常佳悅,馬小龍,吳艷莉,李建明
行距和灌水量對(duì)番茄冠層光截獲和光合能力、物質(zhì)積累及果實(shí)品質(zhì)的影響
常佳悅1,馬小龍1,吳艷莉2,李建明
1西北農(nóng)林科技大學(xué)園藝學(xué)院,陜西楊凌 712100;2陜西省延安市黃陵縣農(nóng)業(yè)技術(shù)推廣中心,陜西楊凌 712100
【目的】冠層內(nèi)光合有效輻射和葉片光合生理特性存在較大異質(zhì)性。探究番茄冠層不同部位葉片光截獲和光合能力對(duì)行距和灌水量的響應(yīng),研究行距和灌水量對(duì)番茄冠層光合生產(chǎn)力的影響,并對(duì)果實(shí)綜合品質(zhì)進(jìn)行分析,為機(jī)械化栽培番茄行距和灌水量的設(shè)置提供理論依據(jù)。【方法】以番茄為試材,寬窄行栽培,株距35 cm,小行距40 cm,設(shè)置3個(gè)大行距水平(70 cm(P1)、120 cm(P2)和170 cm(P3))和兩個(gè)灌溉水平(常規(guī)灌溉(W1)和輕度虧缺灌溉(W2)),全因子試驗(yàn),共6個(gè)處理,測(cè)定各葉位葉面積和光截獲量,冠層均分為6個(gè)部位,測(cè)定葉片凈光合速率(photosynthetic rate,Pn)、比葉質(zhì)量(leaf mass per area,LMA)、葉綠素(Chlorophyll,Chl)及N、P、K含量,并分別以各部位葉面積占全株葉面積的比例或各部位葉片干重占全株葉片干重的比例為權(quán)重綜合分析各處理冠層光合能力,通過(guò)Pearson相關(guān)系數(shù)分析各指標(biāo)相關(guān)性,測(cè)定地上部干鮮重、單株產(chǎn)量及第二穗果品質(zhì),采用PCA法和基于博弈論的組合賦權(quán)-TOPSIS法對(duì)番茄綜合品質(zhì)進(jìn)行評(píng)價(jià)并排序。【結(jié)果】行距增大對(duì)冠層葉面積、光截獲和光合能力的影響主要體現(xiàn)在冠層中部和下部。冠層中部葉面積隨行距增大表現(xiàn)為先增加后減少,冠層下部葉面積及冠層中部和下部光截獲均表現(xiàn)為P1到P2顯著增加,P2到P3小幅增加;冠層中部和下部Pn表現(xiàn)為P2較P1提高8.06%—11.32%,P3較P2提高14.25%—24.40%;LMA表現(xiàn)為P2較P1提高1.31%—33.24%,P3較P2提高6.09%—17.86%;Chl含量表現(xiàn)為P2較P1提高3.42%—6.81%,P3較P2提高3.19%—4.96%;N含量表現(xiàn)為P2較P1提高13.89%—34.73%,P3較P2提高2.21%—19.74%;P和K含量無(wú)明顯規(guī)律。整體來(lái)看,Pn、Chl和N含量均隨行距增大而增加,LMA輕度虧缺灌溉下隨行距增大而增加,常規(guī)灌溉下表現(xiàn)為P3>P1>P2;3種行距水平下,LMA和N含量均表現(xiàn)為常規(guī)灌溉高于輕度虧缺灌溉,Pn表現(xiàn)為P1和P3下常規(guī)灌溉高于輕度虧缺灌溉,而P2下輕度虧缺灌溉更高,Chl含量表現(xiàn)為P1常規(guī)灌溉更高,而P2和P3輕度虧缺灌溉更高。地上部干鮮重,常規(guī)灌溉下隨行距增大而增加,輕度虧缺灌溉下隨行距增大而先增加后減少;常規(guī)灌溉的地上部干鮮重高于輕度虧缺灌溉。兩種灌溉水平下單株產(chǎn)量均隨行距增大而增加,P1到P2增加幅度較大(常規(guī)灌溉和輕度虧缺灌溉下,P2較P1分別增加33.75%和24.32%),P2到P3單株產(chǎn)量?jī)H小幅增加(常規(guī)灌溉和輕度虧缺灌溉下,P3較P2分別增加2.87%和4.30%);常規(guī)灌溉單株產(chǎn)量高于輕度虧缺灌溉。增加行距、減少灌水量可以?xún)?yōu)化果實(shí)綜合品質(zhì),綜合品質(zhì)得分前3位為P3W2、P2W2和P3W1?!窘Y(jié)論】葉片Pn、LMA、N含量、地上部干鮮重和單株產(chǎn)量為P3W1最大;冠層光截獲量、Chl含量及番茄綜合品質(zhì)評(píng)分為P3W2最高。
番茄;行距;灌水量;光截獲;光合能力;物質(zhì)積累;綜合品質(zhì)
【研究意義】農(nóng)業(yè)機(jī)械化作為農(nóng)業(yè)生產(chǎn)現(xiàn)代化、規(guī)模化、產(chǎn)業(yè)化的重要一環(huán),是未來(lái)農(nóng)業(yè)的發(fā)展方向。目前,制約機(jī)械化生產(chǎn)的主要問(wèn)題是農(nóng)機(jī)農(nóng)藝融合困難和機(jī)械化配套性差,而行距是保證機(jī)械田間作業(yè)最重要的農(nóng)藝措施。與正常灌溉方式相比,適度虧缺灌溉已被證明可以在不影響作物產(chǎn)量的基礎(chǔ)上顯著提高作物水分利用效率、改善果實(shí)品質(zhì)。探討行距及灌水量對(duì)番茄光合生產(chǎn)力和果實(shí)品質(zhì)的耦合作用,通過(guò)行距配置優(yōu)化挖掘作物自身的光合生產(chǎn)潛力,對(duì)響應(yīng)農(nóng)業(yè)機(jī)械化趨勢(shì)下番茄行距和灌水量的設(shè)置具有重要意義?!厩叭搜芯窟M(jìn)展】種植密度通過(guò)影響冠層結(jié)構(gòu)和植株生理狀況來(lái)調(diào)控作物的生長(zhǎng)發(fā)育[1],可以直接影響作物群體結(jié)構(gòu),進(jìn)而對(duì)冠層內(nèi)光照、溫度、濕度等微氣候的形成產(chǎn)生影響[2],其中對(duì)光照分布的影響最顯著,冠層微氣候可以改變植株的光合作用和蒸騰作用等生理過(guò)程,影響干物質(zhì)積累量,并最終影響產(chǎn)量和品質(zhì)形成[3-4]。合理的種植密度可以維持植株個(gè)體和群體間的生長(zhǎng)平衡、優(yōu)化作物空間布局、使冠層光分布更加合理、提高光熱資源利用效率、延長(zhǎng)葉片功能期、增加干物質(zhì)積累量,是目前生產(chǎn)中進(jìn)一步提高產(chǎn)量的重要途徑[5-7]。JIANG等[8]研究認(rèn)為,增大種植密度,龍須菜凈光合速率降低;YAO等[9]研究發(fā)現(xiàn),增大栽培行距,棉花冠層中部葉面積比例增大,冠層結(jié)構(gòu)優(yōu)化,群體光合速率提高;熊淑萍等[10]研究表明,增大行距可以增加小麥冠層中下部光截獲量,從而提高單株和群體光合能力及光能利用效率,小麥生物量和產(chǎn)量增加。光合作用是產(chǎn)量形成的基礎(chǔ),作物積累的干物質(zhì)有90%—95%來(lái)自光合作用[11-12],優(yōu)化作物空間布局,構(gòu)建理想的群體光合結(jié)構(gòu),可以充分利用單位土地面積上的光能資源,實(shí)現(xiàn)增產(chǎn)提質(zhì)[10]。灌水量直接影響植株整體的水分狀況,調(diào)控氣孔開(kāi)度,影響光合、蒸騰作用等氣體交換過(guò)程,杜兵杰等[13]研究表明,中度水分虧缺(土壤含水量為田間持水量的55%—65%)對(duì)番茄生長(zhǎng)關(guān)鍵期的光合能力和熒光特性影響較小,且顯著提高抗氧化酶活性和水分利用效率,適宜西北地區(qū)番茄栽培;DARIVA等[14]研究認(rèn)為,適度虧缺灌溉可以提高番茄果實(shí)紅度、硬度及可溶性固形物和番茄紅素含量?!颈狙芯壳腥朦c(diǎn)】前人研究中,對(duì)于冠層內(nèi)部光合有效輻射的分析,大都采用多點(diǎn)、定點(diǎn)測(cè)量的方法,以點(diǎn)到面,估算整體,對(duì)于冠層光合能力的分析,則多以代表性葉位光合能力作為評(píng)價(jià)標(biāo)準(zhǔn),但由于番茄冠層內(nèi)不同部位葉片的光照強(qiáng)度及光合生理特性均存在較大的異質(zhì)性[14],定點(diǎn)觀測(cè)估算整體將導(dǎo)致偏差較大,結(jié)果隨機(jī)性增大、準(zhǔn)確度下降。通過(guò)構(gòu)建番茄三維冠層結(jié)構(gòu)模型,結(jié)合FastTracer光線追蹤軟件,可以實(shí)現(xiàn)冠層細(xì)化,計(jì)算得到植株每個(gè)面元所吸收的光合有效輻射,提高結(jié)果準(zhǔn)確性;將冠層根據(jù)所處環(huán)境劃分為多個(gè)部位,分別測(cè)量各部位葉片光合能力,可以細(xì)化分析冠層光合情況?!緮M解決的關(guān)鍵問(wèn)題】本研究采用植株三維結(jié)構(gòu)模型與冠層光傳輸模型,實(shí)現(xiàn)冠層內(nèi)葉片光截獲的精確計(jì)算,以冠層各部位葉面積或葉片干重占全株葉面積或葉片干重的比例為權(quán)重,綜合分析冠層光合能力;并采用AHP法和基于博弈論的組合賦權(quán)-TOPSIS法兩種綜合評(píng)價(jià)方法,分析行距和灌水量對(duì)番茄果實(shí)綜合品質(zhì)的影響,為機(jī)械化栽培條件下番茄行距和灌水量的設(shè)置提供理論依據(jù)。
試驗(yàn)于2021年在陜西省楊凌區(qū)西北農(nóng)林科技大學(xué)試驗(yàn)基地塑料大棚內(nèi)進(jìn)行,試驗(yàn)地位于關(guān)中平原腹地,平均海拔500 m,屬于暖溫帶大陸性季風(fēng)氣候,年均氣溫12—14 ℃,年均日照時(shí)數(shù)2 163.8 h,降雨主要集中在7—9月,年均降雨量634.97 mm,蒸發(fā)量1 400 mm,無(wú)霜期約230 d。塑料大棚東西長(zhǎng)度100 m,南北跨度17 m,高度6 m。以陜西楊凌主栽番茄品種‘金鵬148’為試驗(yàn)材料,該品種長(zhǎng)勢(shì)較強(qiáng),葉量中,花數(shù)多,高抗黃化曲葉病毒,抗根結(jié)線蟲(chóng)。幼苗三葉一心時(shí)定植,栽培基質(zhì)按腐熟牛糞和育苗基質(zhì)(山東昊喆農(nóng)業(yè)科技有限公司生產(chǎn))體積配比1﹕3配制而成,定植于高20 cm、直徑32 cm的塑料花盆中,盆內(nèi)覆黑膜,防止土壤水分蒸發(fā),按常規(guī)方法進(jìn)行管理,留4穗果打頂。
寬窄行栽培,種植行行距40 cm,株距35 cm,操作行行距作為試驗(yàn)因子包括3個(gè)水平:70 cm(P1)、120 cm(P2)和170 cm(P3),設(shè)置2個(gè)灌溉水平(W1和W2),具體見(jiàn)表1。每天早上8:00稱(chēng)重,計(jì)算植株單日蒸騰量(ET),通過(guò)時(shí)間控制器分多次定時(shí)灌溉。隨機(jī)區(qū)組設(shè)計(jì),各小區(qū)種植8行,每行20株,3次重復(fù)。
1.3.1 環(huán)境因子 分別采用溫濕度記錄儀MX2301A和光照度記錄儀MX2202測(cè)定試驗(yàn)地中央冠層頂部溫濕度和光合有效輻射(圖1),并利用空氣相對(duì)濕度(RH)和氣溫(Ta)數(shù)據(jù)根據(jù)公式(1)計(jì)算大棚內(nèi)飽和水汽壓差(VPD)。
1.3.2 冠層不同部位葉片葉面積及對(duì)應(yīng)光截獲 通過(guò)三維數(shù)字化方法構(gòu)建番茄三維冠層結(jié)構(gòu)模型,求得各葉位小葉葉面積,并基于構(gòu)建的三維冠層模型,利用FastTracer[15-18]光線追蹤軟件計(jì)算每個(gè)三角面元吸收的光照,累加所有面元光照得到該葉位總光截獲量。具體模型構(gòu)建與參數(shù)設(shè)置如下:
番茄三維冠層結(jié)構(gòu)模型的構(gòu)建遵循從器官、植株到群體的構(gòu)建過(guò)程。首先通過(guò)三維數(shù)字化儀3Space Fastrak(Polhemus Inc.,Cochester,VT,USA)獲取植株葉片、葉柄、節(jié)間等器官端點(diǎn)的三維空間坐標(biāo)(X、Y、Z),由所有器官的組合即可得到單株冠層結(jié)構(gòu)的空間幾何表達(dá)。為了考慮邊際效應(yīng),基于構(gòu)建的單株冠層結(jié)構(gòu)與實(shí)際株行距構(gòu)建6 m×6 m的植株群體[19-20],計(jì)算群體中央植株的光截獲。植株三維冠層結(jié)構(gòu)中假設(shè)各器官為基本的幾何圖形,其中節(jié)間、葉柄用圓柱體表示,小葉用兩個(gè)拼接的三角形表示[21]。為了符合光截獲計(jì)算軟件的輸入格式,需要對(duì)構(gòu)建的三維結(jié)構(gòu)模型進(jìn)行面元化分割,即將所有幾何圖形表示為若干三角形的集合。植株三維結(jié)構(gòu)的可視化以及三角面元的分割均基于模型平臺(tái)[22]的PlantGL程序包[23]實(shí)現(xiàn)。
以構(gòu)建的番茄三維冠層結(jié)構(gòu)模型為基礎(chǔ),可以通過(guò)FastTracer光線追蹤軟件實(shí)現(xiàn)植株每個(gè)面元所吸收的光合有效輻射。FastTracer光線追蹤軟件基于前置光線追蹤算法,可以模擬光線在冠層中的完整傳輸過(guò)程,并基于光線在每個(gè)面元上的反射、透射以及多重散射過(guò)程,計(jì)算每個(gè)葉片實(shí)際吸收的光合光量子通量密度(photosynthetic photon flux density,PPFD)。軟件主要輸入變量為植株三維冠層結(jié)構(gòu)、葉片光學(xué)特性、冠層頂部直射與散射光合有效輻射(PPFD)強(qiáng)度、經(jīng)緯度、日序數(shù)(DOY)等,輸出變量為每個(gè)面元實(shí)際吸收的直射與散射PPFD。模擬過(guò)程分太陽(yáng)直射光與天空散射光模擬,冠層頂部直射與散射PPFD通過(guò)光照探頭直接測(cè)得,直射光模擬中太陽(yáng)的位置根據(jù)經(jīng)緯度、一年中的日序數(shù)以及小時(shí)進(jìn)行計(jì)算,散射光則方向隨機(jī)。分別選取典型晴天與多云天(參數(shù)見(jiàn)表2)進(jìn)行植株光截獲的計(jì)算,以1 h為步長(zhǎng),計(jì)算植株單日累積光截獲值。
表2 晴天和多云天棚內(nèi)外光合有效輻射強(qiáng)度和散射光比例
1.3.3 冠層不同部位葉片凈光合速率(photosynthetic rate,Pn) 將植株冠層分為6個(gè)部分(圖2),其中S、Z、X分別指冠層上、中、下;W和N分別指植株外側(cè)和內(nèi)測(cè)(靠近大行距一側(cè)為植株外側(cè),靠近小行距一側(cè)為植株內(nèi)側(cè))。于果實(shí)膨大期選一典型晴天用LI-6800便攜式光合儀(美國(guó)LI-COR公司)測(cè)定冠層各部位葉片Pn,葉室光強(qiáng)設(shè)為1 000 μmol·m-2·s-1,二氧化碳濃度設(shè)為400 μmol·mol-1,溫度設(shè)為25 ℃,濕度設(shè)為65%。
1.3.4 冠層不同部位葉片葉綠素(Chlorophyll,Chl)含量 將葉片剪碎、混勻后稱(chēng)取0.1 g鮮樣,用提取液(丙酮﹕無(wú)水乙醇﹕水=9﹕9﹕2)浸泡提取24 h后,分別在紫外分光光度計(jì)645和663 nm波長(zhǎng)下比色,測(cè)定葉片中Chl a和Chl b含量,并計(jì)算Chl總含量(Chl a和Chl b含量之和)。
1.3.5 冠層不同部位比葉質(zhì)量(leaf mass per area,LMA) 分別測(cè)量葉片干重和葉面積(去除葉柄),二者比值即為L(zhǎng)MA。
1.3.6 冠層不同部位葉片N、P、K含量 將葉片烘干后磨碎,取0.100 g在370 ℃下經(jīng)濃硫酸消煮至無(wú)色透明溶液,消煮過(guò)程中每15 min滴入1—2滴H2O2溶液,消煮后分別通過(guò)原子吸收分光光度計(jì)和火焰光度計(jì)測(cè)定葉片中N、P、K含量。
SW:上部外側(cè);SN:上部?jī)?nèi)側(cè);ZW:中部外側(cè);ZN:中部?jī)?nèi)側(cè);XW:下部外側(cè);XN:下部?jī)?nèi)側(cè)。下同
1.3.7 全株P(guān)n、LMA、Chl及N、P、K含量 Pn和LMA權(quán)重為冠層各部位葉面積與全株總?cè)~面積的比值,Chl及N、P、K含量權(quán)重為冠層各部位葉片干重與全株葉片干重的比值,冠層各部位指標(biāo)值乘以權(quán)重再求和,得到全株P(guān)n、LMA、Chl及N、P、K含量。
1.3.8 植株地上部干鮮重 果實(shí)膨大期各處理選擇4株從莖基部剪斷,稱(chēng)量地上部莖、葉鮮重,于烘箱中105 ℃殺青30 min,80 ℃下烘干至恒重后稱(chēng)量干重。
1.3.9 果實(shí)產(chǎn)量和品質(zhì) 各處理選擇10株進(jìn)行標(biāo)記,果實(shí)成熟即采收,用電子天平稱(chēng)重,記錄單株產(chǎn)量。番茄第2穗果成熟后取果,進(jìn)行果實(shí)品質(zhì)測(cè)定,包括果形指數(shù)(果實(shí)縱徑與橫徑的比值,X1)、單果重(電子天平稱(chēng)重,X2)、果實(shí)硬度(果實(shí)硬度計(jì)測(cè)定)、果實(shí)含水量(果實(shí)鮮重與干重的差值除以果實(shí)鮮重,X3)、可溶性固形物含量(RHBO-90型手持折射儀測(cè)定,X4)、有機(jī)酸含量(NaOH滴定法測(cè)定,X5)、固酸比(可溶性固形物含量與有機(jī)酸含量的比值,X6)、可溶性蛋白含量(考馬斯亮藍(lán)G-250染色法測(cè)定,X7)、維生素C含量(鉬藍(lán)比色法測(cè)定,X8)以及番茄紅素含量(萃取比色法測(cè)定,X9)。
選取X1—X9作為評(píng)價(jià)變量,分別用主成分分析法(PCA)和基于博弈論的組合賦權(quán)法-TOPSIS近似理想解法[24]對(duì)果實(shí)品質(zhì)進(jìn)行綜合評(píng)價(jià)。
①采用隸屬函數(shù)法對(duì)原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化、同趨化處理
對(duì)于高優(yōu)指標(biāo):
對(duì)于低優(yōu)指標(biāo):
式中,max:指標(biāo)最大值,min:指標(biāo)最小值,ij:原始數(shù)據(jù)值,ij:ij標(biāo)準(zhǔn)化、同趨化后的值。
②PCA法計(jì)算品質(zhì)綜合得分
用SPSS 25進(jìn)行主成分分析,構(gòu)造綜合評(píng)價(jià)函數(shù)[25],計(jì)算各處理綜合得分。
式中,ij:每個(gè)主成分中各指標(biāo)所對(duì)應(yīng)的系數(shù);ij:每個(gè)主成分中因子的荷載量,i:每個(gè)主成分的特征值。
式中,:各處理綜合得分,:所提取主成分總的特征值之和,i:各主成分得分。
③基于博弈論的組合賦權(quán)-TOPSIS法計(jì)算品質(zhì)綜合得分
Ⅰ.AHP法確定各指標(biāo)主觀權(quán)重
通過(guò)yaahp6.0軟件運(yùn)用1—9比例標(biāo)度法確定屬性指標(biāo)間的優(yōu)先級(jí),計(jì)算得到各指標(biāo)主觀權(quán)重[26]。
Ⅱ.熵權(quán)法確定各指標(biāo)客觀權(quán)重
式中,ij:原始數(shù)據(jù)標(biāo)準(zhǔn)化、同趨化后的值;ij:第i個(gè)處理第j個(gè)指標(biāo)的不確定度;j:第j個(gè)指標(biāo)的信息熵;j:第j個(gè)指標(biāo)的權(quán)重。
Ⅲ.博弈論組合賦權(quán)法確定各指標(biāo)組合權(quán)重
式中,j:層次分析法得到的各指標(biāo)權(quán)重;j:熵權(quán)法得到的各指標(biāo)權(quán)重;j:博弈論組合賦權(quán)法得到的各指標(biāo)最終權(quán)重。
Ⅳ.TOPSIS法綜合評(píng)價(jià)
式中,max和min分別為原始數(shù)據(jù)標(biāo)準(zhǔn)化、同趨化后的指標(biāo)最大值和指標(biāo)最小值;i+和i-分別為各處理到正、負(fù)理想解的距離;i為相對(duì)貼合度,用來(lái)表征各處理的優(yōu)劣。
通過(guò)Excel和SPSS進(jìn)行數(shù)據(jù)處理與分析,利用SPSS中的單因素ANOVA檢驗(yàn)進(jìn)行顯著性分析,比較各處理間的顯著性,通過(guò)一般線性模型進(jìn)行多因變量方差分析,比較單個(gè)因素的主效應(yīng)以及雙因素交互效應(yīng),采用OriginPro 2021進(jìn)行圖形繪制。
葉片光截獲量受葉面積和單位葉面積光截獲能力的影響,葉位自下而上,葉面積和葉片光截獲量均先增大后降低(圖3),晴天和多云天趨勢(shì)一致。葉位1 —6為冠層下部(X),7—12為冠層中部(Z),13—19為冠層上部(S),求得各處理冠層S、Z、X葉面積(圖4)和光截獲量(圖5),行距顯著影響冠層葉面積,極顯著影響冠層光截獲量,而灌水量和二者交互作用對(duì)冠層葉面積和光截獲量均無(wú)顯著影響。
圖3 行距和灌水量對(duì)番茄不同葉位葉面積及晴天和多云天葉片光截獲的影響
P3植株葉片數(shù)較P1和P2減少,導(dǎo)致冠層上部葉面積減小,冠層中部葉面積隨行距增大先增加后減小,P2和P3分別較P1提高了22.06%和8.57%,冠層下部葉面積隨行距增大而增加,P2和P3分別較P1提高了53.63%和61.30%;隨行距增大,冠層光截獲量增加,P3由于葉片數(shù)減少,冠層上部光截獲量增加不明顯,甚至較P2有所降低,但增大行距,可以顯著提高冠層中部和下部光截獲量,從而提高冠層整體光截獲量。以晴天為例,P2和P3冠層中部和下部光截獲量分別較P1提高了46.16%、136.52%和64.35%、263.35%,冠層整體光截獲量P3較P2提高了7.94%,P2較P1提高了30.10%。
行距對(duì)葉片Pn、LMA、Chl及N、P、K含量的影響均達(dá)到極顯著水平(圖6);灌水量對(duì)葉片Pn、LMA、Chl及N含量影響極顯著,對(duì)葉片P和K含量無(wú)顯著影響;行距和灌水量的交互作用極顯著影響葉片Pn、Chl、P和K含量,顯著影響葉片N含量,對(duì)LMA無(wú)顯著影響。
S:上部;Z:中部;X:下部。P:行距,W:灌水量,P*W表示行距和灌水量的交互作用。*:差異顯著(P<0.05);**:差異極顯著(P<0.01),***:差異極顯著(P<0.001),NS:差異不顯著。下同
圖5 行距和灌水量對(duì)晴天和多云天番茄不同冠層光截獲的影響
Pn表現(xiàn)為SN>SW>ZW>ZN>XW>XN,不同處理Pn差異主要體現(xiàn)在ZW、ZN、XW和XN,P3較P2分別提高14.25%、18.74%、16.98%和24.40%,P2較P1分別提高8.15%、8.06%、11.20%和11.32%;冠層不同部位間LMA變化趨勢(shì)與Pn一致,不同部位常規(guī)灌溉LMA較輕度虧缺灌溉提高6.84%—24.45%,隨行距增大,LMA表現(xiàn)為SW和SN先降低后升高,ZW、ZN、XW和XN持續(xù)升高,ZW P2較P1略有增加,P3顯著高于P1和P2(分別提高19.40%和17.86%),ZN、XW和XN的P3較P2分別提高8.28%、7.86%和6.09%,P2較P1分別提高14.60%、23.38%和33.24%;冠層不同部位Chl含量表現(xiàn)為S>Z>X,W>N,SN和ZW差異不明顯,ZN和XW差異不明顯,ZW、ZN、XW和XN葉片Chl含量均隨行距增大而增加,P2較P1分別提高3.42%、3.62%、6.81%和4.41%,P3較P2分別提高3.58%、4.96%、3.19%和4.17%;葉片N含量表現(xiàn)為SW≈SN>ZW>ZN>XW>XN,SW、SN、ZW、ZN、XW和XN葉片N含量P2較P1分別提高21.73%、18.08%、34.73%、26.11%、13.89%和31.89%,P3較P2在ZW、ZN、XW和XN分別提高2.21%、12.83%、19.74%和17.21%,在SW和SN沒(méi)有提高或增幅很小;葉片P含量表現(xiàn)為X>Z>S,葉片K含量表現(xiàn)為Z>X>S,隨行距和灌水量變化,冠層各部位未發(fā)現(xiàn)明顯規(guī)律。
圖6 行距和灌水量對(duì)番茄冠層不同部位葉片Pn、LMA、Chl及N、P、K含量的影響
行距增大,葉片Pn提高(表3),常規(guī)灌溉葉片Pn高于輕度虧缺灌溉;常規(guī)灌溉下,LMA隨行距增大,而先降低后升高,輕度虧缺灌溉下LMA隨行距增大而增加,常規(guī)灌溉LMA高于輕度虧缺灌溉,且差異明顯;葉片Chl含量隨行距增大而增加,P1常規(guī)灌溉葉片Chl含量高于輕度虧缺灌溉,但差異較小,P2和P3表現(xiàn)為輕度虧缺灌溉葉片Chl含量更高;行距增大,葉片N含量升高,P1和P2間差異明顯,P2和P3間差異較小,常規(guī)灌溉葉片N含量高于輕度虧缺灌溉;葉片P和K含量隨行距增大無(wú)明顯變化規(guī)律,P1和P2輕度虧缺灌溉高于常規(guī)灌溉,P3則相反??傮w而言,P3W1葉片Pn、LMA及N、P、K含量最高,P3W2的Chl含量最高。
通過(guò)Pearson相關(guān)系數(shù)分析(圖7)可知,光截獲量、Pn、LMA、Chl和N含量?jī)蓛芍g呈顯著正相關(guān),而葉面積除與光截獲量呈顯著正相關(guān)外,與其他指標(biāo)無(wú)顯著相關(guān)性。
表3 行距和灌水量對(duì)番茄全株P(guān)n、LMA、Chl及N、P、K含量的影響
表中數(shù)據(jù)為“平均值±標(biāo)準(zhǔn)偏差”;同列不同小寫(xiě)字母表示差異顯著(<0.05)。下同
The data in the table are “mean ± standard deviation”; Different lowercase letters in the same column indicate significant difference (<0.05). The same as below
圖7 葉面積、光截獲量、Pn、LMA、Chl及N含量相關(guān)性分析
行距顯著影響植株地上部鮮重,極顯著影響干重,灌水量和二者交互作用對(duì)植株地上部干鮮重的影響均達(dá)到極顯著水平(圖8)。常規(guī)灌溉地上部干、鮮重均高于輕度虧缺灌溉,且隨著行距增大,二者之間差異增大,植株地上部鮮重表現(xiàn)為P3W1>P2W1>P1W1>P2W2>P1W2>P3W2,地上部干重表現(xiàn)為P3W1>P2W1>P1W1>P2W2>P3W2>P1W2,常規(guī)灌溉地上部鮮重P2較P1提高11.56%,P3較P2提高13.17%,地上部干重P2較P1提高27.30%,P3較P2提高2.44%。
圖8 行距和灌水量對(duì)植株地上部干鮮重的影響
行距和灌水量的主效應(yīng)及二者的交互效應(yīng)均對(duì)單株產(chǎn)量有極顯著影響(圖9)。常規(guī)灌溉單株產(chǎn)量顯著高于輕度虧缺灌溉,隨行距增大,單株產(chǎn)量增加,常規(guī)灌溉下單株產(chǎn)量P2較P1提高33.75%,P3較P2提高2.87%;輕度虧缺灌溉下單株產(chǎn)量P2較P1提高24.32%,P3較P2提高4.30%。
圖9 行距和灌水量對(duì)果實(shí)產(chǎn)量的影響
行距對(duì)果形指數(shù)、果實(shí)硬度、單果重、可溶性固形物、有機(jī)酸、可溶性蛋白、維生素C、番茄紅素含量的影響達(dá)到極顯著水平(表4),對(duì)果實(shí)含水量和固酸比無(wú)顯著影響;灌水量極顯著影響果實(shí)硬度、單果重、可溶性固形物含量、有機(jī)酸含量、固酸比、可溶性蛋白、維生素C和番茄紅素含量,顯著影響果實(shí)含水量,對(duì)果形指數(shù)無(wú)顯著影響;行距和灌水量的交互作用極顯著影響單果重、可溶性固形物、有機(jī)酸和可溶性蛋白含量,顯著影響果形指數(shù)和固酸比,對(duì)果實(shí)硬度、果實(shí)含水量、維生素C和番茄紅素含量無(wú)顯著影響。
隨行距增大,單果重、可溶性固形物和可溶性蛋白含量增大;輕度虧缺灌溉較常規(guī)灌溉可以增加果實(shí)硬度及可溶性固形物、有機(jī)酸、可溶性蛋白、維生素C、番茄紅素含量,但單果重、果實(shí)含水量和固酸比降低。
PCA法(表5)和基于博弈論的組合賦權(quán)-TOPSIS法分析結(jié)果(表6)均表明,增加行距可以?xún)?yōu)化果實(shí)綜合品質(zhì),輕度虧缺灌溉較常規(guī)灌溉果實(shí)綜合品質(zhì)更優(yōu),P3W2番茄綜合品質(zhì)最好,其次是P2W2。
表4 行距和灌水量對(duì)番茄品質(zhì)的影響
表5 各項(xiàng)指標(biāo)權(quán)重
表6 各處理PCA法和基于博弈論的組合賦權(quán)-TOPSIS法綜合得分及排序
群體光合生產(chǎn)力是冠層光截獲和葉片光合能力共同作用的結(jié)果。番茄冠層不同部位葉片存在較大異質(zhì)性,本試驗(yàn)通過(guò)植株三維結(jié)構(gòu)模型與冠層光傳輸模型對(duì)不同行距和灌水量下番茄冠層光截獲情況進(jìn)行了模擬,發(fā)現(xiàn)冠層整體光截獲量隨行距增大而增加,但隨著行距持續(xù)增大,光截獲量增幅減小。增大同等行距,P2較P1冠層光截獲量明顯提高,且群體光能損耗大幅增加,說(shuō)明P2條件下單株光能利用已基本達(dá)到飽和狀態(tài)。前人研究得出,光截獲量受群體結(jié)構(gòu)[27]和光環(huán)境影響,一定范圍內(nèi)和葉面積呈正相關(guān),當(dāng)葉面積超過(guò)閾值后,繼續(xù)增大葉面積會(huì)因葉片間的相互遮擋造成冠層光截獲量減少[28]。因此,可以通過(guò)優(yōu)化群體結(jié)構(gòu)改善冠層光截獲率。從本研究可知,冠層光截獲量的提高包括兩方面原因,葉面積增大和葉片遮擋效應(yīng)減小,本試驗(yàn)中,行距由P1增加到P2,葉面積增大20.25%,而由P2增加到P3,葉面積卻降低11.00%。熊淑萍等[10]研究表明,增大行距可以提高小麥冠層中部和下部的光截獲量,本研究同樣證明,葉片間遮擋效應(yīng)的減小主要表現(xiàn)在冠層中部和下部。
葉片累積光截獲量會(huì)影響葉片結(jié)構(gòu)特性、葉綠素含量、氮含量等生理特性,進(jìn)而影響葉片光合能力[29],本試驗(yàn)結(jié)果證明,葉片光截獲量與Pn、LMA、Chl和N含量存在顯著正相關(guān),印證了光截獲量作為誘因?qū)θ~片光合能力的影響。Pn可以直觀反映葉片光合能力,本試驗(yàn)中,冠層各部位Pn均隨行距增大而增加,與前人研究結(jié)果一致[6],且Pn的變化趨勢(shì)與光截獲量表現(xiàn)出高度一致性,增大行距對(duì)冠層Pn的提高主要表現(xiàn)在冠層中部和下部,行距由P2增加到P3時(shí),冠層Pn的增幅小于行距由P1增加到P2時(shí)冠層Pn的增幅。王虎兵等[30]研究發(fā)現(xiàn),適當(dāng)增加灌水量對(duì)植株P(guān)n和光合相關(guān)指標(biāo)有提高作用,本研究中,同樣表現(xiàn)為常規(guī)灌溉Pn高于輕度虧缺灌溉,說(shuō)明水分作為光合作用最重要的原料之一,減少供水量會(huì)導(dǎo)致植株光合能力降低。LMA與葉齡、葉片生長(zhǎng)狀態(tài)、葉片單位干物質(zhì)N、P含量以及葉片最大光合能力等密切相關(guān)[30],是葉片眾多解剖結(jié)構(gòu)特征的綜合體[31],可以定量反映單位葉面積上光合產(chǎn)物的積累[32],與植株體內(nèi)眾多生理反應(yīng)相關(guān)[33],不同光環(huán)境下,葉片LMA發(fā)生改變,以平衡植株環(huán)境適應(yīng)性和光能利用率[34-35]。COBLE等[36]研究表明,LMA隨光合有效輻射增加而顯著增大,本研究結(jié)果證實(shí),LMA的變化很大程度受葉片光截獲量的影響,行距增大,冠層中部和下部光截獲量明顯增加,Pn增大,單位面積葉片物質(zhì)積累增多,從而導(dǎo)致LMA增大;GUENDOUZ等[37]研究證明,水分虧缺會(huì)導(dǎo)致LMA降低,本研究中常規(guī)灌溉較輕度虧缺灌溉冠層各部位LMA均增加,與其研究結(jié)果一致。LMA可以反映葉片物質(zhì)積累和轉(zhuǎn)移的情況,與葉片細(xì)胞壁組分和碳含量呈正相關(guān),虧缺灌溉使葉片水分含量降低,從而導(dǎo)致LMA增加。葉綠素作為光合作用的中心色素分子,具有截獲、吸收、轉(zhuǎn)化光能的作用[38],本研究中,冠層自上而下的葉片Chl含量降低,與前人研究結(jié)果一致[39]。這是由于葉片衰老過(guò)程中,葉綠體結(jié)構(gòu)遭到破壞,器官和組織逐步趨向衰退和死亡,使Chl含量下降,Pn、LMA等也隨之降低;同時(shí),葉片Chl含量和受光程度在一定程度上呈正相關(guān)關(guān)系,冠層自上而下由于葉片間的遮擋作用,單位面積葉片接受到的光照減少,葉綠素含量也降低,而行距增大,也使葉片Chl含量增加。行距和灌水量的交互作用對(duì)葉片Chl含量有極顯著影響,P1常規(guī)灌溉葉片Chl含量高于輕度虧缺灌溉,P2和P3則表現(xiàn)為輕度虧缺灌溉葉片的Chl含量更高,與前人研究結(jié)果一致[40-42],但具體影響機(jī)制還有待研究,可能與行距和灌水量在葉片蒸騰作用上表現(xiàn)的交互效應(yīng)有關(guān)[43]。氮素是決定光合生產(chǎn)力的關(guān)鍵因子,葉片75%的N用于合成葉綠素和形成光合基礎(chǔ)物質(zhì),N含量高低標(biāo)志著葉片光合能力強(qiáng)弱[44]。劉冰等[45]研究表明,不同品種大豆冠層葉片N含量自上而下呈降低趨勢(shì),且冠層上、中、下差異顯著,本研究結(jié)果與其一致,葉片N含量隨行距增大而增加,行距和灌水量的交互作用顯著影響葉片N含量,不同行距下常規(guī)灌溉和輕度虧缺灌溉表現(xiàn)不一致。但總的來(lái)看,常規(guī)灌溉葉片N含量較輕度虧缺灌溉更高,與前人研究結(jié)果一致[30],可能是因?yàn)樗痔澣睂?dǎo)致氮素從基質(zhì)到葉片的運(yùn)輸受到影響,從而使葉片N含量降低[46]。
物質(zhì)積累是植株光合能力的成效,本試驗(yàn)中,常規(guī)灌溉下植株地上部干、鮮重隨行距增大而增加,與張昊等[47]研究結(jié)果一致,是由于行距增大導(dǎo)致冠層內(nèi)光合有效輻射透過(guò)率增加,從而引起光合作用等一系列變化,使植株物質(zhì)積累增多;灌水量極顯著影響植株地上部干、鮮重,常規(guī)灌溉地上部干、鮮重顯著高于輕度虧缺灌溉,與AL-HARBI等[48]研究結(jié)果一致,同時(shí)行距和灌水量存在極顯著交互作用,隨行距增大,常規(guī)灌溉和輕度虧缺灌溉間的差異愈大,輕度虧缺灌溉地上部干、鮮重表現(xiàn)為隨行距增大而先增加后減少,可能是由于行距增大導(dǎo)致植株蒸騰作用加強(qiáng),無(wú)效耗水增多,植株對(duì)水分虧缺的感應(yīng)更加明顯。產(chǎn)量表征有效物質(zhì)積累,本研究中,隨行距增大,單株產(chǎn)量增加,與ISA等[49]研究結(jié)果一致,但P1到P2單株產(chǎn)量增幅明顯,P2到P3僅有小幅增加,與葉片光截獲量和光合能力的變化趨勢(shì)一致;常規(guī)灌溉產(chǎn)量高于輕度虧缺灌溉,表明適宜的灌水量可以提高植株光合能力和促進(jìn)有效物質(zhì)積累。吳宣毅等[50]采用改進(jìn)模糊灰色關(guān)聯(lián)度法和CRITIC法分析得出,輕度虧缺灌溉有利于提升番茄綜合品質(zhì),本研究得出,輕度虧缺灌溉可以提高番茄可溶性固形物、有機(jī)酸、可溶性蛋白、維生素C、番茄紅素含量和果實(shí)硬度,分別采用PCA法和基于博弈論的組合賦權(quán)-TOPSIS法計(jì)算番茄品質(zhì)綜合得分,前三位均為P3W2、P2W2和P3W1,說(shuō)明增大光合有效輻射和適度虧缺灌溉均有利于番茄果實(shí)品質(zhì)的提高。
增大行距主要提高了冠層中部和下部的光截獲,但行距過(guò)大會(huì)造成光能損耗,對(duì)群體光截獲的增效較小,120 cm行距番茄群體光截獲量基本飽和。冠層中部和下部葉片Pn、LMA、Chl和N含量同樣隨行距增大而增加,但170 cm行距較120 cm行距葉片Pn、LMA和Chl含量仍有較大提高;且行距和灌水量之間存在顯著交互作用,不同行距下灌水量對(duì)群體光合能力的影響不一致。植株地上部干、鮮重和單株產(chǎn)量受行距、灌水量及二者交互作用的影響,均表現(xiàn)為P3W1最高,P2W1次之,且除地上部鮮重外,二者差異不明顯;果實(shí)品質(zhì)以P3W2最優(yōu),P2W2次之。綜合考慮,若以高效高產(chǎn)為栽培目的,則選擇P2W1為栽培模式,若以高效優(yōu)質(zhì)為栽培目的,則選擇P3W2為栽培模式。
[1] KONNO Y. Feedback regulation of constant leaf standing crop ingrasslands. Ecological Research, 2001, 16(3): 459-469.
[2] MAROIS J J, WRIGHT D L, WIATRAK P J, VARGAS M A. Effect of row width and nitrogen on cotton morphology and canopy microclimate. Crop Science, 2004, 44(3): 870.
[3] CONATY W C, MAHAN J R, NEILSEN J E, CONSTABLE G A. Vapour pressure deficit aids the interpretation of cotton canopy temperature response to water deficit. Functional Plant Biology, 2014, 41(5): 535-546.
[4] 顏為, 李芳軍, 徐東永, 杜明偉, 田曉莉, 李召虎. 行距與氮肥或甲哌鎓化控對(duì)棉花冠層結(jié)構(gòu)、溫度和相對(duì)濕度的影響. 作物學(xué)報(bào), 2021, 47(9): 1654-1665.
YAN W, LI F J, XU D Y, DU M W, TIAN X L, LI Z H. Effects of row spacings and nitrogen or mepiquat chloride application on canopy architecture, temperature and relative humidity in cotton. Acta Agronomica Sinica, 2021, 47(9): 1654-1665. (in Chinese)
[5] TANG L, XU Z J, CHEN W F. Advances and prospects of super rice breeding in China. Journal of Integrative Agriculture, 2017, 16(5): 984-991.
[6] 肖繼兵, 劉志, 孔凡信, 辛宗緒, 吳宏生. 種植方式和密度對(duì)高粱群體結(jié)構(gòu)和產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(22): 4264-4276. doi: 10.3864/j.issn.0578-1752.2018.22.005.
XIAO J B, LIU Z, KONG F X, XIN Z X, WU H S. Effects of planting pattern and density on population structure and yield of. Scientia Agricultura Sinica, 2018, 51(22): 4264-4276. doi: 10.3864/j. issn.0578-1752.2018.22.005. (in Chinese)
[7] 陳宗培, 薛佳欣, 李奔, 王貴彥. 玉米光合特性和冠層微環(huán)境對(duì)密度和行株距配置的響應(yīng). 作物雜志, 2020(1): 179-186.
CHEN Z P, XUE J X, LI B, WANG G Y. Response of photosynthetic characteristics and canopy micro-environment to planting density and row spacing of maize (L.). Crops, 2020(1): 179-186. (in Chinese)
[8] JIANG H, ZOU D H, LOU W Y, CHEN W Z, YANG Y F. Growth and photosynthesis by(Gracilariales, Rhodophyta) in response to different stocking densities along Nan'ao Island coastal waters. Aquaculture, 2019, 501: 279-284.
[9] YAO H S, ZHANG Y L, YI X P, ZUO W Q, LEI Z Y, SUI L L, ZHANG W F. Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Research, 2017, 203: 192-200.
[10] 熊淑萍, 曹文博, 張志勇, 張捷, 高明, 樊澤華, 沈帥杰, 王小純, 馬新明. 行距和播種量對(duì)冬小麥冠層光合有效輻射垂直分布、生物量和籽粒產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2021, 32(4): 1298-1306.
XIONG S P, CAO W B, ZHANG Z Y, ZHANG J, GAO M, FAN Z H, SHEN S J, WANG X C, MA X M. Effects of row spacing and sowing rate on vertical distribution of photosynthetically active radiation, biomass, and grain yield in winter wheat canopy. Chinese Journal of Applied Ecology, 2021, 32(4): 1298-1306. (in Chinese)
[11] 閆春娟, 宋書(shū)宏, 王文斌, 王昌陵, 孫旭剛, 曹永強(qiáng), 張立軍, 李盛友, 董麗杰, 陳艷秋. 不同基因型大豆生理特性和產(chǎn)量對(duì)不同降雨條件的響應(yīng). 節(jié)水灌溉, 2021(5): 8-14.
YAN C J, SONG S H, WANG W B, WANG C L, SUN X G, CAO Y Q, ZHANG L J, LI S Y, DONG L J, CHEN Y Q. Response of physiological characteristics and yield of soybean with different genotypes to different rainfall conditions. Water Saving Irrigation, 2021(5): 8-14. (in Chinese)
[12] WANG Y Q, XI W X, WANG Z M, WANG B, XU X X, HAN M K, ZHOU S L, ZHANG Y H. Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain. Journal of Integrative Agriculture, 2016, 15(10): 2247-2256.
[13] 杜兵杰, 曹紅霞, 裴書(shū)瑤, 張澤宇, 李曼寧. 虧缺灌溉下溫室番茄生長(zhǎng)生理指標(biāo)對(duì)生物炭的響應(yīng). 灌溉排水學(xué)報(bào), 2021, 40(10): 43-51.
DU B J, CAO H X, PEI S Y, ZHANG Z Y, LI M N. The effects of deficit irrigation combined with biochar amendment on growth and physiological traits of greenhouse tomato. Journal of Irrigation and Drainage, 2021, 40(10): 43-51. (in Chinese)
[14] DARIVA F D, PESSOA H P, COPATI M G F, DE ALMEIDA G Q, DE CASTRO FILHO M N, DE TOLEDO PICOLI E A, DA CUNHA F F, NICK C. Yield and fruit quality attributes of selected tomato introgression lines subjected to long-term deficit irrigation. Scientia Horticulturae, 2021, 289: 110426.
[15] CHANG T G, ZHAO H L, WANG N, SONG Q F, XIAO Y, QU M N, ZHU X G. A three-dimensional canopy photosynthesis model in rice with a complete description of the canopy architecture, leaf physiology, and mechanical properties. Journal of Experimental Botany, 2019, 70(9): 2479-2490.
[16] SHI Z, CHANG T G, CHEN G Y, SONG Q F, WANG Y J, ZHOU Z W, WANG M Y, QU M N, WANG B S, ZHU X G. Dissection of mechanisms for high yield in two elite rice cultivars. Field Crops Research, 2019, 241: 107563.
[17] SONG Q F, SRINIVASAN V, LONG S P, ZHU X G. Decomposition analysis on soybean productivity increase under elevated CO2using 3D canopy model reveals synergestic effects of CO2and light in photosynthesis. Annals of Botany, 2020, 126(4): 601-614.
[18] SONG Q F, ZHANG G L, ZHU X G. Optimal crop canopy architecture to maximise canopy photosynthetic CO2uptake under elevated CO2-A theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology, 2013, 40(2): 108.
[19] SARLIKIOTI V, DE VISSER P H B, MARCELIS L F M. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model. Annals of Botany, 2011, 107(5): 875-883.
[20] WIECHERS D, KAHLEN K, STüTZEL H. Evaluation of a radiosity based light model for greenhouse cucumber canopies. Agricultural and Forest Meteorology, 2011, 151(7): 906-915.
[21] CHEN T W, NGUYEN T M N, KAHLEN K, STüTZEL H. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional–structural plant model. Journal of Experimental Botany, 2014, 65(22): 6399-6410.
[22] PRADAL C, DUFOUR-KOWALSKI S, BOUDON F, FOURNIER C, GODIN C. OpenAlea: A visual programming and component-based software platform for plant modelling. Functional Plant Biology, 2008, 35(10): 751.
[23] PRADAL C, BOUDON F, NOUGUIER C, CHOPARD J, GODIN C. PlantGL: a Python-based geometric library for 3D plant modelling at different scales. Graphical Models, 2009, 71(1): 1-21.
[24] 馬樂(lè)樂(lè), 高寧, 楊百良, 任瑞丹, 范兵華, 李建明. 全有機(jī)營(yíng)養(yǎng)模式下番茄綜合品質(zhì)評(píng)價(jià)及其對(duì)有機(jī)肥水耦合的響應(yīng). 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 47(6): 63-72.
MA L L, GAO N, YANG B L, REN R D, FAN B H, LI J M. Construction of integrated quality index of tomato with total organic nutrition and its response to organic fertilizer and water coupling. Journal of Northwest A&F University (Social Science Edition), 2019, 47(6): 63-72. (in Chinese)
[25] 楊樂(lè)琦, 仇淑芳, 唐菲, 黃丹楓, 唐東芹. 基于主成分分析的觀賞生菜品質(zhì)綜合評(píng)價(jià). 上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版), 2015, 33(3): 53-60.
YANG L Q, QIU S F, TANG F, HUANG D F, TANG D Q. Comprehensive evaluation for ornamental lettuce based on principal component analysis. Journal of Shanghai Jiaotong University (Agricultural Science), 2015, 33(3): 53-60. (in Chinese)
[26] ALBAYRAK E, ERENSAL Y C. Using analytic hierarchy process (AHP) to improve human performance: An application of multiple criteria decision making problem. Journal of Intelligent Manufacturing, 2004, 15(4): 491-503.
[27] 武蘭芳, 歐陽(yáng)竹. 不同播量與行距對(duì)小麥產(chǎn)量與輻射截獲利用的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2014, 22(1): 31-36.
WU L F, OUYANG Z. Effects of row spacing and seeding rate on radiation use efficiency and grain yield of wheat. Chinese Journal of Eco-Agriculture, 2014, 22(1): 31-36. (in Chinese)
[28] 倪紀(jì)恒, 羅衛(wèi)紅, 李永秀, 戴劍鋒, 金亮, 徐國(guó)彬, 陳永山, 陳春宏, 卜崇興, 徐剛. 溫室番茄葉面積與干物質(zhì)生產(chǎn)的模擬. 中國(guó)農(nóng)業(yè)科學(xué), 2005, 38(8): 1629-1635.
NI J H, LUO W H, LI Y X, DAI J F, JIN L, XU G B, CHEN Y S, CHEN C H, BU C X, XU G. Simulation of leaf area and dry matter production in greenhouse tomato. Scientia Agricultura Sinica, 2005, 38(8): 1629-1635. (in Chinese)
[29] MEDRANO H, POU A, TOMáS M, MARTORELL S, GULIAS J, FLEXAS J, ESCALONA J M. Average daily light interception determines leaf water use efficiency among different canopy locations in grapevine. Agricultural Water Management, 2012, 114: 4-10.
[30] 王虎兵, 曹紅霞, 郝舒雪, 潘小燕. 溫室番茄植株養(yǎng)分和光合對(duì)水肥耦合的響應(yīng)及其與產(chǎn)量關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(10): 1761-1771. doi: 10.3864/j.issn.0578-1752.2019.10.009.
WANG H B, CAO H X, HAO S X, PAN X Y. Responses of plant nutrient and photosynthesis in greenhouse tomato to water-fertilizer coupling and their relationship with yield. Scientia Agricultura Sinica, 2019, 52(10): 1761-1771. doi: 10.3864/j.issn.0578-1752.2019.10.009. (in Chinese)
[31] MUIR C D, HANGARTER R P, MOYLE L C, DAVIS P A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (s ect., sect.; Solanaceae). Plant, Cell & Environment, 2014, 37(6): 1415-1426.
[32] POORTER H, NIINEMETS ü, POORTER L, WRIGHT I J, VILLAR R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 2009, 182(3): 565-588.
[33] VILLAR R, ROBLETO J R, DE JONG Y, POORTER H. Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant, Cell and Environment, 2006, 29(8): 1629-1643.
[34] PUGLIELLI G, CRESCENTE M F, FRATTAROLI A R, GRATANI L. Leaf mass per area (LMA) as a possible predictor of adaptive strategies in two species of(poaceae): Analysis of morphological, anatomical and physiological leaf traits. Annales Botanici Fennici, 2015, 52(1/2): 135-143.
[35] COBLE A P, CAVALERI M A. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment. Oecologia, 2015, 177(4): 1131-1143.
[36] COBLE A P, CAVALERI M A. Light drives vertical gradients of leaf morphology in a sugar maple () forest. Tree Physiology, 2014, 34(2): 146-158.
[37] GUENDOUZ A, SEMCHEDDINE N, MOUMENI L, HAFSI M. The effect of supplementary irrigation on leaf area, specific leaf weight, grain yield and water use efficiency in durum wheat (Desf.) cultivars. Ekin Journal of Crop Breeding and Genetics, 2016, 2(1): 82-89.
[38] 王明泉. 不同種植密度對(duì)玉米生理性狀、產(chǎn)量和品質(zhì)影響的研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2014, 30(24): 6-10.
WANG M Q. Research progress of the effects of different density on the physiological characteristics, yield and quality of maize. Chinese Agricultural Science Bulletin, 2014, 30(24): 6-10. (in Chinese)
[39] 鄭英達(dá). 楊樹(shù)不同功能葉片葉綠素含量變化研究. 現(xiàn)代農(nóng)業(yè)科技, 2020(13): 102-103.
ZHENG Y D. Study on changes of chlorophyll content of different functional poplar leaves. Modern Agricultural Science and Technology, 2020(13): 102-103. (in Chinese)
[40] 王臣, 尹娟, 趙彥波, 王順, 張海軍. 水氮調(diào)控對(duì)寧夏旱區(qū)馬鈴薯株高、葉綠素和產(chǎn)量的影響. 節(jié)水灌溉, 2020(5): 49-55, 61.
WANG C, YIN J, ZHAO Y B, WANG S, ZHANG H J. Effects of water and nitrogen regulation on potato plant height, chlorophyll and yield in arid regions of Ningxia. Water Saving Irrigation, 2020(5): 49-55, 61. (in Chinese)
[41] 劉瑞顯, 王友華, 陳兵林, 郭文琦, 周治國(guó). 花鈴期干旱脅迫下氮素水平對(duì)棉花光合作用與葉綠素?zé)晒馓匦缘挠绊? 作物學(xué)報(bào), 2008, 34(4): 675-683.
LIU R X, WANG Y H, CHEN B L, GUO W Q, ZHOU Z G. Effects of nitrogen levels on photosynthesis and chlorophyll fluorescence characteristics under drought stress in cotton flowering and boll- forming stage. Acta Agronomica Sinica, 2008, 34(4): 675-683. (in Chinese)
[42] HOSSEINZADEH S R, AMIRI H, ISMAILI A. Evaluation of photosynthesis, physiological, and biochemical responses of chickpea (L.Pirouz) under water deficit stress and use of vermicompost fertilizer. Journal of Integrative Agriculture, 2018, 17(11): 2426-2437.
[43] 常佳悅, 馬小龍, 吳故燃, 李廣毅, 李建明. 基質(zhì)栽培下行距和灌水量對(duì)塑料大棚番茄光能和水分利用的影響. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2023, 51(3): 111-120, 154.
CHANG J Y, MA X L, WU G R, LI G Y, LI J M. Effects of row spacing and irrigation amount on light energy and water utilization of tomato in plastic greenhouse under substrate cultivation. Journal of Northwest A&F University (Natural Science Edition), 2023, 51(3): 111-120, 154. (in Chinese)
[44] CECHIN I, DE FáTIMA FUMIS T. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Science, 2004, 166(5): 1379-1385.
[45] 劉冰, 白子裕, 徐晨, 歷艷璐, 王俊鵬, 陳展宇, 張治安. 大豆冠層不同部位葉片氮含量及氮素光合效率的分析. 分子植物育種, 2020, 18(12): 4060-4066.
LIU B, BAI Z Y, XU C, LI Y L, WANG J P, CHEN Z Y, ZHANG Z A. Analysis of nitrogen content and nitrogen photosynthetic efficiency in different parts of soybean canopy leaves. Molecular Plant Breeding, 2020, 18(12): 4060-4066. (in Chinese)
[46] 李佳帥, 楊再?gòu)?qiáng), 王明田, 韋婷婷, 趙和麗, 江夢(mèng)圓, 孫擎, 黃琴琴. 水氮耦合對(duì)苗期葡萄葉片氮素代謝酶活性的影響. 中國(guó)農(nóng)業(yè)氣象, 2019, 40(6): 368-379.
LI J S, YANG Z Q, WANG M T, WEI T T, ZHAO H L, JIANG M Y, SUN Q, HUANG Q Q. Effect of water and nitrogen coupling on nitrogen metabolism enzyme activities in grapevine seedling leaves. Chinese Journal of Agrometeorology, 2019, 40(6): 368-379. (in Chinese)
[47] 張昊, 林濤, 湯秋香, 崔建平, 郭仁松, 王亮, 鄭子漂. 種植模式對(duì)機(jī)采棉冠層光能利用與產(chǎn)量形成的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2021, 37(12): 54-63.
ZHANG H, LIN T, TANG Q X, CUI J P, GUO R S, WANG L, ZHENG Z P. Effects of planting pattern on canopy light utilization and yield formation in machine-harvested cotton field. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 54-63. (in Chinese)
[48] AL-HARBI A R, AL-OMRAN A M, EL-ADGHAM F I. Effect of drip irrigation levels and emitters depth on okra () growth. Journal of Applied Sciences, 2008, 8(15): 2764-2769.
[49] ISA M M, IBRAHIM J, BAH S U. Effect of nitrogen fertilizer and inter row spacing on herbage yield and some yield components (number of leaves and number of tillers per plant) of Rhodes grass (Tan) in the dry sub humid zone of sokoto. Asian Journal of Advanced Research and Reports, 2020: 10-21.
[50] 吳宣毅, 曹紅霞, 王虎兵, 郝舒雪. 不同種植行距和灌水量對(duì)中國(guó)西北地區(qū)日光溫室短季節(jié)栽培番茄品質(zhì)的交互影響. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(5): 940-951. doi: 10.3864/j.issn.0578-1752.2018.05.012.
WU X Y, CAO H X, WANG H B, HAO S X. Effect of planting row spacing and irrigation amount on comprehensive quality of short- season cultivation tomato in solar greenhouse in northwest China. Scientia Agricultura Sinica, 2018, 51(5): 940-951. doi: 10.3864/j.issn. 0578-1752.2018.05.012. (in Chinese)
Effects of Row Spacing and Irrigation Amount on Canopy Light Interception and Photosynthetic Capacity, Matter Accumulation and Fruit Quality of Tomato
CHANG JiaYue1, MA XiaoLong1, WU YanLi2, LI JianMing
1School of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi;2Agricultural Technology Promotion Center, Huangling County, Yan’an City, Shaanxi Province, Yangling 712100, Shaanxi
【Objective】Photosynthetically active radiation and photosynthetic physiological characteristics of leaves within the canopy were heterogeneous. The response to row spacing and irrigation amount of light interception and photosynthetic capacity of leaves in different parts of tomato canopy were explored in this study. The effects of row spacing and irrigation amount on photosynthetic productivity of tomato canopy were studied in detail, and the comprehensive quality of fruit was analyzed, which provided a theoretical basis for the setting of row spacing and irrigation amount in mechanized cultivation of tomato.【Method】Tomato, the test material, was cultivated in a wide and narrow row, with plant spacing of 35 cm. Small row spacing of 40 cm, and three large row spacing levels were set: 70 cm (P1), 120 cm (P2), and 170 cm (P3). Two irrigation levels were set: conventional irrigation (W1) and light deficit irrigation (W2). The experiment was a full factorial experiment with 6 treatments. The leaf area and light interception amount of each leaf position were measured. The canopy was divided into six parts, and the net photosynthetic rate (Pn), leaf mass per area (LMA), chlorophyll (Chl) and N, P, K content were measured. The canopy photosynthetic capacity under each treatment was comprehensively analyzed by taking the proportion of leaf area of each part to that of the whole plant or the proportion of leaf dry weight of each part to that of the whole plant as weights. The correlation of each index was analyzed by the Pearson correlation coefficient. The dry and fresh weight, yield per plant and fruit quality of the second ear were measured. The comprehensive quality of tomato was evaluated and ranked by PCA method and combined weighting-TOPSIS method based on game theory.【Result】The effects of increasing row spacing on canopy leaf area, light interception and photosynthetic capacity were mainly reflected in the middle and lower parts of the canopy. The leaf area in the mid canopy increased first and then decreased with the increase of the row spacing. The leaf area in the lower canopy and the light interception in the mid and lower canopy increased significantly from P1 to P2, but slightly increased from P2 to P3; the Pn in the mid and lower canopy showed that P2 increased by 8.06%-11.32% compared with P1, and P3 increased by 14.25%-24.40% compared with P2; the LMA showed that P2 increased by 1.31%-33.24% compared with P1, and P3 increased by 6.09%-17.86% compared with P2; the Chl content of P2 was 3.42%-6.81% higher than that of P1, and P3 was 3.19%-4.96% higher than that of P2; the N content of P2 was 13.89%-34.73% higher than that of P1, and P3 was 2.21%-19.74% higher than that of P2; the content of P and K had no obvious regularity. On the whole, the content of Pn, Chl and N increased with the increase of row spacing, and the LMA increased with the increase of row spacing under light deficit irrigation and showed P3>P1>P2 under conventional irrigation; under three row spacing levels, the LMA and N content under conventional irrigation were higher than those under light deficit irrigation, the Pn under conventional irrigation was higher than that under light deficit irrigation under P1 and P3, while the Pn under light deficiency irrigation was higher under P2; the Chl content under conventional irrigation was higher under P1, while the Chl content under light deficiency irrigation was higher under P2 and P3. With the increase of row spacing, the dry and fresh weight of the aboveground parts increased under conventional irrigation, and increased first and then decreased under light deficit irrigation; the aboveground dry and fresh weight of conventional irrigation was higher than that of light deficit irrigation. The yield per plant increased with the increase of row spacing under the two irrigation levels, and the increase from P1 to P2 was larger (compared with P1, P2 under conventional irrigation and light deficit irrigation increased by 33.75% and 24.32%, respectively.), while the yield per plant increased only slightly from P2 to P3 (compared with P2, P3 increased by 2.87% and 4.30% under conventional irrigation and light deficit irrigation, respectively.); the yield per plant under conventional irrigation was higher than that under light deficit irrigation. Increasing row spacing and reducing irrigation amount could optimize the comprehensive quality of fruit, and the top three comprehensive quality scores were P3W2, P2W2 and P3W1.【Conclusion】P3W1 was the highest in leaf Pn, LMA, N content, aboveground dry and fresh weight and yield per plant, and P3W2 was the highest in canopy light interception, Chl content and comprehensive quality score.
tomato; row spacing; irrigation amount; light interception; photosynthetic capacity; matter accumulation; comprehensive quality
10.3864/j.issn.0578-1752.2023.11.009
2022-07-18;
2022-09-29
陜西省技術(shù)創(chuàng)新引導(dǎo)專(zhuān)項(xiàng)(基金)(2021QFY08-04)、青海高原有機(jī)瓜菜生產(chǎn)關(guān)鍵技術(shù)研究與示范(2022ZY017)
常佳悅,E-mail:jiayue@nwafu.edu.cn。通信作者李建明,E-mail:lijianming66@163.com
(責(zé)任編輯 趙伶俐)