitro. The raw materials were taken as millet, yellow rice, oat, quinoa, brown rice, buckwheat, and sorghum rice. After that, the multigrain yoghurt was prepared with high antioxidant activity in vitro. The antioxidant activity of coarse cereals was evaluated by the Antioxidant potency composite (APC) index using three detection methods, namely, DPPH free radical scavenging capacity, ABTS+·scavenging capacity, and iron ion reducing capacity. The coarse cereal with better performance was processed using steaming, boiling, and beating. The polyphenol content and antioxidant activity were further compared. At the same time, the relationship was determined between the polyphenols and antioxidant activity of the coarse cereal under the best processing. Finally, the coarse cereal with better characteristics and processing was selected to produce the multigrain yoghurt with the optimal polyphenol content and antioxidant activity. The results showed that there were significant antioxidant activities of different coarse cereals (<0.05). Specifically, brown rice and quinoa presented the strongest DPPH free radical scavenging capacity, followed by buckwheat. The buckwheat shared the strongest ABTS+·scavenging and iron reduction capacity. The antioxidant potency composite (APC) index was used to evaluate the antioxidant activity of different types of coarse cereals. The antioxidant activity was listed in the descending order of the buckwheat (93.45%) > the sorghum rice (52.42%) > the quinoa (51.24%) > the brown rice (50.91%) > the oats (39.70%) > the millet (33.82%) > the yellow rice (20.86%). The content of total phenols and flavonoids was also ranked in the descending order of steaming>boiling>beating. The contents of the total phenols were 329.48, 258.24, and 233.46 mg/100 g, respectively, whereas, that of the total flavonoids were 46.11, 34.89, and 34.09 mg/100g, respectively. According to the comprehensive antioxidant index, the antioxidant activity was ranked in the descending order of steaming (94.18%), boiling (91.52%), and beating (73.90%). The best antioxidant activity was achieved in the steamed buckwheat, indicating the lowest total phenol loss rate (29.22%), and the highest increase of flavonoids (34.75%). Furthermore, the correlation analysis between the polyphenol content and antioxidant activity of the steamed buckwheat showed that the total phenol, total flavonoid, and bound flavonoid presented a better correlation with the antioxidant activity. The total phenol showed an extremely significant positive correlation with the ABTS+·scavenging capacity and iron ion reducing capacity (<0.001). A significant positive correlation was found between the bound flavonoid and DPPH radical scavenging capacity (<0.01). The contents of free phenol, bound phenol, and total phenol in the buckwheat-yoghurt were significantly higher than those of the yoghurt without buckwheat (<0.05). The total phenol content of buckwheat-yoghurt (52.85 mg/100g) was 5.16 times of that the yoghurt without buckwheat (10.94 mg/100g), whereas, the total flavonoid content of the buckwheat-yoghurt (12.49 mg/100g) was 4.23 times of that the yoghurt without buckwheat. This finding can provide a strong reference for coarse cereals and functional yoghurt.
agricultural products; coarse cereals; processing method; yoghurt; antioxidant activity
2023-01-31
2023-04-14
寧夏回族自治區(qū)重點研發(fā)計劃項目(2021BEF02022);國家自然科學基金資助項目(32160593)
朱曉雪,研究方向為乳及乳制品加工。Email:397105572@qq.com
劇檸,教授,研究方向為乳制品加工及乳品微生物學。 Email:juning1122@163.com
10.11975/j.issn.1002-6819.202301132
S21; TS252
A
1002-6819(2023)-08-0268-08
朱曉雪,龔綿紅,楊秉坤,等. 不同種類及加工方式對雜糧酸奶體外抗氧化活性的比較[J]. 農業(yè)工程學報,2023,39(8):268-275. doi:10.11975/j.issn.1002-6819.202301132 http://www.tcsae.org
ZHU Xiaoxue, GONG Mianhong, YANG Bingkun, et al. Comparative study on antioxidant activity of multigrain yoghurt by different types and processing methods of coarse cereals[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 268-275. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202301132 http://www.tcsae.org