阿依木古麗·阿不都熱依木,張晨,蔡勇,覃圣,羅文學,扎西英派
藏綿羊肺臟結(jié)構(gòu)特點及HIF-1α和AQP1的表達特性
阿依木古麗·阿不都熱依木1,張晨1,蔡勇2,覃圣1,羅文學3,扎西英派1
1西北民族大學生命科學與工程學院,蘭州 730030;2西北民族大學實驗教學部,蘭州 730030;3天祝藏族自治縣畜牧技術推廣站,甘肅武威 733200
【背景】低氧誘導因子-1α (hypoxia inducible factor-1α,HIF-1α) 是細胞對缺氧應激做出適應性反應的關鍵因子之一,主要通過調(diào)節(jié)基因轉(zhuǎn)錄來維持細胞中氧的供需平衡。水通道蛋白( Aquaporins,AQPs) 是疏水性的跨膜轉(zhuǎn)運蛋白,為機體水穩(wěn)態(tài)平衡提供重要的系統(tǒng)調(diào)節(jié)。肺中,AQP1主要通過調(diào)節(jié)肺泡、肺間質(zhì)和毛細血管間水轉(zhuǎn)運從而保持肺內(nèi)液體平衡。高原環(huán)境由于低氧、高寒、大風和強輻射等特點,能夠適應并生存的物種相對較少,藏羊作為適應高海拔、高寒氣候的特有物種,形成了獨特的形態(tài)結(jié)構(gòu)和生理功能適應。肺臟作為呼吸主要的執(zhí)行器官,對低氧或缺氧等極為敏感?!灸康摹客ㄟ^研究藏綿羊肺臟結(jié)構(gòu)特點以及HIF-1α與AQP1在不同海拔藏綿羊肺臟中的表達特性,揭示其在藏綿羊高原環(huán)境適應性中所起的作用?!痉椒ā窟x擇不同生存海拔藏綿羊和小尾寒羊,斷頸致死后快速采集肺組織,H.E染色、PAS染色、Masson染色等觀察肺臟顯微結(jié)構(gòu)及彈性纖維分布,免疫組織化學SP法及實時熒光定量PCR法檢測肺組織中HIF-1α與AQP1蛋白及基因的表達特點?!窘Y(jié)果】藏綿羊肺臟被膜厚度為40.28 μm,與小尾寒羊肺臟被膜厚度無顯著差異,但其彈性纖維含量顯著多于小尾寒羊(<0.05);藏綿羊細支氣管黏膜上皮單位面積內(nèi)杯狀細胞數(shù)量顯著多于小尾寒羊(<0.05),但小支氣管及以上分支中兩者無顯著差異;藏綿羊終末細支氣管黏膜上皮仍有少量散在分布的杯狀細胞且其終末細支氣管平滑肌厚度顯著高于小尾寒羊(<0.05);藏綿羊肺內(nèi)微動脈(直徑小于100 μm)平滑肌占血管外徑比例顯著小于小尾寒羊;藏綿羊呼吸性細支氣管平滑肌厚度及單位面積內(nèi)毛細血管數(shù)量顯著高于小尾寒羊。肺臟中HIF-1α蛋白主要表達于細支氣管黏膜上皮、肺微血管內(nèi)皮和肺泡隔中,主要表達于細胞質(zhì);高海拔藏綿羊和小尾寒羊肺組織中HIF-1α表達均顯著高于低海拔綿羊,低海拔藏綿羊肺臟中HIF-1α的表達顯著高于低海拔小尾寒羊。AQP1蛋白主要表達于肺泡上皮、肺泡隔及肺微血管內(nèi)皮、細支氣管平滑肌中,主要定位于細胞膜;高海拔藏綿羊肺組織中AQP1表達顯著高于低海拔藏綿羊和小尾寒羊(<0.05),但高海拔和低海拔小尾寒羊肺臟中AQP1的表達無顯著差異(>0.05)?!窘Y(jié)論】藏綿羊肺被膜含有更多的彈性纖維,微血管平滑肌含量較少,但呼吸性細支氣管上皮杯狀細胞數(shù)量及平滑肌含量較多;藏綿羊肺臟中HIF-1α和AQP1的表達均顯著高于小尾寒羊,且其表達均隨海拔升高而增強。
藏綿羊;HIF-1α;AQP1;肺臟
【研究意義】藏綿羊常年生活在高原低溫、低氧、干燥環(huán)境中,與大多數(shù)高原動物一樣,經(jīng)長期自然選擇,其肺臟結(jié)構(gòu)和生理功能都出現(xiàn)了適應高原低氧的穩(wěn)定遺傳特性,并形成了特有的適應性結(jié)構(gòu)[1-2]。藏羊養(yǎng)殖作為青藏高原居民重要的經(jīng)濟支柱產(chǎn)業(yè),如何提高其繁殖性能[3],如何增加其經(jīng)濟價值廣受關注[4]。筆者前期研究發(fā)現(xiàn)[5],藏羊肺臟微細結(jié)構(gòu)與生存海拔相關,但肺臟中HIF-1α和AQP1是否表達,其表達特性與高原低氧環(huán)境是否相關,未見相關報道。【前人研究進展】低氧誘導因子(hypoxia inducible factor,HIF)廣泛存在于哺乳動物和人體內(nèi),作為氧信號轉(zhuǎn)導系統(tǒng)的重要轉(zhuǎn)錄因子,在機體氧穩(wěn)態(tài)調(diào)節(jié)中發(fā)揮重要作用。機體缺氧時,肺動脈平滑肌收縮,血管重塑,進而導致肺動脈壓升高,極易出現(xiàn)高原相關疾病[6]。研究表明,HIF-1α作為HIF家族蛋白中最重要的轉(zhuǎn)錄調(diào)節(jié)因子[7],廣泛參與細胞增殖與凋亡[8]、能量代謝[9]、血管生成[10]和腫瘤發(fā)生發(fā)展[11]等的調(diào)節(jié)。水通道蛋白(aquaporins,AQPs)是一組疏水性跨膜轉(zhuǎn)運蛋白,介導機體對體液和滲透壓變化的生理反應,在保持內(nèi)環(huán)境穩(wěn)態(tài)中發(fā)揮重要作用。根據(jù)功能和系統(tǒng)遺傳差異,哺乳動物水通道蛋白家族中共有13個成員即AQP0—AQP12[12]。而AQP1是第一個被發(fā)現(xiàn)的AQPs家族成員[13],通過氣-血屏障轉(zhuǎn)運水分子,從而維持肺內(nèi)液體平衡[14];有研究發(fā)現(xiàn),AQP介導肺動脈平滑肌增生,在肺水腫、肺部腫瘤等疾病中發(fā)揮重要作用[15]。【本研究切入點】缺氧導致AQP1升高并引起肺損傷,而下調(diào)AQP1表達可以減輕肺損傷[16]。研究表明,HIF-1α參與調(diào)節(jié)低氧引起的血管內(nèi)皮細胞AQP1的升高[17]。【擬解決的關鍵問題】藏羚羊[18]、牦牛[19]等高原動物肺臟中HIF-1α基因表達高于其他多個組織,但其分布如何,HIF-1α和AQP1在藏綿羊肺臟表達特點如何,與平原綿羊有無差異,未見到相關報道。因此,為探討藏綿羊肺臟結(jié)構(gòu)特點及HIF-1α和AQP1在肺中的表達特性,本文對藏綿羊和小尾寒羊肺臟組織結(jié)構(gòu)及HIF-1α和AQP1表達進行對比研究,為藏綿羊低氧適應性研究提供理論依據(jù),為HIF-1α和AQP1之間的互作機制研究提供新思路。
2018年3—10月期間,于青海省海南州(海拔約為3 500 m)和甘肅省永登縣(海拔約2 300 m)分別選取1—2歲、健康雄性藏綿羊與小尾寒羊各6只,共24只,分為以下4組:藏綿羊高海拔(TH)組、藏綿羊低海拔(TL)組、小尾寒羊高海拔(SH)組和小尾寒羊低海拔(SL)組。斷頸處死,檢查內(nèi)臟器官,尤其是胸腔,無肉眼可視病變,迅速取出肺臟選取支氣管和左肺葉底部約2 cm3的組織塊,4%多聚甲醛溶液固定48 h后更換新固定液復固定,常規(guī)脫水透明、石蠟包埋、5 μm切片。另取相同部位肺組織,投于RNA保存液中,快速帶回實驗室備用。
相鄰組織切片分別進行常規(guī)H.E染色、PAS染色、Masson染色、Gomori醛品紅染色及免疫組織化學SP染色。
PAS染色:切片脫蠟復水,按照試劑盒(索萊寶,北京)說明進行染色。5%高碘酸溶液孵育15 min,Schiff雪夫試劑加蓋避光孵育20 min,流水沖洗,蘇木精染液復染5 min,脫水透明,中性樹膠封片。PAS染色后杯狀細胞呈紅色。
Masson染色:切片脫蠟復水,按照試劑盒(索萊寶,北京)說明進行染色。Regand蘇木精孵育15 min,Masson 麗春紅復紅液孵育10 min,1%磷鉬酸分化,苯胺藍染色5 min,0.2%冰醋酸浸洗,95%酒精分化,脫水透明,中性樹膠封片。膠原纖維呈藍色,彈性纖維呈淺紅色,細胞核呈黑色。
Gomori醛品紅染色:切片脫蠟復水后,按照試劑盒(索萊寶,北京)說明進行染色。酸性氧化液氧化5 min,酸性漂白液處理1 min,醛品紅染色15 min,橙黃G 染色30 s,脫水透明,中性樹膠封片。Gomori染色后彈性纖維呈藍紫色,杯狀細胞呈藍色。
免疫組織化學SP染色:免疫組化染色程序按照SP試劑盒(邁新,福州)說明進行,第一抗體(博士德,武漢)HIF-1α與AQP1多克隆抗體工作濃度分別為1﹕150和1﹕200。同時設陰性對照組,0.01 mol·L-1PBS代替第一抗體,其余步驟相同。硫酸鎳胺增強的DAB呈色,梯度酒精脫水,二甲苯透明,中性樹膠封片,顯微鏡觀察。陽性產(chǎn)物呈黃褐色,陰性對照組無陽性產(chǎn)物。
按照TRIzol試劑總RNA 提取試劑盒(Invitrogen,美國)說明書提取各組肺組織總RNA;按照Super ScriptTM Ⅲ First-Strand Synthesis System for RT-PCR Kit(Invitrogen,美國)說明書反轉(zhuǎn)錄合成cDNA。采用qRT-PCR法分別檢測HIF-1α和AQP1的表達情況,以β-Actin為內(nèi)參基因,引物序列見表1。
表1 引物序列
各組染色切片隨機取5張,每張切片400倍視野隨機取10個不同區(qū)域,用Image Proplus6.0軟件分析。組織學切片中測量肺被膜厚度、被膜彈性纖維厚度、單位面積內(nèi)肺泡數(shù)量(1 mm2)、肺泡隔中毛細血管數(shù)量及各級支氣管黏膜上皮單位面積內(nèi)(1 mm2)杯狀細胞數(shù)量和管壁平滑肌厚度;測量微動脈外徑、中膜平滑肌的厚度并計算肺微動脈中膜肌層厚度占血管外徑百分比;計算肺被膜彈性纖維百分比。
免疫組織化學染色切片對免疫陽性產(chǎn)物進行光密度(optical density, OD)值分析。光密度值越大,HIF-1α和AQP1陽性程度越強。實時熒光定量PCR反應結(jié)束后,根據(jù)標準曲線計算每個樣品中目標基因和內(nèi)參基因含量比值作為目標基因相對表達量。
試驗數(shù)據(jù)均用平均數(shù)±標準差(Mean±SD)表示,利用SPSS 22.0軟件One-way ANOVA進行方差分析,<0.05為差異顯著。
藏綿羊和小尾寒羊支氣管黏膜上皮均為假復層纖毛柱狀上皮,含大量杯狀細胞,黏膜下層富含混合腺,由大量漿液腺和少量黏液腺構(gòu)成;支氣管黏膜形成明顯皺襞,具有環(huán)形平滑肌,外膜透明軟骨隨管徑縮小而逐漸消失。肺臟被膜為漿膜,由間皮和彈性纖維及少量膠原纖維構(gòu)成;藏綿羊肺臟被膜厚度為40.28 μm,與小尾寒羊肺臟被膜厚度間無顯著差異,但其彈性纖維含量顯著多于小尾寒羊(<0.05,圖1,表2)。
PM:肺漿膜;LA:肺微血管;TB:終末細支氣管;HC:透明軟骨;MG:混合腺;AD:肺泡管;AS:肺泡囊;PA:肺泡。A:肺被膜(Gomori×100);B:彈性纖維分布(Gomori×100);C:膠原纖維分布(Masson×200);D:細支氣管(H.E×40);E:終末細支氣管(H.E×100);F:小支氣管黏膜及混合腺(PAS×200);G:黏膜上皮杯狀細胞(PAS×400);H:混合腺(HE×400);I:呼吸性細支氣管(Masson×200);J:肺泡管(Masson×200);K:肺泡及肺泡囊(H.E×400)
表2 藏綿羊與小尾寒羊肺被膜厚度及彈性纖維占比
與小尾寒羊比,ns 表示差異不顯著(>0.05),* 表示差異顯著(<0.05)。表3同
Compared with the Small Tail Han sheep, ns indicates no significant difference (>0.05); * indicates significant difference (<0.05). The same as Table 3
藏綿羊呼吸性細支氣管平滑肌厚度顯著高于小尾寒羊(<0.05),肺泡隔中毛細血管數(shù)量也顯著多于小尾寒羊(<0.05),其肺泡面積與小尾寒羊?qū)Ρ葻o顯著差異。藏綿羊肺微血管直徑小于100 μm時,中膜平滑肌占血管外徑比例顯著小于小尾寒羊(<0.05);但血管直徑大于100 μm時,兩者間差異不顯著(表3,4)。
藏綿羊細支氣管黏膜上皮單位面積內(nèi)杯狀細胞數(shù)量顯著多于小尾寒羊(<0.05),但上級分支中兩者無顯著差異。藏綿羊終末細支氣管黏膜上皮仍有少量散在分布的杯狀細胞,但小尾寒羊中未見杯狀細胞。支氣管平滑肌厚度也隨管徑縮小而逐漸減少,段支氣管至細支氣管平滑肌厚度兩者間無顯著差異,藏綿羊終末細支氣管平滑肌厚度顯著高于小尾寒羊(<0.05,表5)。
表3 藏綿羊與小尾寒羊肺呼吸部相關數(shù)據(jù)
Reb為呼吸性細支氣管,APA為肺泡面積,NPA為單位面積肺泡數(shù)量
Reb: respiratory bronchiole; APA: Area of pulmonary alveolous; NPA: Number of pulmonary alveoli
表4 藏綿羊與小尾寒羊肺微動脈平滑肌占血管外徑百分比
相同字母表示差異不顯著(>0.05),不同字母表示差異顯著(<0.05),ND:未檢測到。表5同
Compared with the Small Tail Han sheep, the same letters indicate no significant difference (>0.05), and the different letters indicate significant difference (<0.05). ND: Not detected. The same as Table 5
表5 藏綿羊與小尾寒羊支氣管黏膜上皮杯狀細胞數(shù)量及平滑肌厚度
藏綿羊和小尾寒羊肺組織中HIF-1α蛋白免疫陽性產(chǎn)物廣泛分布。主要表達于細支氣管黏膜上皮、肺微血管內(nèi)皮和肺泡隔中,主要定位于細胞質(zhì)。高海拔藏綿羊和小尾寒羊肺組織中HIF-1α 表達強度均顯著高于低海拔綿羊,低海拔藏綿羊肺臟中HIF-1α 顯著高于低海拔小尾寒羊(<0.05)。但高海拔藏綿羊肺組織中HIF-1α 表達與高海拔小尾寒羊之間無顯著差異(>0.05)。AQP1蛋白在肺臟中分布廣泛,主要表達于肺泡上皮、肺泡隔及肺微血管內(nèi)皮、細支氣管黏膜下層和管壁平滑肌中,肺漿膜也有表達,主要定位于細胞膜。高海拔藏綿羊肺組織中AQP1表達顯著高于低海拔藏綿羊及高/低海拔小尾寒羊(<0.05),但高海拔和低海拔小尾寒羊肺臟中AQP1的表達無顯著差異(>0.05,圖2,3)。
a:高海拔藏綿羊(TH)肺臟中HIF-1α蛋白表達;b:低海拔藏綿羊(TL)肺臟中HIF-1α蛋白表達;c:高海拔小尾寒羊(SH)肺臟中HIF-1α蛋白表達;d:低海拔小尾寒羊(SL)肺臟中HIF-1α蛋白表達;e:高海拔藏綿羊(TH)肺臟中AQP1蛋白表達;f:低海拔藏綿羊(TL)肺臟中AQP1蛋白表達;g:高海拔小尾寒羊(SH)肺臟中AQP1蛋白表達;h:低海拔小尾寒羊(SL)肺臟中AQP1蛋白表達
高海拔藏綿羊和高海拔小尾寒羊肺組織中HIF-1α mRNA水平顯著高于低海拔組,且高海拔藏綿羊肺組織中HIF-1α mRNA水平顯著高于高海拔小尾寒羊(<0.05)。藏綿羊肺組織中AQP1 mRNA顯著高于小尾寒羊(<0.05),但相同品種高/低海拔綿羊之間差異不顯著(>0.05,圖3)。
呼吸系統(tǒng)是開放的系統(tǒng),極易受到高原低壓?低氧環(huán)境的影響。研究表明,許多高原動物肺組織結(jié)構(gòu)出現(xiàn)了適應性改變[20-22]。試驗結(jié)果,藏綿羊肺臟被膜厚度與小尾寒羊無顯著差異,但其彈性纖維含量顯著多于小尾寒羊。這與陳秋生[23]等在牦牛中研究結(jié)果一致。表明,藏綿羊肺臟具有豐富的彈性纖維,保證肺臟具有良好的擴張和回縮力,從而增強其低氧環(huán)境中的肺泡有效通氣量。同時試驗發(fā)現(xiàn),藏綿羊細支氣管黏膜上皮單位面積內(nèi)杯狀細胞數(shù)量顯著多于小尾寒羊,且終末細支氣管黏膜上皮中仍有散在分布。推測,足量的杯狀細胞分泌大量的黏液,對生活于高原干旱低氧環(huán)境中的藏綿羊呼吸道管壁有很好的濕潤和保護作用,保證氣體運輸通暢。且藏綿羊呼吸性細支氣管外平滑肌厚度與單位面積內(nèi)毛細血管數(shù)量均顯著高于小尾寒羊。表明,高原環(huán)境中藏綿羊通過肺組織結(jié)構(gòu)的微細變化來適應低氧干旱的環(huán)境。慢性低氧或缺氧均會導致肺血管中膜平滑肌過度增殖,引起血液循環(huán)阻力增加,常導致肺動脈高壓,減少肺通氣效率[24]。但大量研究表明,高原動物如牦牛[23]、高原鼢鼠和高原鼠兔等[22],都沒有出現(xiàn)血管平滑肌增厚現(xiàn)象,而是通過肺微血管平滑肌減少來緩解肺血管低氧性收縮。直徑較小的肺血管中膜平滑肌減少是高原動物對抗低氧性肺血管收縮反應的組織學基礎[25]。本試驗發(fā)現(xiàn),藏綿羊肺微血管直徑小于100 μm時,血管中膜平滑肌厚度顯著低于小尾寒羊,這可能是藏綿羊高原低氧環(huán)境中生存但較少發(fā)生肺動脈高壓的原因。
不同字母表示差異顯著(P<0.05),相同字母表示差異不顯著(P>0.05)。TH:高海拔藏綿羊;TL:低海拔藏綿羊;SH:高海拔小尾寒羊; SL:低海拔小尾寒羊
1992年研究者首次提出了低氧誘導因子(hypoxia inducible factor,HIF)的概念,2019年諾貝爾生理學或醫(yī)學獎的揭示帶來了HIF相關研究的新熱點,HIF-1α成為HIF家族中最受關注的一員[5]。作為氧信號轉(zhuǎn)導系統(tǒng)最重要的轉(zhuǎn)錄因子之一,HIF-1α可調(diào)控40多種基因的表達[26]。研究表明,進入高原低氧環(huán)境初期,機體HIF-1α?血管內(nèi)皮生長因子(vascular endothlial growth factor,VEGF)和促紅細胞生成素(erythropoietin, EPO)等蛋白表達水平迅速上升,增加外周動脈血管收縮能力[27],提高心輸出量并加快組織毛細血管通路的形成等[28],使得動物機體適應低氧環(huán)境。研究表明,HIF-1α廣泛分布于藏羚羊[18]、牦牛[19]、高原鼠兔[29]等動物體內(nèi),且肺臟中表達量最高。楊敏等[30]研究表明,HIF-1α嚴格受氧濃度的影響,無論高原動物還是平原動物,在富氧條件下HIF-1α少量表達,而在低氧條件時可迅速上升。本研究發(fā)現(xiàn),HIF-1α主要定位于肺泡上皮、細支氣管黏膜上皮及血管內(nèi)皮細胞中,且高海拔地區(qū)藏綿羊與小尾寒羊肺臟中HIF-1α蛋白表達無顯著差異,但均顯著高于低海拔地區(qū)綿羊,表明HIF-1α蛋白在肺臟中的表達主要受海拔的影響。AQP1是AQP 家族中第一個被發(fā)現(xiàn),分布于腎中主要調(diào)節(jié)水的吸收和原尿形成[31]。AQP1也廣泛分布于肺部[32],且AQP1過表達促進肺動脈平滑肌細胞增殖與遷移[33]。有報道稱,氧化應激致使細胞中AQP1表達顯著降低[34]。筆者發(fā)現(xiàn)AQP1主要表達于藏綿羊和小尾寒羊肺終末細支氣管平滑肌及肺微動脈內(nèi)皮和肺泡周圍毛細血管內(nèi)皮中,與塔里木兔中研究結(jié)果一致[14]。有學者發(fā)現(xiàn),LPS誘導人肺微血管內(nèi)皮細胞損傷時細胞中AQP1的表達顯著下降,而沉默HIF-1α,則細胞損傷及AQP1下降程度顯著降低[35];HIF-1α作為轉(zhuǎn)錄因子,也可調(diào)節(jié)塔里木兔腎臟中AQP1的表達,使其適應干旱環(huán)境[36]。推測,HIF-1α與AQP1功能呈正相關。本研究可見,高海拔藏綿羊肺臟中HIF-1α和AQP1蛋白表達均顯著高于低海拔綿羊,HIF-1α mRNA相對表達量則同時受到綿羊品種及海拔的影響,而AQP1 mRNA之間無顯著差異。表明,高海拔對不同品種綿羊肺臟中HIF-1α基因轉(zhuǎn)錄水平的影響較為顯著,而對肺臟中AQP1表達的影響在其轉(zhuǎn)錄或翻譯水平影響更顯著,其具體機制仍需進一步研究。
通過對比研究藏綿羊和小尾寒羊肺臟組織結(jié)構(gòu),并對比分析在不同海拔生存時,其肺臟中HIF-1α和AQP1的表達特點。發(fā)現(xiàn),藏綿羊肺被膜含有更多的彈性纖維,微血管平滑肌含量較少,但呼吸性細支氣管上皮杯狀細胞數(shù)量及平滑肌含量較多;藏綿羊肺臟中HIF-1α和AQP1的表達均顯著高于小尾寒羊,且其表達均隨藏綿羊生存的海拔高度升高而增強。
[1] STORZ J F, SCOTT G R, CHEVIRON Z A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. The Journal of Experimental Biology, 2010, 213(Pt 24): 4125-4136.
[2] 何建文, 張偉, 劉秀, 李少斌, 王繼卿, 胡江, 羅玉柱. 藏綿羊HMOX1基因表達及其多態(tài)性與低氧適應性的關聯(lián)分析. 農(nóng)業(yè)生物技術學報, 2019, 27(3): 441-448.
HE J W, ZHANG W, LIU X, LI S B, WANG J Q, HU J, LUO Y Z.gene expression and association between its polymorphism and hypoxia adaptation in Tibetan sheep (). Journal of Agricultural Biotechnology, 2019, 27(3): 441-448. (in Chinese)
[3] 李討討, 王霞, 馬友記, 尹德恩, 張勇, 趙興緒. 藏綿羊BOLL的分子特征及其在睪丸中的表達調(diào)控與功能分析. 中國農(nóng)業(yè)科學, 2020, 53(20): 4297-4312.
LI T T, WANG X, MA Y J, YIN D E, ZHANG Y, ZHAO X X. Molecular characterization of Tibetan sheep BOLL and its expression regulation and functional analysis in testis. Scientia Agricultura Sinica, 2020, 53(20): 4297-4312. (in Chinese)
[4] 吳震洋, 唐曉惠, 付玉華, 王昇, 章程, 李京津, 余梅, 杜小勇. 藏綿羊不同毛色皮膚組織miRNA表達譜及靶基因分析. 中國農(nóng)業(yè)科學, 2018, 51(2): 351-362.
WU Z Y, TANG X H, FU Y H, WANG S, ZHANG C, LI J J, YU M, DU X Y. Profiles of miRNAs and target gene analysis with white and black skin tissues of the Tibetan sheep. Scientia Agricultura Sinica, 2018, 51(2): 351-362. (in Chinese)
[5] 張晨, 劉斯汝, 蔡勇, 李囿蓉, 何靈芝, 蔡建亮, 羅文學, 阿依木古麗. 藏山羊與藏綿羊肺組織結(jié)構(gòu)的對比研究. 動物學雜志, 2019, 54(5): 687-692.
ZHANG C, LIU S R, CAI Y, LI Y R, HE L Z, CAI J L, LUO W X, AYIMUGULI. Comparison of lung microstructure between Tibetan goat and sheep. Chinese Journal of Zoology, 2019, 54(5): 687-692. (in Chinese)
[6] HOWELL K, PRESTON R J, MCLOUGHLIN P. Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. The Journal of Physiology, 2003, 547(Pt 1): 133-145.
[7] XU Y R, WANG A L, LI Y Q. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Frontiers in Oncology, 2022, 12: 984525.
[8] LI M Y, MI C L, WANG K S, WANG Z, ZUO H X, PIAO L X, XU G H, LI X Z, MA J, JIN X J. Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling. Chemico-Biological Interactions, 2017, 274: 58-67.
[9] KIM J W, TCHERNYSHYOV I, SEMENZA G L, DANG C V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 2006, 3(3): 177-185.
[10] ZENG M B, SHEN J K, LIU Y Y, LU L Y, DING K, FORTMANN S D, KHAN M, WANG J X, HACKETT S F, SEMENZA G L, CAMPOCHIARO P A. The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization. Journal of Molecular Medicine, 2017, 95(4): 417-429.
[11] ZHAO X R, LIU L D, LI R, WEI X, LUAN W Q, LIU P S, ZHAO J. Hypoxia-inducible factor 1-α (HIF-1α) induces apoptosis of human uterosacral ligament fibroblasts through the death receptor and mitochondrial pathways. Medical Science Monitor, 2018, 24: 8722-8733.
[12] GENA P, PELLEGRINI-CALACE M, BIASCO A, SVELTO M, CALAMITA G. Aquaporin membrane channels: biophysics, classification, functions, and possible biotechnological applications. Food Biophysics, 2011, 6(2): 241-249.
[13] CONNOLLY D L, SHANAHAN C M, WEISSBERG P L. The aquaporins. A family of water channel proteins. The International Journal of Biochemistry & Cell Biology, 1998, 30(2): 169-172.
[14] ZHANG J P, LI S W, LIU J, LI L X, DENG F, BAIKELI B, LI L R, MA X Y, LIU G Q. Higher expression levels of aquaporin (AQP)1and AQP5 in the lungs of arid-desert living. Journal of Animal Physiology and Animal Nutrition, 2020, 104(4): 1186-1195.
[15] YADAV E, YADAV N, HUS A, YADAV J S. Aquaporins in lung health and disease: emerging roles, regulation, and clinical implications. Respiratory Medicine, 2020, 174: 106193.
[16] WANG C, YAN M Y, JIANG H, WANG Q, GUAN X, CHEN J W, WANG C B. Protective effects of puerarin on acute lung and cerebrum injury induced by hypobaric hypoxia via the regulation of aquaporin (AQP) via NF-κB signaling pathway. International Immunopharmacology, 2016, 40: 300-309.
[17] ABREU-RODRíGUEZ I, SILVA R S, MARTINS A P, SOVERAL G, TOLEDO-ARAL J J, LóPEZ-BARNEO J, ECHEVARRíA M. Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1α. PLoS ONE, 2011, 6(12): e28385.
[18] 劉芳, 烏仁塔娜, 馬蘭, 楊應忠, 格日力. 藏羚羊低氧誘導因子1α基因的克隆與組織表達. 生理學報, 2011, 63(6): 565-573.
LIU F, WURENTANA, MA L, YANG Y Z, GERILI. Genetic cloning and expression of hypoxia inducible factor 1 alpha in high altitude hypoxic adaptation species Tibetan antelope (). Acta Physiologica Sinica, 2011, 63(6): 565-573. (in Chinese)
[19] DOLT K S, MISHRA M K, KARAR J, BAIG M A, AHMED Z, QADAR PASHA M A. cDNA cloning, gene organization and variant specific expression of HIF-1α in high altitude yak (). Gene, 2007, 386(1/2): 73-80.
[20] 何俊峰, 余四九, 崔燕. 不同年齡高原牦牛肺臟的組織結(jié)構(gòu)特征. 畜牧獸醫(yī)學報, 2009, 40(5): 748-755.
HE J F, YU S J, CUI Y. Characteristics of lung structure in different age plateau yak. Chinese Journal of Animal and Veterinary Sciences, 2009, 40(5): 748-755. (in Chinese)
[21] 周大鵬, 劉建國, 王芳, 賈寧. 藏獒肺組織對高原低氧環(huán)境的適應特性. 甘肅農(nóng)業(yè)大學學報, 2009, 44(4): 25-28.
ZHOU D P, LIU J G, WANG F, JIA N. Pulmonary tissue adaptation to high altitude of Tibetan Mastiff. Journal of Gansu Agricultural University, 2009, 44(4): 25-28. (in Chinese)
[22] 王曉君, 魏登邦, 魏蓮, 齊新章, 朱世海, 饒鑫峰. 高原鼢鼠和高原鼠兔肺細葉的結(jié)構(gòu)特征. 動物學報, 2008, 54(3): 531-539.
WANG X J, WEI D B, WEI L, QI X Z, ZHU S H, RAO X F. Characteristics of pulmonary acinus structure in the plateau zokorand plateau pika. Acta Zoologica Sinica, 2008, 54(3): 531-539. (in Chinese)
[23] 陳秋生, 馮霞, 姜生成. 牦牛肺臟高原適應性的結(jié)構(gòu)研究. 中國農(nóng)業(yè)科學, 2006, 39(10): 2107-2113.
CHEN Q S, FENG X, JIANG S C. Structural study on plateau adaptability of yak lung. Scientia Agricultura Sinica, 2006, 39(10): 2107-2113. (in Chinese)
[24] 張晶晶, CHEN Jun-hao, 趙美平, 武垣伶, 張聰聰, 應磊, 陳錫文, 王萬鐵. 內(nèi)質(zhì)網(wǎng)應激在大鼠低氧高二氧化碳性肺動脈高壓中的作用. 中國應用生理學雜志, 2018, 34(4): 327-333, 387.
ZHANG J J, CHEN J H, ZHAO M P, WU Y L, ZHANG C C, YING L, CHEN X W, WANG W T. The role of endoplasmic reticulum stress in pulmonary hypertension in rat induced by chronic hypoxia and hypercapnia. Chinese Journal of Applied Physiology, 2018, 34(4): 327-333, 387. (in Chinese)
[25] 李雙, 鄒小艷, 付林, 劉忠浩, 白祥慧, 都玉蓉, 郭松長. 高原鼠兔和昆明白小鼠肺組織結(jié)構(gòu)比較. 獸類學報, 2020, 40(2): 162-169.
LI S, ZOU X Y, FU L, LIU Z H, BAI X H, DU Y R, GUO S C. Comparative on pulmonary histochemical characteristics between plateau pika and Kunming mouse. Acta Theriologica Sinica, 2020, 40(2): 162-169. (in Chinese)
[26] LIU J, WANG W, WANG L, CHEN S H, TIAN B, HUANG K W, CORRIGAN C J, YING S, WANG W, WANG C. IL-33 initiates vascular remodelling in hypoxic pulmonary hypertension by up-regulating HIF-1α and VEGF expression in vascular endothelial cells. EBioMedicine, 2018, 33: 196-210.
[27] ZHOU F, DU J, WANG J J. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells. Molecular and Cellular Biochemistry, 2017, 428(1): 171-178.
[28] LUO Y T, TENG X, ZHANG L L, CHEN J N, LIU Z, CHEN X H, ZHAO S, YANG S, FENG J, YAN X Y. CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nature Communications, 2019, 10(1): 1-17.
[29] ZHAO T B, NING H X, ZHU S S, SUN P, XU S X, CHANG Z J, ZHAO X Q. Cloning of hypoxia-inducible factor 1α cDNA from a high hypoxia tolerant mammal—plateau pika (). Biochemical and Biophysical Research Communications, 2004, 316(2): 565-572.
[30] 楊敏, 史兆國, 韓吉龍, 岳耀敬, 郭婷婷, 郭健, 劉建斌, 孫曉萍, 王朝風, 楊博輝. HIF-1α基因G901A多態(tài)性與高海拔低氧適應的相關性. 華北農(nóng)學報, 2013, 28(6): 111-114.
YANG M, SHI Z G, HAN J L, YUE Y J, GUO T T, GUO J, LIU J B, SUN X P, WANG C F, YANG B H. Association between the G901A polymorphism of HIF-1α gene and adaptation to high-altitude hypoxia. Acta Agriculturae Boreali-Sinica, 2013, 28(6): 111-114. (in Chinese)
[31] FU Y, ZHU J J, ZHANG Y L, LIU Z W, SU H, KONG J. Vitamin D regulates the expressions of AQP-1 and AQP-4 in mice kidneys. BioMed Research International, 2019, 2019: 3027036.
[32] VASSILIOU A G, MANITSOPOULOS N, KARDARA M, MANIATIS N A, ORFANOS S E, KOTANIDOU A. Differential expression of aquaporins in experimental models of acute lung injury. In Vivo (Athens, Greece), 2017, 31(5): 885-894.
[33] 賴寧, 鐘典, 云昕, 金穎康. AQP1促進肺動脈平滑肌細胞的增殖與遷移. 中國生物化學與分子生物學報, 2017, 33(7): 697-705.
LAI N, ZHONG D, YUN X, JIN Y K. The aquaporin 1 protein promotes migration and proliferation of pulmonary arterial smooth muscle cells. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(7): 697-705. (in Chinese)
[34] 李璐, 彭旭東, 林靜, 趙桂秋. H2O2對人晶狀體上皮細胞AQP1和AQP5表達影響及其機制. 青島大學學報(醫(yī)學版), 2022, 58(2): 173-177.
LI L, PENG X D, LIN J, ZHAO G Q. Effects of h2o2on expression of aqp1 and aqp5 in human lens epithelial cells and the underlying mechanisms. Journal of Qingdao University (Medical Sciences), 2022, 58(2): 173-177. (in Chinese)
[35] KESKINIDOU C, LOTSIOS N S, VASSILIOU A G, DIMOPOULOU I, KOTANIDOU A, ORFANOS S E. The interplay between aquaporin-1 and the hypoxia-inducible factor 1α in a lipopolysaccharide- induced lung injury model in human pulmonary microvascular endothelial cells. International Journal of Molecular Sciences, 2022, 23(18): 10588.
[36] LUO S J, LI Y L, LI S W, JIANG R J, DENG F, LIU G Q, ZHANG J P. Expression regulation of water reabsorption genes and transcription factors in the kidneys of. Frontiers in Physiology, 2022, 13: 856427.
The Micro-Structure of Tibetan Sheep Lung and Its HIF-1α and AQP1 Expression Characteristics
Ayimuguli Abudureyimu1, ZHANG Chen1, CAI Yong2, QIN Sheng1, LUO WenXue3, ZHAXIyingpai1
1College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030;2Department of Experimental Teaching, Northwest Minzu University, Lanzhou 730030;3Tianzhu Tibetan Autonomous County Animal Husbandry Technology Station, Wuwei 733200, Gansu
【Background】HIF-1α is one of the key factors for cells to make adaptive response to hypoxia stress. It mainly maintains the balance of oxygen supply by regulating gene transcription. Aquaporins (AQPs) are hydrophobic transmembrane transporters regulating water homeostasis. Among them, AQP-1 mainly regulates the water transport among alveoli, pulmonary interstitium and capillaries, so as to maintain the fluid balance in the lung. The plateau environment is characterized by low oxygen, extremely cold, strong wind and radiation, so there are relatively few species which could adapt and survive. As the unique sheep species adapt to high altitude and high cold climate, Tibetan sheep has formed a special morphological structure and physiological functions adapted to the plateau environment. As the main executive organ of respiration, lung is very sensitive to hypoxia. 【Objective】This study aimed to explore the structural characteristics of Tibetan sheep lung and the expression characteristics of HIF-1α and AQP1, so as to reveal the related roles of HIF-1α and AQP1 in Tibetan sheep high altitude adaption. 【Method】The histochemical HE, PAS and Masson staining, immuno-histochemical SP and real-time fluorescence quantitative were used.【Result】The tunica thickness of lung in Tibetan sheep was 40.28 μm, which showed no significant difference with that of Small Tail Han sheep, but the elastic fiber proportion was significantly higher than that of Small Tail Han sheep (<0.05); the number of goblet cells in bronchiolar epithelium in Tibetan sheep was significantly more than that in Small Tail Han sheep (<0.05), but there was no significant difference in superior branches; some goblet cells were still detected in the epithelium of bronchioli terminales of Tibetan sheep; the thickness of smooth muscle of bronchioli terminales of Tibetan sheep was significantly thicker than that of Small Tail Han sheep (<0.05); the proportion of smooth muscle in the pulmonary arteriole (diameter less than 100 μm) in Tibetan sheep was significantly less than that of Small Tail Han sheep; the thickness of respiratory bronchiole smooth muscle and the number of capillaries in Tibetan sheep were significantly higher than those in Small Tail Han sheep. The HIF-1α protein was mainly expressed in bronchiolar epithelium, pulmonary micro-vascular endothelium and alveolar septum, and mainly detected in cytoplasm; both Tibetan sheep and Small Tail Han sheep, the expression of HIF-1α was significantly higher in high altitude than that of low altitude, and HIF-1α expression in low altitude Tibetan sheep was significantly stronger than that of Small Tail Han sheep living at low altitude. AQP1 protein was mainly expressed in alveolar epithelium, alveolar septum, pulmonary microvascular endothelium, submucosal and smooth muscle of bronchioles, mainly located on cell membrane; the expression of AQP1 in lung of Tibetan sheep living at high altitude was significantly stronger than that of Tibetan sheep from low altitude, and also stronger than that of Small Tail Han sheep either altitude (<0.05), but there was no significant difference between Small Tail Han sheep living at high altitude and low (>0.05).【Conclusion】All those results indicated that the lung capsule of Tibetan sheep contained more elastic fibers and less microvascular smooth muscle than that of Small Tail Han sheep, with more number of goblet cells and smooth muscle in respiratory bronchioles. The expression of HIF-1α and AQP1 in Tibetan Sheep lung were significantly stronger than that of Small Tail Han sheep, and their expression increased with living altitude increasing.
Tibetan sheep; HIF-1α; AQP1; Lung
2021-12-22;
2023-03-23
國家自然科學基金(31760649)、中央高?;緲I(yè)務費專項資金(31920220070)、甘肅省自然科學基金(20JR10RA122)
阿依木古麗·阿不都熱依木,E-mail:Ayimgul80@163.com
10.3864/j.issn.0578-1752.2023.11.013
(責任編輯 林鑒非)