李然,徐明崗,孫楠,王晉峰,王斐,李建華
不同碳氮比下秸稈腐解與養(yǎng)分釋放的動(dòng)力學(xué)特征
李然1, 2,徐明崗,孫楠,王晉峰1,王斐1,李建華1
1山西農(nóng)業(yè)大學(xué)生態(tài)環(huán)境產(chǎn)業(yè)技術(shù)研究院/土壤環(huán)境與養(yǎng)分資源山西省重點(diǎn)實(shí)驗(yàn)室,太原 030031;2中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/北方干旱半干旱耕地高效利用全國(guó)重點(diǎn)實(shí)驗(yàn)室/農(nóng)業(yè)農(nóng)村部耕地質(zhì)量監(jiān)測(cè)與評(píng)價(jià)重點(diǎn)實(shí)驗(yàn)室,北京 100081
【目的】研究不同碳氮比下秸稈腐解和養(yǎng)分釋放的動(dòng)力學(xué)特征及其影響因素,為秸稈資源充分利用和煤礦區(qū)復(fù)墾耕地質(zhì)量提升提供理論依據(jù)?!痉椒ā恳劳猩轿髅旱V復(fù)墾試驗(yàn)基地,開(kāi)展大田填埋試驗(yàn)。供試玉米和小麥秸稈烘干過(guò)2 mm篩,通過(guò)添加尿素將玉米和小麥秸稈C/N比分別調(diào)節(jié)為25和10,以不添加尿素的秸稈(其C/N比分別為52和74)為對(duì)照,秸稈均按有機(jī)碳8 g稱取后混勻,裝于尼龍網(wǎng)袋(0.38 μm孔徑)內(nèi),水平埋入試驗(yàn)基地15 cm深的土壤中。在埋入土壤后的第12、23、55、218、281、365天采集尼龍袋內(nèi)樣品,分析玉米和小麥秸稈的干物質(zhì)殘留量、養(yǎng)分(碳、氮、磷和鉀)釋放的動(dòng)態(tài)變化?!窘Y(jié)果】前55 d,添加氮肥加快了玉米秸稈的腐解,以C/N比為25時(shí)腐解效果最佳。添加氮肥加快了小麥秸稈的腐解,以C/N比為10時(shí)腐解效果最佳。氮的添加可以顯著促進(jìn)前55 d玉米秸稈碳、磷的釋放;氮的添加可以顯著加快小麥秸稈碳、氮和磷的釋放,對(duì)小麥秸稈中鉀釋放的促進(jìn)作用不顯著。小麥和玉米秸稈腐解及氮鉀釋放的一級(jí)動(dòng)力學(xué)方程用積溫?cái)M合優(yōu)于用時(shí)間擬合,秸稈磷的釋放不適用衰減指數(shù)方程擬合。當(dāng)積溫為年積溫(4 600 ℃)時(shí),小麥和玉米秸稈碳、氮、磷和鉀釋放率的平均值分別為49.2%、39.5%、40.8%和90.3%;當(dāng)累積積溫達(dá)到1 125 ℃時(shí),秸稈鉀素釋放85%以上。秸稈的腐解主要受溫度、有機(jī)碳、木質(zhì)素和半纖維素影響?!窘Y(jié)論】施氮能加快玉米秸稈前期的腐解和碳、磷的釋放,可以顯著加快小麥秸稈的腐解和碳、氮、磷的釋放。用溫度擬合的方程比時(shí)間方程更能反映秸稈的腐解和氮鉀釋放過(guò)程。秸稈腐解主要受土壤溫度,秸稈中有機(jī)碳、木質(zhì)素和半纖維素含量的影響。因此,應(yīng)結(jié)合煤礦區(qū)的水熱條件,進(jìn)行實(shí)時(shí)實(shí)地秸稈還田并配施適量的尿素,以提高復(fù)墾土壤的氮磷鉀含量。
C/N比;秸稈;腐解;養(yǎng)分釋放;動(dòng)力學(xué)方程;煤礦復(fù)墾區(qū)
【研究意義】山西煤炭資源的過(guò)度開(kāi)采使耕地資源破壞嚴(yán)重,而煤礦復(fù)墾過(guò)程中對(duì)土壤的巨大擾動(dòng)會(huì)導(dǎo)致土壤有機(jī)碳含量極度下降[1]。提升復(fù)墾耕地有機(jī)碳最直接有效的途徑就是輸入外源有機(jī)碳[2],如添加農(nóng)作物秸稈。我國(guó)農(nóng)作物秸稈種類多、總量大,占全球秸稈資源量的1/5左右[3],其中以玉米和小麥秸稈為主。農(nóng)作物秸稈中氮磷鉀養(yǎng)分含量高且含有豐富的木質(zhì)素、纖維素等有機(jī)物。適量的秸稈還田既能增加土壤有機(jī)質(zhì)、改良土壤結(jié)構(gòu)和促進(jìn)作物根系的發(fā)育,又能減少化肥施用量并避免其露天焚燒對(duì)環(huán)境的負(fù)作用[4]。如果秸稈還田過(guò)大會(huì)造成出苗不齊和土壤中速效養(yǎng)分競(jìng)爭(zhēng),也會(huì)造成土壤養(yǎng)分失調(diào)和作物減產(chǎn)。因此,明確秸稈腐解和養(yǎng)分釋放的動(dòng)力學(xué)過(guò)程對(duì)煤礦區(qū)復(fù)墾土壤培肥具有重要指導(dǎo)意義?!厩叭搜芯窟M(jìn)展】秸稈腐解主要受其初始C/N比、秸稈類型和化學(xué)組成等性質(zhì)的影響[5-6]。秸稈初始C/N比不同和組成差異會(huì)導(dǎo)致還田秸稈的腐解速率不同,而通過(guò)添加適量外源氮素調(diào)節(jié)C/N比可以調(diào)控還田秸稈的腐解和養(yǎng)分釋放過(guò)程[7-9]。有研究表明,當(dāng)C/N比調(diào)節(jié)為20—30時(shí),微生物最為活躍,秸稈腐解最快[10-11]。在相同水熱條件下小麥秸稈的腐解速率快于玉米秸稈[12]。小麥秸稈配施適量氮肥能顯著加速其腐解,并提升土壤有機(jī)碳含量[13];而玉米秸稈配施氮肥則會(huì)抑制其自身腐解[14],這可能是因?yàn)橥庠吹蚀龠M(jìn)了水解酶(如纖維素酶)活性的同時(shí)會(huì)抑制氧化酶的活性,最終導(dǎo)致秸稈腐解程度和速率不同[15]。而且,配施氮肥促進(jìn)了秸稈N、P、K的釋放,但添加外源氮量不同會(huì)導(dǎo)致結(jié)果差異很大[16]。秸稈化學(xué)組成也會(huì)導(dǎo)致其還田后的腐解速率差異較大。有研究表明,秸稈自身的木質(zhì)素含量或木質(zhì)素與氮的比值與其腐解速率成反比[17]。【本研究切入點(diǎn)】雖然前人對(duì)秸稈腐解和養(yǎng)分釋放特征進(jìn)行了一些研究,但這些研究多集中于秸稈C、N、P、K的釋放總量,對(duì)秸稈C、N、P、K釋放的動(dòng)力學(xué)過(guò)程的研究相對(duì)較少。秸稈還田配施氮肥后這些養(yǎng)分釋放的動(dòng)力學(xué)過(guò)程和秸稈腐解的調(diào)控機(jī)制鮮見(jiàn)報(bào)道。并且,這些研究多集中于常規(guī)農(nóng)田秸稈腐解和養(yǎng)分釋放特征,煤礦區(qū)復(fù)墾耕地中秸稈腐解和養(yǎng)分釋放動(dòng)力學(xué)過(guò)程的研究則更為缺乏?!緮M解決的關(guān)鍵問(wèn)題】本研究以山西典型煤礦復(fù)墾區(qū)長(zhǎng)期定位試驗(yàn)為基礎(chǔ),開(kāi)展為期一年的秸稈填埋腐解試驗(yàn),結(jié)合試驗(yàn)期間水熱條件和秸稈性質(zhì),探討秸稈還田配施不同量氮肥后玉米和小麥秸稈的腐解及養(yǎng)分釋放動(dòng)力學(xué)過(guò)程的差異特征,為秸稈資源合理利用和煤礦區(qū)復(fù)墾耕地質(zhì)量快速提升提供理論依據(jù)。
試驗(yàn)區(qū)位于山西省典型煤礦復(fù)墾區(qū)長(zhǎng)治市襄垣縣王橋鎮(zhèn)(113°01′E,36°27′N),為黃土塬地貌。該區(qū)屬暖溫帶大陸性季風(fēng)氣候,雨熱同步、晝夜溫差較大。全年積溫為4 600 ℃,年均降水量500—550 mm,在7—9月降雨較多,年均蒸發(fā)量達(dá)1 768 mm,無(wú)霜期約為160 d。由于長(zhǎng)期的井工開(kāi)采煤礦后導(dǎo)致原有農(nóng)田呈鍋底狀塌陷,無(wú)法耕種。項(xiàng)目組于2008年采用混推復(fù)墾的方式進(jìn)行土地復(fù)墾,開(kāi)展長(zhǎng)期定位試驗(yàn)。試驗(yàn)區(qū)種植作物為春玉米,種植密度為60 000株/hm2,每年種植一季(5月左右播種,10月左右收獲),且在收獲時(shí)將玉米秸稈全部粉碎、翻壓還田。土壤為石灰性褐土,黃土母質(zhì),耕層(0—20 cm)土壤的基本理化性質(zhì)為:有機(jī)碳9.70 g·kg-1、全氮0.87 g·kg-1、全磷0.51 g·kg-1、堿解氮49.40 mg·kg-1、有效磷7.25 mg·kg-1、pH7.98。秸稈腐解填埋試驗(yàn)于2018年開(kāi)始,秸稈腐解期間的降雨及土壤溫度情況參考文獻(xiàn)[18]。
試驗(yàn)采用尼龍網(wǎng)袋法(網(wǎng)袋規(guī)格為15 cm×25 cm,孔徑為38 μm)。供試玉米和小麥秸稈均采自于當(dāng)?shù)剞r(nóng)田,秸稈60℃烘干,粉碎,并過(guò)2 mm篩備用。玉米和小麥秸稈的全氮含量分別為(7.83±0.08)和(5.01± 0.01)g·kg-1,差異顯著;半纖維素含量分別為(298.20± 1.77)和(311.90±2.06)g·kg-1,差異顯著;木質(zhì)素含量分別為(57.25±0.29)和(72.36±0.15)g·kg-1,差異顯著。而兩種秸稈的有機(jī)碳和纖維素含量無(wú)顯著差異。
試驗(yàn)為等有機(jī)碳量大田填埋試驗(yàn),秸稈按有機(jī)碳8 g稱量。玉米秸稈均稱取18.30 g,分別添加尿素0、0.36、1.39 g,添加氮后秸稈的C/N比依次為52(MN0)、25(MN1)和10(MN2);小麥秸稈均稱取18.00 g,分別添加尿素0、0.45、1.48 g,添加氮后秸稈的C/N比依次為74(WN0)、25(WN1)、10(WN2)。試驗(yàn)共6個(gè)處理,3次重復(fù),每個(gè)處理24袋,共144袋。將稱量好的樣品混勻后置于尼龍袋中并封口,在2018年9月13日水平填埋于試驗(yàn)區(qū)(4 m×3 m)土壤15 cm深處。填埋后,補(bǔ)充地表含水量為田間持水量的70%左右,其他時(shí)段的水分管理與周邊大田一致。在秸稈填埋試驗(yàn)區(qū),于尼龍網(wǎng)袋同一深度隨機(jī)水平埋入3個(gè)地溫儀(EL-USB-1-PRO),地溫儀每小時(shí)讀取一次土壤溫度,24 h氣溫平均值為日平均溫度。填埋區(qū)不種植任何作物,試驗(yàn)期間處于撂荒狀態(tài)。
試驗(yàn)周期為1年,分6次破壞性取樣,根據(jù)當(dāng)?shù)氐孛娣e溫(>0℃)情況,按照累積積溫梯度,在累積積溫為260、454、754、1 228、2 504、4 600℃時(shí)(對(duì)應(yīng)的取樣時(shí)間為樣品填埋后第12、23、55、218、281、365天)進(jìn)行取樣。采樣時(shí),每個(gè)處理均取出4袋。采樣后,用蒸餾水將尼龍網(wǎng)袋表面附著的土壤、根系等沖洗干凈后,60℃烘干,取部分樣品過(guò)0.5 mm篩,用于有機(jī)碳、氮、磷、鉀、木質(zhì)素、纖維素和半纖維素含量的測(cè)定。各項(xiàng)指標(biāo)的測(cè)定方法見(jiàn)參考文獻(xiàn)[18]。
秸稈在不同取樣時(shí)期的殘留率為秸稈剩余量與初始加入秸稈量的比值(質(zhì)量、有機(jī)碳、氮、磷、鉀、木質(zhì)素、纖維素和半纖維素);腐解率(或釋放率)與殘留率之和為100%;秸稈的腐殖化系數(shù)為秸稈腐解一年后秸稈量的殘留率;土壤活動(dòng)積溫為秸稈腐解時(shí)間內(nèi)逐日活動(dòng)溫度的總和。
秸稈腐解殘留率在一年內(nèi)的變化符合一級(jí)動(dòng)力學(xué)方程模型:S=0+1e,其中,是天數(shù)或活動(dòng)積溫(>0℃),0是穩(wěn)定碳庫(kù)比率(%),1是易分解碳庫(kù)比率(%),S是一定天數(shù)或活動(dòng)積溫下的腐解殘留率(%),是易分解碳庫(kù)的分解速率常數(shù),1/是易分解碳庫(kù)周轉(zhuǎn)一次的天數(shù)或積溫[18]。秸稈養(yǎng)分的釋放過(guò)程符合衰減指數(shù)擬合方程:R=ae,其中,R為秸稈養(yǎng)分殘留率,是活動(dòng)積溫(>0℃)或天數(shù),是衰減方程常數(shù),是養(yǎng)分釋放速率常數(shù)[19]。
試驗(yàn)結(jié)果采用Excel 2016,SigmaPlot 14.0,SPSS 22等軟件進(jìn)行統(tǒng)計(jì)與分析。不同處理之間的差異采用最小顯著差數(shù)法(LSD)進(jìn)行顯著性檢驗(yàn)(<0.05)。采用隨機(jī)森林(Random Forest)分析各因素對(duì)秸稈腐解的影響大小。所有結(jié)果均以3次測(cè)定結(jié)果的平均值和標(biāo)準(zhǔn)差表示。
2.1.1 秸稈腐解與碳素殘留率的變化 在整個(gè)腐解過(guò)程中不同處理下玉米和小麥秸稈的腐解均呈前期快速腐解、后期緩慢腐解的特點(diǎn)(圖1)。在前55 d,玉米和小麥秸稈腐解率分別為25.2%和31.1%;在55—365 d,腐解率分別為14.7%和19.9%。玉米秸稈腐解第12、23和55天,MN1和MN2的腐解速率之間無(wú)顯著差異,卻顯著快于MN0,平均快3.3%、4.7%和2.3%;腐解第218、281和365天,MN0、MN1和MN2之間的腐解殘留率無(wú)顯著差異,玉米秸稈殘留率的平均值分別為75.2%、68.0%、60.1%。小麥秸稈腐解第12和218天,WN1處理的腐解速率顯著快于WN0,分別快4.1%、4.8%;腐解第23和55天,WN1和WN2處理的腐解殘留率均顯著低于WN0處理,分別降低5.0%、4.6%,而WN1和WN2之間無(wú)顯著差異;腐解第281天,WN0、WN1和WN2之間的腐解殘留率無(wú)顯著差異,均值為60.4%;腐解第365天,WN1和WN2的腐解殘留率均顯著低于WN0處理,且WN1和WN2之間差異顯著。
秸稈碳的腐解率與秸稈的腐解率變化趨勢(shì)基本相同,也是前期腐解快速、后期腐解緩慢(圖1)。玉米秸稈腐解第12和55天,MN1碳的腐解快于MN0,分別快3.7%、2.5%,MN1和MN2之間無(wú)顯著差異;腐解第23和218天,MN2碳的腐解速率快于MN0,分別快4.4%、2.9%,MN1和MN2之間無(wú)顯著差異;腐解第281天,MN0、MN1和MN2之間的碳腐解殘留率無(wú)顯著差異,均值為65.6%。小麥秸稈腐解12和281 d時(shí),小麥秸稈碳腐解殘留率分別為83.7%— 85.9%、60.9%—62.1%,WN0、WN1和WN2之間無(wú)顯著差異;腐解23、55和281 d,WN1顯著低于WN0,但WN1和WN2之間差異不顯著;腐解365 d, WN1和WN2之間差異顯著。
圖1 秸稈腐解殘留率和碳素殘留率的變化
2.1.2 秸稈腐解殘留率動(dòng)力學(xué)方程的比較與選擇 用時(shí)間或積溫方程S=S01e擬合秸稈的腐解過(guò)程較好(<0.05)(表1,表2)。擬合方程的決定系數(shù)(2)均達(dá)顯著水平,但積溫方程的2均明顯大于時(shí)間方程,表明積溫方程的擬合效果好于時(shí)間方程。秸稈還田配施氮肥后,秸稈的腐解過(guò)程用時(shí)間或積溫的擬合效果相同。當(dāng)累積積溫為4 600℃即腐解時(shí)間為1年時(shí),玉米秸稈的殘留率約為63.6%,小麥秸稈約為55.4%。與MN0相比(時(shí)間或積溫),MN1和MN2的穩(wěn)定碳占比(0)和易分解碳占比(1)均無(wú)顯著差異;MN1和MN2的易分解碳庫(kù)的分解速率常數(shù)()均顯著增加,但兩者之間無(wú)顯著差異。與WN0相比(積溫或時(shí)間),WN2的0、1和均無(wú)顯著差異,而WN1的均顯著增加。
表1 秸稈腐解的時(shí)間方程(St =S0+S1e-kx)參數(shù)
表2 秸稈腐解的積溫方程(St=S0+S1e-kx)參數(shù)
*:<0.05
2.2.1 秸稈氮、磷、鉀素的釋放特征 由圖2可知,玉米秸稈氮素均表現(xiàn)為直接釋放,添加氮肥加快了玉米秸稈氮素的釋放。281 d前,MN0、MN1和MN2之間無(wú)顯著差異;腐解365 d,MN0處理的氮素釋放率為41.3%,且與MN1和MN2氮素釋放率(均值為45.1%)差異顯著。小麥秸稈氮素也表現(xiàn)為直接釋放過(guò)程,218 d前WN0氮素的釋放速率顯著快于WN1和WN2,218 d后WN0、WN1和WN2氮素的釋放率無(wú)顯著差異;腐解365 d,小麥秸稈氮素釋放率的均值為41.6%。
玉米秸稈磷素表現(xiàn)為先富集后釋放,而添加氮肥后,表現(xiàn)為直接釋放。在218 d內(nèi),添加氮肥后使玉米秸稈磷素釋放加快,MN1和MN2的磷素釋放率顯著高于MN0處理,且MN1和MN2之間差異顯著。在218 d后,MN1的磷素釋放率顯著高于MN0。腐解365 d,MN0的磷素釋放率為32.2%,MN1和MN2的均值為37.2%。小麥秸稈磷素均表現(xiàn)直接釋放過(guò)程,前12 d快速釋放;12—55 d,WN1和WN2的磷素釋放率顯著低于WN0,但WN1和WN2之間差異不顯著。55 d后,WN2的磷素釋放變緩,只有WN1顯著低于WN0。365 d時(shí),WN1和WN2的釋放率(均值為47.6%)高于WN0(42.9%)。
玉米和小麥秸稈的鉀素均為快速的直接釋放過(guò)程,添加氮肥對(duì)秸稈鉀素的釋放無(wú)顯著影響。在腐解55 d玉米和小麥秸稈的平均釋放率分別為75.3%、82.5%;在腐解55—365 d,玉米秸稈的釋放率基本上保持不變,小麥秸稈鉀的釋放變平緩,腐解365 d為98.2%。
總的來(lái)說(shuō),小麥和玉米秸稈中氮素和磷素釋放過(guò)程比較相似,表現(xiàn)出緩慢的直接釋放特征,添加氮肥加快了玉米和小麥秸稈氮素和磷素的釋放。秸稈鉀素均為快速的直接釋放過(guò)程,添加氮肥對(duì)秸稈鉀素的釋放無(wú)顯著影響,秸稈鉀的平均釋放速率大于氮素和磷素。
圖2 秸稈氮、磷和鉀殘留率的變化
2.2.2 秸稈氮、磷、鉀的衰減指數(shù)擬合方程比較 秸稈養(yǎng)分(N、P、K)殘留量(R)與腐解時(shí)間()或積溫()可以用衰減指數(shù)方程R=ae擬合,且達(dá)到顯著水平(<0.05);秸稈調(diào)節(jié)碳氮比后,秸稈氮素和鉀素的釋放率可以用時(shí)間或腐解積溫衰減指數(shù)方程R=ae擬合,擬合方程均達(dá)到顯著水平(表3和表4)。而只有小麥秸稈磷的釋放率能用時(shí)間或腐解積溫衰減指數(shù)方程擬合。秸稈氮素和鉀素的擬合用積溫的擬合效果普遍好于時(shí)間,秸稈氮素的平均釋放率為0.13 %·d-1或0.01 %·℃-1;而小麥秸稈鉀素的平均釋放率(6.39 %·d-1或0.30 %·℃-1)顯著快于玉米秸稈(3.61 %·d-1或0.19 %·℃-1)。小麥秸稈磷素的平均釋放率(0.14 %·d-1或0.01 %·℃-1),且用時(shí)間和用積溫的擬合效果相同。
由隨機(jī)森林結(jié)果可知(圖3),玉米和小麥秸稈的腐解,從元素組成看主要受秸稈中有機(jī)碳含量的影響;從結(jié)構(gòu)組成來(lái)看主要受秸稈中木質(zhì)素和半纖維素含量的影響。此外,土壤溫度對(duì)玉米和小麥秸稈腐解的影響也較大。
表3 秸稈氮、磷、鉀素殘留量的時(shí)間衰減指數(shù)擬合方程(Rt=ae-bx)
表4 秸稈氮、磷、鉀素殘留量的積溫衰減指數(shù)擬合方程(Rt=ae-bx)
*:<0.05
圖3 秸稈腐解的影響因素
在一年的腐解過(guò)程中不同施氮下玉米和小麥秸稈均前期快速腐解、后期緩慢腐解:在前55 d,玉米和小麥秸稈腐解率平均分別為25.2%和31.1%;在55—365 d,分別為14.7%和19.9%。這與前人的研究結(jié)果一致,陳兵等[20]利用微區(qū)試驗(yàn)對(duì)糞肥和秸稈腐解的研究發(fā)現(xiàn),有機(jī)物料腐解均前期快和后期慢。這可能是因?yàn)楦馇捌跍囟容^高和水分適宜,秸稈的小分子物質(zhì)先被快速分解,腐解較快;分解后期有3個(gè)月左右的時(shí)間土壤溫度低于0℃,秸稈的小分子被利用完,開(kāi)始利用大分子物質(zhì),腐解緩慢[21]。腐解前55 d配施氮肥能加快玉米秸稈的腐解,腐解55 d后配施氮肥對(duì)玉米秸稈腐解速率無(wú)顯著影響。這主要是因?yàn)槿藶樘砑拥蕿橥寥姥a(bǔ)充了氮源,使微生物活性增加,土壤酶活性提高,從而有助于玉米秸稈的腐解[5];而在腐解后期,氮肥被利用或揮發(fā)完后,微生物利用玉米秸稈本身的氮和土壤中的氮,因此腐解后期施氮肥對(duì)玉米秸稈的腐解速率無(wú)顯著影響。在小麥秸稈整個(gè)腐解過(guò)程中(281 d除外),WN1的腐解均快于WN0。這可能是因?yàn)楸驹囼?yàn)中小麥秸稈C/N比高、氮含量低,配施氮肥可為土壤補(bǔ)充氮源,增加微生物活性,提高纖維素和半纖維素酶的活性[15],從而促進(jìn)小麥秸稈的腐解。而281 d時(shí),一方面由于當(dāng)?shù)亻L(zhǎng)時(shí)間不降雨,土壤含水量很低,限制了土壤微生物的作用;另一方面,隨著腐解進(jìn)程,難分解物質(zhì)如木質(zhì)素等的積累,減緩了微生物對(duì)秸稈殘留物的分解,使得各處理小麥秸稈的腐解速率變慢。秸稈碳的腐解與秸稈的腐解的變化趨勢(shì)一致,且腐解過(guò)程也相同。這與前人結(jié)果相似,GREGORICH等[22]在加拿大農(nóng)場(chǎng)對(duì)植物凋落物研究發(fā)現(xiàn),植物凋落物的腐解與其碳的腐解過(guò)程完全一樣。其主要是因?yàn)榻斩挼母膺^(guò)程實(shí)質(zhì)就是秸稈的礦化過(guò)程,配施低量氮肥后,秸稈的穩(wěn)定有機(jī)碳占比和易分解有機(jī)碳占比無(wú)顯著差異,易分解有機(jī)碳的分解速率常數(shù)顯著增加。其可能原因是腐解前期秸稈本身包含的氮和復(fù)墾土壤低量的氮不能滿足相關(guān)腐解微生物的需要,配施適量的氮肥使其C/N比降低,為相關(guān)腐解微生物提供了充足氮源,提高了微生物活性,從而加快了秸稈前期的腐解[23],但高量的氮肥會(huì)提高無(wú)機(jī)氮素的濃度,抑制微生物活性[8],進(jìn)而減緩秸稈腐解。秸稈的腐解過(guò)程能較好地用積溫或時(shí)間方程擬合,但是用積溫?cái)M合的效果更好??赡苁且?yàn)闇囟仁墙斩捀獾闹饕绊懸蛩?,用積溫進(jìn)行秸稈腐解過(guò)程擬合可以消除季節(jié)性差異,更能指導(dǎo)秸稈科學(xué)還田。
配施氮肥后,玉米和小麥秸稈腐解釋放氮、磷、鉀素的過(guò)程不相同。玉米秸稈還田配施氮肥后,對(duì)氮素前期的釋放無(wú)影響,而加快了后期的釋放。主要因?yàn)榉纸馇捌冢衩捉斩捀廨^快,其利用自身氮素,其殘余物吸附能力增強(qiáng),氮肥被吸附在玉米秸稈中[24],而導(dǎo)致測(cè)定結(jié)果中玉米秸稈氮含量偏高;分解后期,玉米秸稈中氮素不足,從而利用氮肥和土壤中氮素,進(jìn)而導(dǎo)致添加氮肥后期玉米秸稈氮素釋放速率增加??偟膩?lái)說(shuō),添加氮肥加快了玉米秸稈中氮素的釋放。小麥秸稈配施氮肥后,氮素釋放加快??赡芤?yàn)樾←溄斩扖/N比較高,適量的氮肥使其C/N比調(diào)整為微生物利用最佳值,微生物活動(dòng)快[25],從而加快了小麥秸稈氮素的釋放。配施氮肥加快了秸稈磷素的釋放,可能是因?yàn)槠浼涌炝私斩挼母猓岣吡宋⑸飻?shù)量,增加了秸稈中無(wú)機(jī)磷的釋放[26],從而促進(jìn)了秸稈磷的釋放。添加氮肥對(duì)秸稈鉀素的釋放無(wú)顯著影響。主要是因?yàn)榻斩捴械拟浰刂饕运軕B(tài)的形式存在[27],釋放迅速,腐解初期土壤的溫度和水分適宜,秸稈腐解本來(lái)就比較快,添加氮肥雖然能加快秸稈鉀素的釋放,但是無(wú)顯著影響。從時(shí)間或積溫衰減指數(shù)方程R=e-bx擬合來(lái)看,秸稈氮素和鉀素的擬合用積溫的擬合效果普遍好于時(shí)間。秸稈養(yǎng)分釋放速率常數(shù)與平均溫度之間有很強(qiáng)的線性關(guān)系[12,28-29],故用積溫代替時(shí)間更能反映秸稈氮素和鉀素的釋放過(guò)程。長(zhǎng)治市襄垣縣每畝(667 m2)地玉米秸稈還田量約為500 kg,并配施20 kg左右的尿素。按玉米秸稈氮素的積溫衰減指數(shù)方程R=96.81×e-0.0001x計(jì)算,長(zhǎng)治襄垣縣的年積溫為4 600℃,當(dāng)累積積溫分別達(dá)到1 150、2 300、4 600℃時(shí),玉米秸稈分別大致可以釋放氮素0.54、0.90、1.77 kg。按照玉米秸稈鉀素的積溫衰減指數(shù)方程R=96.43×e-0.0019x計(jì)算,長(zhǎng)治襄垣縣的年積溫為4 600℃,當(dāng)累積積溫為1 150℃時(shí),玉米秸稈鉀素釋放80%以上,約為3.87 kg。長(zhǎng)治市襄垣縣每畝地小麥秸稈還田量也按約500 kg,并配施20 kg左右的尿素計(jì)算。按小麥秸稈氮素的積溫衰減指數(shù)方程R= 95.66×e-0.0001x計(jì)算,長(zhǎng)治襄垣縣的年積溫為4 600℃,當(dāng)累積積溫分別達(dá)到1 150、2 300、4 600℃時(shí),小麥秸稈分別大約可以釋放氮素0.37、0.60、1.07 kg。按照小麥秸稈鉀素的積溫衰減指數(shù)方程R=99.14× e-0.0030x計(jì)算,長(zhǎng)治襄垣縣的年積溫為4 600℃,當(dāng)累積積溫為1 150℃時(shí),小麥秸稈鉀素釋放90%以上,約為11.10 kg。按小麥秸稈磷素的積溫衰減指數(shù)方程R= 92.01×e-0.0001x計(jì)算,長(zhǎng)治襄垣縣的年積溫為4 600 ℃,當(dāng)累積積溫分別達(dá)到1 150、2 300、4 600℃時(shí),小麥秸稈分別大約可以釋放磷素0.07、0.11、0.19 kg。在施肥過(guò)程中,應(yīng)該考慮還田秸稈腐解釋放的氮磷鉀養(yǎng)分量,特別是氮和鉀養(yǎng)分的釋放量較高,為合理施肥提供了基礎(chǔ)數(shù)據(jù)。
隨機(jī)森林結(jié)果可知,從元素組成看,玉米和小麥秸稈的腐解主要受有機(jī)碳的影響;從結(jié)構(gòu)組成來(lái)看,玉米和小麥秸稈的腐解主要受木質(zhì)素和半纖維素的影響,而且溫度和降雨一直在秸稈腐解中占著重要作用。前人研究表明[30],秸稈有機(jī)碳釋放的變化規(guī)律與腐解率趨勢(shì)基本一致,說(shuō)明有機(jī)碳主導(dǎo)秸稈的腐解,添加氮肥對(duì)秸稈的腐殖化系數(shù)無(wú)顯著影響,說(shuō)明氮肥對(duì)秸稈的腐解影響較小。木質(zhì)素比較穩(wěn)定,半纖維素較木質(zhì)素易分解,秸稈的結(jié)構(gòu)組成決定了其腐殖化系數(shù)[20,31]。在不同區(qū)域、不同的溫度梯度下開(kāi)展的秸稈腐解試驗(yàn)結(jié)果認(rèn)為,溫度升高秸稈的腐解加快[12,22,27]。但是,本試驗(yàn)中溫度對(duì)秸稈腐解影響較弱,這主要是因?yàn)楸驹囼?yàn)在同一個(gè)區(qū)域開(kāi)展,同一時(shí)間點(diǎn)各處理的溫度相同,這使得秸稈本身性質(zhì)對(duì)秸稈腐解的影響更加突顯。
秸稈的腐解受水熱條件和秸稈本身性質(zhì)等共同的影響。在同一地域進(jìn)行的一年腐解試驗(yàn)中,秸稈本身的性質(zhì)在腐解中起關(guān)鍵作用。秸稈的種類不同,腐解的關(guān)鍵影響因素也不同。添加氮肥能夠加快玉米秸稈前期的腐解速率和磷素的釋放,玉米秸稈有機(jī)碳的釋放的變化規(guī)律與腐解率趨勢(shì)基本一致,溫度、木質(zhì)素和半纖維素主要影響著玉米秸稈的腐解,因此,應(yīng)結(jié)合當(dāng)?shù)氐臍夂驐l件,進(jìn)行玉米秸稈還田并配施適當(dāng)?shù)牡?,以加快其初期的腐解和磷素和鉀素的釋放,進(jìn)而增加復(fù)墾土壤養(yǎng)分和減少對(duì)下季作物的影響。添加氮肥能加快小麥秸稈的腐解和提高氮磷養(yǎng)分的釋放,溫度、有機(jī)碳和全氮主要控制著小麥秸稈的腐解,因此,應(yīng)結(jié)合當(dāng)?shù)氐臍夂驐l件進(jìn)行小麥秸稈還田并配施適當(dāng)?shù)哪蛩?,在腐解后期也?yīng)追施尿素,以加快小麥秸稈的腐解和氮磷鉀素的釋放,從而提高復(fù)墾土壤肥力。
施氮可以顯著加快玉米秸稈前期的腐解和碳、磷的釋放,且以調(diào)節(jié)C/N比為25時(shí)腐解效果最好。施氮可以顯著加快小麥秸稈的腐解和碳氮磷的釋放,以調(diào)節(jié)C/N比為10時(shí)腐解效果最好。用積溫?cái)M合方程能更好地反映秸稈的腐解和秸稈氮素、鉀素的釋放過(guò)程;當(dāng)積溫達(dá)到1 125℃,秸稈氮磷釋放率為20%左右,而秸稈鉀素釋放85%以上。秸稈的腐解主要受溫度、有機(jī)碳、木質(zhì)素和半纖維素影響。
[1] 張志權(quán), 束文圣, 廖文波, 藍(lán)崇鈺. 豆科植物與礦業(yè)廢棄地植被恢復(fù). 生態(tài)學(xué)雜志, 2002, 21(2): 47-52.
ZHANG Z Q, SHU W S, LIAO W B, LAN C Y. Role of legume species in revegetation of mined wastelands. Chinese Journal of Ecology, 2002, 21(2): 47-52. (in Chinese)
[2] ZHANG W J, WANG X J, XU M G, HUANG S M, LIU H, PENG C. Soil organic carbon dynamics under long-term fertilizations in arable land of Northern China. Biogeosciences, 2010, 7(2): 409-425.
[3] 葉勝蘭. 我國(guó)建筑垃圾綜合利用的現(xiàn)狀及發(fā)展趨勢(shì). 綠色科技, 2018(18): 124-127.
YE S L. Analysis on the present situation and treatment of comprehensive utilization of construction waste in China. Journal of Green Science and Technology, 2018(18): 124-127. (in Chinese)
[4] 虞軼俊, 馬軍偉, 陸若輝, 鄔奇峰, 朱偉鋒, 孔海民, 王峰. 有機(jī)肥對(duì)土壤特性及農(nóng)產(chǎn)品產(chǎn)量和品質(zhì)影響研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2020, 36(35): 64-71.
YU Y J, MA J W, LU R H, WU Q F, ZHU W F, KONG H M, WANG F. Effect of organic fertilizer on soil characteristics, yield and quality of agricultural products: Research progress. Chinese Agricultural Science Bulletin, 2020, 36(35): 64-71. (in Chinese)
[5] WALELA C, DANIEL H, WILSON B, LOCKWOOD P, COWIE A, HARDEN S. The initial lignin: nitrogen ratio of litter from above and below ground sources strongly and negatively influenced decay rates of slowly decomposing litter carbon pools. Soil Biology and Biochemistry, 2014, 77: 268-275.
[6] YAN Z Y, SONG Z L, LI D, YUAN Y X, LIU X F, ZHENG T. The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresource Technology, 2015, 177: 266-273.
[7] 石琳, 金夢(mèng)燦, 單旭東, 高敏, 陳曦, 郜紅建. 不同形態(tài)氮素對(duì)玉米秸稈腐解與養(yǎng)分釋放的影響. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2021, 38(2): 277-285.
SHI L, JIN M C, SHAN X D, GAO M, CHEN X, GAO H J. Influences of different forms of nitrogen fertilizer on the decompositionand release of nutrients from corn straw residue. Journal of Agricultural Resources and Environment, 2021, 38(2): 277-285. (in Chinese)
[8] LI X G, JIA B, LV J T, MA Q J, KUZYAKOV Y, LI F M. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 2017, 112: 47-55.
[9] WANG D D, ZHU Z K, SHAHBAZ M, CHEN L, LIU S L, INUBUSHI K, WU J S, GE T D. Split N and P addition decreases straw mineralization and the priming effect of a paddy soil: A 100-day incubation experiment. Biology and Fertility of Soils, 2019, 55(7): 701-712.
[10] 李帆, 王靜, 武際, 葉寅, 劉澤, 朱宏斌. 尿素硝酸銨調(diào)節(jié)碳氮比促進(jìn)小麥秸稈堆肥腐熟. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2019, 25(5): 832-840.
LI F, WANG J, WU J, YE Y, LIU Z, ZHU H B. Fast production of wheat straw aerobic compost through regulating C/N ratio with urea ammonium nitrate solution. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 832-840. (in Chinese)
[11] LI X W, HAN S, LEI Z M, WU J, SHI Z L, SUN Z X, LI M, WANG H, TANG S, CHENG W L, ZHU L. Effects of nitrogen forms on decomposition and nutrient release of rapeseed straw. Chinese Journal of Eco-Agriculture, 2019, 27(5): 717-725.
[12] WANG X Y, SUN B, MAO J D, SUI Y Y, CAO X Y. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environmental Science & Technology, 2012, 46(13): 7159-7165.
[13] 曾莉, 張?chǎng)? 張水清, 王秀斌, 梁國(guó)慶, 周衛(wèi), 艾超, 張躍強(qiáng). 不同施氮量下潮土中小麥秸稈腐解特性及其養(yǎng)分釋放和結(jié)構(gòu)變化特征. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2020, 26(9): 1565-1577.
ZENG L, ZHANG X, ZHANG S Q, WANG X B, LIANG G Q, ZHOU W, AI C, ZHANG Y Q. Characteristics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under different nitrogen application rates. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1565-1577. (in Chinese)
[14] 張學(xué)林, 周亞男, 李曉立, 侯小畔, 安婷婷, 王群. 氮肥對(duì)室內(nèi)和大田條件下作物秸稈分解和養(yǎng)分釋放的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(10): 1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008.
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760. doi: 10.3864/j.issn. 0578-1752.2019.10.008. (in Chinese)
[15] RIGGS C E, HOBBIE S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology and Biochemistry, 2016, 99: 54-65.
[16] 鄭文魁, 盧永健, 鄧曉陽(yáng), 齊范, 畢小媛, 劉艷麗. 控釋氮肥對(duì)玉米秸稈腐解及潮土有機(jī)碳組分的影響. 水土保持學(xué)報(bào), 2020, 34(5): 292-298.
ZHENG W K, LU Y J, DENG X Y, QI F, BI X Y, LIU Y L. Effects of controlled-release nitrogen fertilizer on decomposition of maize straw and organic carbon fractions in fluvo-aquic soil. Journal of Soil and Water Conservation, 2020, 34(5): 292-298. (in Chinese)
[17] DANNEHL T, LEITHOLD G, BROCK C. The effect of C: N ratios on the fate of carbon from straw and green manure in soil. European Journal of Soil Science, 2017, 68(6): 988-998.
[18] 李然, 徐明崗, 鄔磊, 申華平, 孫楠, 蔡岸冬, 王斌, 艾天成, 靳東升, 張強(qiáng), 洪堅(jiān)平. 煤礦區(qū)復(fù)墾土壤中秸稈和生物炭的分解特征. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2021, 27(7): 1129-1140.
LI R, XU M G, WU L, SHEN H P, SUN N, CAI A D, WANG B, AI T C, JIN D S, ZHANG Q, HONG J P. Decomposition characteristics of straw and biochar in a reclaimed soil from coal mining area. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1129-1140. (in Chinese)
[19] 李昌明, 王曉玥, 孫波. 不同氣候和土壤條件下秸稈腐解過(guò)程中養(yǎng)分的釋放特征及其影響因素. 土壤學(xué)報(bào), 2017, 54(5): 1206-1217.
LI C M, WANG X Y, SUN B. Characteristics of nutrient release and its affecting factors during plant residue decomposition under different climate and soil conditions. Acta Pedologica Sinica, 2017, 54(5): 1206-1217. (in Chinese)
[20] 陳兵, 王小利, 徐明崗, 李然, 李建華, 靳東升, 段英華, 孫楠. 煤礦復(fù)墾區(qū)不同有機(jī)物料的分解特征. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2020, 26(6): 1126-1134.
CHEN B, WANG X L, XU M G, LI R, LI J H, JIN D S, DUAN Y H, SUN N. Decomposition characteristics of different organic materials in coal mine reclamation area. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1126-1134. (in Chinese)
[21] CARVALHO A M, BUSTAMANTE M M C, ALC?NTARA F A, RESCK I S, LEMOS S S. Characterization by solid-state CPMAS13C NMR spectroscopy of decomposing plant residues in conventional and no-tillage systems in Central Brazil. Soil and Tillage Research, 2009, 102(1): 144-150.
[22] GREGORICH E G, JANZEN H, ELLERT B H, HELGASON B L, QIAN B D, ZEBARTH B J, ANGERS D A, BEYAERT R P, DRURY C F, DUGUID S D, MAY W E, MCCONKEY B G, DYCK M F. Litter decay controlled by temperature, not soil properties, affecting future soil carbon. Global Change Biology, 2017, 23(4): 1725-1734.
[23] SHAUKAT A A, TIAN X H, WANG X D, WU F Q, JUMOKE E K. Decomposition characteristics of maize (. L.) straw with different carbon to nitrogen (C/N) ratios under various moisture regimes. African Journal of Biotechnology, 2011, 10(50): 10149-10156.
[24] 趙娜, 趙護(hù)兵, 魚(yú)昌為, 曹群虎, 李敏, 曹衛(wèi)東, 高亞軍. 旱地豆科綠肥腐解及養(yǎng)分釋放動(dòng)態(tài)研究. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(5): 1179-1187.
ZHAO N, ZHAO H B, YU C W, CAO Q H, LI M, CAO W D, GAO Y J. Nutrient releases of leguminous green manures in rainfed lands. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1179-1187. (in Chinese)
[25] 霍竹, 付晉鋒, 王璞. 秸稈還田和氮肥施用對(duì)夏玉米氮肥利用率的影響. 土壤, 2005, 37(2): 202-204.
HUO Z, FU J F, WANG P. Effects of application of N-fertilizer and crop residues as manure on summer maize n recovery rate. Soils, 2005, 37(2): 202-204. (in Chinese)
[26] 代文才, 高明, 蘭木羚, 黃容, 王金柱, 王子芳, 韓曉飛. 不同作物秸稈在旱地和水田中的腐解特性及養(yǎng)分釋放規(guī)律. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2017, 25(2): 188-199.
DAI W C, GAO M, LAN M L, HUANG R, WANG J Z, WANG Z F, HAN X F. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields. Chinese Journal of Eco-Agriculture, 2017, 25(2): 188-199. (in Chinese)
[27] 馬想, 徐明崗, 趙惠麗, 段英華. 我國(guó)典型農(nóng)田土壤中有機(jī)物料腐解特征及驅(qū)動(dòng)因子. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(9): 1564-1573. doi: 10.3864/j.issn.0578-1752.2019.09.008.
MA X, XU M G, ZHAO H L, DUAN Y H. Decomposition characteristics and driving factors of organic materials in typical farmland soils in China. Scientia Agricultura Sinica, 2019, 52(9): 1564-1573. doi: 10.3864/j.issn.0578-1752.2019.09.008. (in Chinese)
[28] ZHANG D Q, HUI D F, LUO Y Q, ZHOU G Y. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. Journal of Plant Ecology, 2008, 1(2): 85-93.
[29] BRADFORD M A, BERG B, MAYNARD D S, WIEDER W R, WOOD S A. Understanding the dominant controls on litter decomposition. Journal of Ecology, 2016, 104(1): 229-238.
[30] CAI A D, LIANG G P, ZHANG X B, ZHANG W J, LI L, RUI Y C, XU M G, LUO Y Q. Long-term straw decomposition in agro- ecosystems described by a unified three-exponentiation equation with thermal time. Science of the Total Environment, 2018, 636: 699-708.
[31] MOORHEAD D L, LASHERMES G, SINSABAUGH R L, WEINTRAUB M N. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biology and Biochemistry, 2013, 66: 17-19.
Dynamics Characteristic of Straw Decomposition and Nutrient Release Under Different C/N Ratio
LI Ran1, 2, XU MingGang, SUN Nan, WANG JinFeng1, WANG Fei1, LI JianHua1
1Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University/Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Taiyuan 030031;2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081
【Objective】The decomposition, nutrient release characteristics and driving factors of straw under different C/N ratio were studied based on coal mining area, so as to provide as theoretical basis for the full utilization of straw resources and reclaimed soil fertility improvement.【Method】Air-dried maize straw and wheat straw were cut into 2 mm pieces and were selected for decomposition experiment of a coal mining reclamation area in Shanxi Province.Two C/N ratio levels of 25 and 10 were designed in maize straw and wheat straw by supplementing urea, taking no nitrogen application that C/N ratio levels was 52 and 74 as the control. All the straws (8 g in organic carbon) were put into a nylon mesh bag (0.38 μm aperture), and horizontally buried into 15 cm deep of soil. On the 12, 23, 55, 218, 281 and 365 days after buried, samples were collected from the bags to analyze the dynamic of the dry matter residue and nutrient (carbon, nitrogen, phosphorus and potassium). 【Result】During the first 55 days, the adjusting the C/N on 25 with the application N was the best way to accelerate the decomposition of maize straw. Meanwhile, the adjusting the C/N on 10 was the best way to accelerate the decomposition of wheat straw. Application N could significantly promote the release of carbon and phosphorus from maize straw during the first 55 days. Application N could significantly accelerate the release of carbon, nitrogen and phosphorus from wheat straw, but had no significant effect on the release of potassium. The thermal equation of straw decomposition and nitrogen and potassium release was better than the temporal equation, and phosphorus release from straw was not suitable for the exponential decay equation. When the accumulated temperature was 4 600 ℃, the average release rates of carbon, nitrogen, phosphorus and potassium from straw were 49.2%, 39.5%, 40.8% and 90.3%, respectively; When the accumulated temperature reached 1 125 ℃, more than 85% the potassium of straw was released. The decomposition of straw was mainly influenced by the temperature, organic carbon, lignin and hemicellulose. 【Conclusion】Application N could accelerate the decomposition of maize straw and the release of carbon and phosphorus in the early stage, which could significantly accelerate the wheat straw decomposition and the release of carbon, nitrogen and phosphorus too. Temperature could better reflect the process of straw decomposition and nitrogen, potassium release than time, the decomposition of straw was mainly regulated by the temperature, organic carbon, lignin and hemicellulose. Therefore, combined with the hydrothermal conditions in the coal mining area, the straw with an appropriate amount of urea should be returned to the field in the right time to improve the content of nitrogen, phosphorus and potassium of the reclaimed soil.
C/N ratio; straw; decomposition; nutrient release; dynamics equation; coal mining reclamation area
10.3864/j.issn.0578-1752.2023.11.007
2022-05-05;
2022-08-09
國(guó)家自然科學(xué)基金聯(lián)合基金項(xiàng)目(U1710255)、山西省科技重大專項(xiàng)計(jì)劃“揭榜掛帥”項(xiàng)目(202201140601028)
李然,E-mail:799930704@qq.com。通信作者徐明崗,E-mail:xuminggang@caas.cn。通信作者孫楠,E-mail:sunnan@caas.cn
(責(zé)任編輯 李云霞)