• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The integral equation method for the scattering problem of obliquely incident electromagnetic waves in a chiral medium

    2023-06-26 09:11:36FENGLixinLIYuanZHANGLei

    FENG Lixin,LI Yuan,ZHANG Lei

    (1.School of Mathematical Sciences,Heilongjiang University,Harbin 150080,China;2.Mathematics Department,Zhejiang University of Technology,Hangzhou 310014,China)

    Abstract:The scattering of an obliquely incident electromagnetic wave by an infinite impedance cylinder which is embedded in a homogeneous chiral medium is considered.Under certain assumptions,the scattering problem can be formulated as a second order elliptic system with generalized oblique derivative boundary conditions for the z components of the electric and magnetic fields.By partly reducing the coupling via a decomposition method and potential theory,the oblique scattering problem is transformed to a system of two integral equations.It is not a usual Fredholm system of the second kind as that in the case of normal incidence,since the system involves the tangential derivatives of the single-layer potential.It is shown that this system of operators is of Fredholm type with index 0.By using the Fredholm theory,the uniqueness and the existence of solutions for the boundary integral equations are justified.A numerical scheme for solving the integral equations is also presented.

    Keywords:direct scattering;chiral medium;oblique incidence;uniqueness;existence;integral equation method

    0 Introduction

    The study of scattering of electromagnetic waves in a chiral medium began two decades ago,a series of relevant works can be found in references [1-14] and the references therein.The obstacle scattering in a homogeneous chiral medium inR3is modeled usually by a boundary value problem for Maxwell’s equations.If the obstacle is an imperfectly conducting cylinder (impedance cylinder) parallel to thez-direction and illuminated by a polarized plane wave at a normal incidence,it is well known that the corresponding electromagnetic scattering can be formulated as a boundary value problem for thezcomponent of either the electric field or the magnetic field,see for instance reference [14].If the incident plane wave obliquely acts on the cylinder,thezcomponents of the electric and magnetic fields cannot be decoupled,and the mathematical formulation becomes more complicated.The scattering problems from the impedance cylinders at an oblique incidence in a non-chiral medium have been studied,see the references [15-29].

    In this paper,we assume that the cylinder is embedded in a homogeneous chiral medium and the incident electromagnetic wave acts on this cylinder at an angle not equal to π/2 with respect to the negativezaxis.The study of the situation is much less clear.In reference [12],the direct scattering problem is initially studied,under some simplifications of parameters and a strong condition on the incident angle.In reference [13],the scattering problem is discussed in a more general situation.In the paper,based on the Drude-Born-Fedorov constitutive relations and Maxwell’s equations,we show that thezcomponents of the electric and magnetic fields satisfy a second order elliptic system in the exterior of the cross-sectionDof the cylinder.On the boundary ?D,we derive a coupledboundary condition with generalized oblique derivatives from the so-called Leontovich impedance boundary condition on the lateral of the cylinder.The unique solvability of the direct scattering problem is proven by using the Lax-Phillips method.The superiority of the Lax-Phillips method is that it allows for proving the complex analyticity of the solution to the direct scattering problem,from which one can prove the uniqueness of the inverse scattering problem.However,the methods used in references [12-13] do not support the numerical computation of the scattering problem directly.In this paper,we investigate the integral equation method to solve the direct scattering problem.By partly reducing the coupling via a decomposition method and potential theory,the oblique scattering problem is transformed to a system of two integral equations.We would like to emphasize that it is not a usual Fredholm system of the second kind as that in the case of normal incidence,since the system involves the tangential derivatives of the single-layer potential.We show that this system of operators is of Fredholm type with index 0.By using the Fredholm theory,the uniqueness and the existence of solutions are justified.Furthermore,we propose a numerical method to solve the integral equations.By this method the far-field pattern of the scattering problem can be computed effectively,which implies the possibility to compute the inverse scattering problem.

    The rest of this paper is organized as follows.In Section 1,we give the mathematical formulation of the scattering problem from an impedance cylinder at an oblique incidence in a chiral medium.In Section 2,the existence and uniqueness of the solution to the direct scattering problem are justified by using the Fredholm theory.Section 3 is devoted to a numerical scheme for solving the corresponding integral equations.Finally we give some conclusions in Section 4.

    1 Mathematical formulation of the scattering problem

    We formulate the scattering of an obliquely incident electromagnetic wave by an infinitely long impedance cylinder which is embedded in a homogeneous chiral medium.Assume that the cylinder is parallel to thezaxis,and its cross-sectionDis of an arbitrary shape withC2boundary ?D.It is well known that the electromagnetic fields are governed by the Maxwell’s system in the form

    divD=0,divB=0

    (1)

    (2)

    together with the Drude-Born-Fedorov constitutive equations for a chiral media

    D=(E+β?×E),B=μ(H+β?×H)

    (3)

    whereE,H,DandBare the electric field,the magnetic field,the electric and magnetic displacement vectors inR3,respectively.The parametersandμare assumed to be constants,known as the electric permittivity and magnetic permeability,respectively.Hereβis the chirality admittance withβ≥0,describing the property of the medium to rotate the plane of polarization of electromagnetic waves.Assume that the electromagnetic wave (E,H) is time-harmonic,i.e.the time dependence occurs through a factore-iωt,then we have

    ?×E=k2(1-k2β2)-1βE+iωμ(1-k2β2)-1H,divE=0

    (4)

    ?×H=k2(1-k2β2)-1βH-iω(1-k2β2)-1E,divH=0

    (5)

    Let

    (Ei,Hi)=(ei(x,y),hi(x,y))·e-iωt-iαz

    (6)

    Fig.1 Incident angle θ

    (7)

    On the lateral of the cylinder,we impose the Leontovich impedance boundary condition

    (ν×E)×ν=λ(ν×H)

    (8)

    whereνis the outward unit normal vector andλis the impedance constant.We assume thatλis positive on ?D.

    (9)

    (10)

    (11)

    with the impedance boundary conditions

    (12)

    (13)

    whereνandτare the unit outward normal and tangent vectors of ?D,respectively,described in Fig.2.Here the constantsβ1andβ2are determined by

    Fig.2 Localized coordinated system

    β1=k2(1-k2β2)-1β,β2=ω(1-k2β2)-1

    (14)

    We note that the equations (10) and (11) are coupled through the lower order terms.To partly reduce this coupling,we introduce the new fieldsuandvby

    (15)

    Then we can easily derive from (10)~(13) that

    (16)

    (17)

    (18)

    (19)

    Here,the constants are given by

    The following relations among the constants are easily derived.

    In this paper,we assume thatλ2-μ>0.

    We now make the same decompositions for the incident and scattered fields

    (20)

    (21)

    (22)

    (23)

    wheref1andf2are given by

    and

    respectively.We also impose the following Sommerfeld radiation condition (S.R.C.) for (us,vs):

    (24)

    wherer=|(x,y)|.

    2 Analysis of the direct scattering problem

    In this section,we start with the following uniqueness result:

    For the detailed proof process of this conclusion,please refer to a previous paper published by us (see the reference [13]).

    Now,we prove the existence of the solution to the systems (20)~(24) by using the integral equation method.To this end,we define the fundamental solution to the Helmholtz equation in2with wave numberkj,j=L,Rby

    We further define the operators

    where

    Some properties of these operators are given as follows,which play a key role in the proof of our main result in this section.

    Lemma1Let ?Dbe of classC2,α.Then the operatorsSj,K′j:L2(?D)→L2(?D)are compact,andH′j:L2(?D)→L2(?D)is bounded.

    Lemma2The operatorsH′0andK′0have the relation:

    (K′0)2-(H′0)2=I

    whereIis the identity operator.

    The proofs of Lemma 1 and Lemma 2 are referred to reference [28].We are now in a position to state the main result of this section.

    ProofWe seek the solutions (20)~(24) in the form of single layer potential

    (25)

    (26)

    with unknown densitiesφ1,φ2∈L2(?D).Using the standard jump relations of single-layer potential,we derive from systems (22) and (23) that

    (27)

    (28)

    LetAbe the operator defined by

    Then in terms of

    the systems (27)~(28) become

    Aφ=f

    (29)

    where the superscriptTdenotes the transposition.

    Now we proceed to prove the solvability of system (29) in two steps.In the first step,we show thatAis a Fredholm operator with index 0.To this end,we decomposeAas

    A=-B+Q

    (30)

    with

    and

    Since the kernels ofH′jandH′0have the same singularity,the operators

    H′j-H′0:L2(?D)→L2(?D),j=L,R

    are compact,and hence,

    Q:L2(?D)×L2(?D)→L2(?D)×L2(?D)

    is compact.

    We define the operatorBi(t)(i=1,2)with a parametert∈[0,1]by

    We now show thatBi(t) is also Fredholm with index 0 for anyt∈[0,1].DecomposeBi(t) as

    B1(t)=B11(t)-K′L,B2(t)=B22(t)-K′R

    with

    Define the operator

    Obviously,Li(i=1,2)is bounded fromL2(?D)→L2(?D).Using Lemma 2,we derive that

    L1B11(t)=B11(t)L1

    Similarly,

    This means thatLiis a two-sided regularizer ofBii(i=1,2).It follows from Theorem 2.24 in reference [21] thatBii(t) is a Fredholm operator.Note thatK′LandK′Rare compact inL2(?D),we have that the operatorsBi(i=1,2) are also Fredholm.

    On the other hand,since the operatorH′0is bounded,Bi(t),i=1,2 are continuous with respect tot.Hence,we have

    Ind(Bi(1))=Ind(Bi(0))=0,i=1,2

    which implies fromBi=Bi(1)that the operatorsBi,i=1,2are of Fredholm type with index 0.FurthermoreBis Fredholm type with index 0.It follows from system (29) thatAis also Fredholm operator with Ind(A)=Ind(B)=0.

    (31)

    and have

    (32)

    Using the jump relation of single-layer potential,we have

    (33)

    where the indices “+”and “- ”denote the standard limits from2Donto the boundary ?D,respectively.Combing systems (31),(32) and (33) yields

    The proof is complete.

    3 Numerical scheme for solving the integral system

    The numerical discretization of the boundary integral equations (27)~(28) is based on the Nystr?m method in reference [30].For the readers’ convenience,we outline here the treatment of the associated integral kernels and the quadrature rules used.Assume that the closed curve ?Dis smooth enough,and has the parametrization

    with2π-periodic functionsx(t),y(t).We define

    for a given densityψandX=X(t)∈?D.By direct calculations,we have the parametric expressions ofK′,SandH′:

    with the kernel functions

    wherep(t)=(x′(t),y′(t))=|X′(t)|·τ(X(t)),n(t)=(y′(t),-x′(t))=|X′(t)|·ν(X(t)).

    In terms of the singularities of kernels,we decompose the functionsK(t,r),S(t,r)andH(t,r) as follows:

    whereJ0andJ1are the Bessel functions of order zero and order one,respectively.The kernelsK2,S2andH2are defined by

    with diagonal terms

    whereris the Euler’s constant.

    with the weights

    Other regular integrals involved in systems (27)~(28) possess periodic smooth kernels,and hence they can be approximated by simple rectangular rule.

    In the second step,we want to check the efficiency of the proposed method.To this end,we focus on a special case where the scattered wavesusandvsare expressed exactly byΦL(·,Z1)and ΦR(·,Z2).HereZ1andZ2are two points insideD,and then define two boundary functions by

    and

    (34)

    (35)

    (36)

    (37)

    (38)

    According to the asymptotic behavior of the Hankel function,the far-filed patterns ofusandvscan be expressed as

    (39)

    (40)

    On the other hand,we obtain from systems (25)~(26) that the far-field patterns ofusandvscan be expressed in the forms

    (41)

    and

    (42)

    LetDbe a kite-shaped domain with the boundary expression

    x(t)=2cost+1.3cos2t-1.3,y(t)=2.5sint,t∈[0,2π]

    The geometric shape is described in Fig.3.In the following,Z1=(0.2,0.2)andZ2=(-0.3,-0.3)are two points insideD,and we set the constants=1,μ=1,ω=π,θ=π/2and the chirality admittanceβ=0.1.The boundary impedance is taken asλ=2.

    Fig.3 Geometry of D,z1 and z2 are two points inside D

    Table 1 Exact solutions of for different incident angle t

    In numerical implementations,we choose the equidistant collocation points by setting

    Table 2 Exact solutions of for different incident angle t

    4 Conclusions

    In this paper,we study the scattering of electromagnetic wave by an imperfectly conducting infinite cylinder embedded in a homogeneous chiral medium at oblique incidence.The oblique scattering problem is modeled as a boundary value problem for thezcomponents of electric field and magnetic field.Based on potential theory,our oblique scattering problem in a homogeneous chiral medium is transformed to a system of two integral equations.It is not a usual Fredholm system of the second kind as that in the case of normal incidence,since the system involves the tangential derivatives of the single-layer potential.We show that this system of operators is of Fredholm type with index 0.By using the Fredholm theory,the uniqueness and the existence of solutions are justified.A numerical scheme for solving the integral equations is also presented.We emphasize that our results are quite general in the sense that ifα=0 orβ=0,our models reduce to the well-known cases of scattering in a normal incidence or in a usual homogeneous medium,respectively.In addition,the numerical implementation of the scheme presented here is considered also.

    不卡视频在线观看欧美| 90打野战视频偷拍视频| a级片在线免费高清观看视频| 国产在线免费精品| 男女边摸边吃奶| 国产麻豆69| 国产视频首页在线观看| av电影中文网址| 欧美丝袜亚洲另类| 久热这里只有精品99| 大陆偷拍与自拍| 五月伊人婷婷丁香| 午夜免费鲁丝| 99热6这里只有精品| 免费少妇av软件| 国产精品.久久久| 日韩av在线免费看完整版不卡| 99热网站在线观看| 午夜免费鲁丝| 少妇 在线观看| 成年av动漫网址| a级片在线免费高清观看视频| 性高湖久久久久久久久免费观看| 最近中文字幕2019免费版| 精品人妻偷拍中文字幕| 亚洲精品久久久久久婷婷小说| 久久这里只有精品19| 校园人妻丝袜中文字幕| 麻豆精品久久久久久蜜桃| 成年女人在线观看亚洲视频| 国产成人精品无人区| 最近最新中文字幕免费大全7| 久久韩国三级中文字幕| 丝瓜视频免费看黄片| 不卡视频在线观看欧美| 制服诱惑二区| 啦啦啦视频在线资源免费观看| 久久精品久久久久久久性| 久久婷婷青草| 亚洲激情五月婷婷啪啪| www.熟女人妻精品国产 | 男人舔女人的私密视频| 99re6热这里在线精品视频| 丝袜人妻中文字幕| 国产精品一区二区在线不卡| 国产乱来视频区| 国产色婷婷99| 母亲3免费完整高清在线观看 | 亚洲欧洲精品一区二区精品久久久 | 欧美日韩亚洲高清精品| 亚洲,欧美,日韩| 汤姆久久久久久久影院中文字幕| 制服人妻中文乱码| 久久精品夜色国产| 国产午夜精品一二区理论片| 日本与韩国留学比较| 男女高潮啪啪啪动态图| 最近最新中文字幕大全免费视频 | 欧美 日韩 精品 国产| 深夜精品福利| 日韩中字成人| 欧美精品av麻豆av| 国产黄色视频一区二区在线观看| 中国美白少妇内射xxxbb| 久久久亚洲精品成人影院| 一边亲一边摸免费视频| 成年人午夜在线观看视频| 新久久久久国产一级毛片| videosex国产| 国产成人免费观看mmmm| 精品国产国语对白av| 久久人人97超碰香蕉20202| 久久久久国产网址| 国产一区二区在线观看av| 91精品国产国语对白视频| a级毛色黄片| 97在线人人人人妻| 国产日韩欧美亚洲二区| 人人澡人人妻人| 亚洲高清免费不卡视频| 熟女人妻精品中文字幕| 熟妇人妻不卡中文字幕| 80岁老熟妇乱子伦牲交| 插逼视频在线观看| 亚洲熟女精品中文字幕| 国产精品秋霞免费鲁丝片| 日韩伦理黄色片| 黑人高潮一二区| 日日摸夜夜添夜夜爱| 国产成人a∨麻豆精品| 国产免费福利视频在线观看| 天天操日日干夜夜撸| 美女xxoo啪啪120秒动态图| 欧美日韩国产mv在线观看视频| 亚洲av成人精品一二三区| 乱码一卡2卡4卡精品| 婷婷成人精品国产| 亚洲精品成人av观看孕妇| 国产精品嫩草影院av在线观看| 午夜91福利影院| 9191精品国产免费久久| 人人澡人人妻人| 校园人妻丝袜中文字幕| 毛片一级片免费看久久久久| 黄色 视频免费看| 宅男免费午夜| 少妇被粗大猛烈的视频| 午夜91福利影院| 亚洲精品一区蜜桃| 黄色一级大片看看| 国产麻豆69| 精品国产国语对白av| 亚洲美女搞黄在线观看| 国产亚洲av片在线观看秒播厂| 黄色一级大片看看| 一级毛片 在线播放| 性色avwww在线观看| 超碰97精品在线观看| 久久久久久久久久成人| 亚洲欧美成人综合另类久久久| 毛片一级片免费看久久久久| 国产日韩欧美在线精品| 国产精品 国内视频| 一级a做视频免费观看| 亚洲国产最新在线播放| 国产免费又黄又爽又色| 亚洲精品自拍成人| 91在线精品国自产拍蜜月| 香蕉精品网在线| 黄色配什么色好看| av片东京热男人的天堂| 女性被躁到高潮视频| 亚洲三级黄色毛片| 成人手机av| 精品少妇久久久久久888优播| 亚洲精品456在线播放app| 91精品三级在线观看| 最黄视频免费看| 精品少妇内射三级| 桃花免费在线播放| 好男人视频免费观看在线| 乱人伦中国视频| 香蕉丝袜av| 国产欧美另类精品又又久久亚洲欧美| 欧美xxxx性猛交bbbb| 熟女av电影| 成人手机av| 中文字幕av电影在线播放| 亚洲图色成人| 国产免费一级a男人的天堂| 97在线视频观看| 麻豆乱淫一区二区| 亚洲经典国产精华液单| 大码成人一级视频| 麻豆精品久久久久久蜜桃| 高清视频免费观看一区二区| 精品久久久久久电影网| 亚洲国产色片| 久久精品国产亚洲av涩爱| 日韩伦理黄色片| 国产免费一区二区三区四区乱码| 夜夜爽夜夜爽视频| 日本与韩国留学比较| 久久97久久精品| 99久久人妻综合| 亚洲第一区二区三区不卡| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 亚洲成色77777| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品日本国产第一区| 免费看不卡的av| freevideosex欧美| 毛片一级片免费看久久久久| 午夜福利乱码中文字幕| 91国产中文字幕| 毛片一级片免费看久久久久| 午夜免费观看性视频| 在线观看免费日韩欧美大片| 亚洲成人手机| 成人午夜精彩视频在线观看| 国产极品粉嫩免费观看在线| 亚洲精品日本国产第一区| 亚洲精品一二三| 久久久久精品久久久久真实原创| 女性被躁到高潮视频| 欧美老熟妇乱子伦牲交| 少妇人妻久久综合中文| 一级黄片播放器| 亚洲精品美女久久av网站| 美女国产视频在线观看| 亚洲五月色婷婷综合| 亚洲国产日韩一区二区| 亚洲综合色网址| 黄网站色视频无遮挡免费观看| 在线天堂中文资源库| 美女国产视频在线观看| 天堂俺去俺来也www色官网| 大香蕉久久网| 一级a做视频免费观看| 亚洲精品中文字幕在线视频| 久久人妻熟女aⅴ| 国产片内射在线| 女人被躁到高潮嗷嗷叫费观| 国产成人精品无人区| 国产日韩一区二区三区精品不卡| 久久精品久久久久久久性| 老熟女久久久| 日韩精品免费视频一区二区三区 | 亚洲中文av在线| 最近中文字幕2019免费版| 国产福利在线免费观看视频| 久久99精品国语久久久| 精品一区二区免费观看| 夫妻午夜视频| 久久国产亚洲av麻豆专区| 成年人午夜在线观看视频| 亚洲精品中文字幕在线视频| 国产淫语在线视频| 亚洲色图 男人天堂 中文字幕 | 国产在线视频一区二区| 2018国产大陆天天弄谢| 久久精品国产a三级三级三级| 欧美精品人与动牲交sv欧美| 国产精品久久久久久av不卡| 精品一品国产午夜福利视频| 日本vs欧美在线观看视频| 人妻少妇偷人精品九色| 插逼视频在线观看| 久久精品久久精品一区二区三区| h视频一区二区三区| 只有这里有精品99| 搡老乐熟女国产| 亚洲精品一二三| 夫妻性生交免费视频一级片| 91国产中文字幕| 精品第一国产精品| 午夜激情av网站| 80岁老熟妇乱子伦牲交| 欧美日韩综合久久久久久| 搡女人真爽免费视频火全软件| 丝袜美足系列| 自线自在国产av| 久久毛片免费看一区二区三区| www.av在线官网国产| 母亲3免费完整高清在线观看 | 久久女婷五月综合色啪小说| 狂野欧美激情性xxxx在线观看| 亚洲国产精品国产精品| 日本黄大片高清| 亚洲色图综合在线观看| 成年女人在线观看亚洲视频| av片东京热男人的天堂| 国产精品久久久久久久久免| 精品熟女少妇av免费看| av卡一久久| 一区二区日韩欧美中文字幕 | 欧美精品亚洲一区二区| 在线天堂最新版资源| 久久热在线av| 日韩精品免费视频一区二区三区 | 999精品在线视频| 日本黄大片高清| 久久97久久精品| 午夜视频国产福利| 国产精品人妻久久久影院| 中文字幕亚洲精品专区| 最新的欧美精品一区二区| 亚洲国产最新在线播放| 黄色一级大片看看| 在线观看美女被高潮喷水网站| 国产精品久久久av美女十八| 精品国产一区二区久久| 国产精品久久久久久精品古装| 亚洲一码二码三码区别大吗| 最后的刺客免费高清国语| 精品99又大又爽又粗少妇毛片| 亚洲在久久综合| 天天操日日干夜夜撸| 亚洲国产欧美在线一区| 丝袜美足系列| 国产爽快片一区二区三区| 久久精品国产亚洲av涩爱| 汤姆久久久久久久影院中文字幕| 少妇的逼好多水| 欧美 亚洲 国产 日韩一| 欧美3d第一页| 少妇高潮的动态图| 国产高清国产精品国产三级| 日韩一区二区视频免费看| 精品一区二区免费观看| 久久久久久人妻| 日韩人妻精品一区2区三区| 毛片一级片免费看久久久久| 国产毛片在线视频| 搡老乐熟女国产| 夜夜爽夜夜爽视频| 各种免费的搞黄视频| 男人舔女人的私密视频| 亚洲精品,欧美精品| 大香蕉97超碰在线| 美女脱内裤让男人舔精品视频| 欧美日韩视频高清一区二区三区二| 成年动漫av网址| 精品一区二区免费观看| 日韩制服丝袜自拍偷拍| 看非洲黑人一级黄片| 人妻系列 视频| 在线看a的网站| 午夜91福利影院| 成年人免费黄色播放视频| 欧美另类一区| av视频免费观看在线观看| 99香蕉大伊视频| 少妇熟女欧美另类| 男女边摸边吃奶| 亚洲四区av| 亚洲成人av在线免费| 免费观看无遮挡的男女| 亚洲精品美女久久久久99蜜臀 | 免费大片黄手机在线观看| 久久影院123| 秋霞伦理黄片| 欧美国产精品一级二级三级| 欧美变态另类bdsm刘玥| 欧美国产精品一级二级三级| 少妇被粗大的猛进出69影院 | 丁香六月天网| 亚洲一级一片aⅴ在线观看| 黑人巨大精品欧美一区二区蜜桃 | 免费少妇av软件| 亚洲国产精品专区欧美| 精品亚洲成a人片在线观看| 人人妻人人澡人人看| 国产精品蜜桃在线观看| 最新中文字幕久久久久| 免费黄网站久久成人精品| 日本色播在线视频| 丝袜在线中文字幕| 少妇被粗大猛烈的视频| 欧美成人精品欧美一级黄| 国产一区二区三区av在线| 欧美成人午夜精品| 亚洲美女黄色视频免费看| 99热6这里只有精品| 一级,二级,三级黄色视频| 精品一区二区三区视频在线| 边亲边吃奶的免费视频| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 午夜激情av网站| 美女脱内裤让男人舔精品视频| 国产高清国产精品国产三级| 欧美日韩精品成人综合77777| 2018国产大陆天天弄谢| 欧美3d第一页| 人体艺术视频欧美日本| 久久影院123| 91成人精品电影| 18在线观看网站| 好男人视频免费观看在线| 99久久人妻综合| 成人亚洲精品一区在线观看| 国产亚洲午夜精品一区二区久久| 午夜福利影视在线免费观看| 在线观看一区二区三区激情| 街头女战士在线观看网站| 高清欧美精品videossex| 日韩成人伦理影院| 日韩精品有码人妻一区| 亚洲国产欧美日韩在线播放| 少妇人妻 视频| 日韩制服丝袜自拍偷拍| 中国三级夫妇交换| 夜夜爽夜夜爽视频| 免费久久久久久久精品成人欧美视频 | 毛片一级片免费看久久久久| 丝瓜视频免费看黄片| 国产成人精品福利久久| 久久国产精品男人的天堂亚洲 | 国产免费又黄又爽又色| 日韩成人伦理影院| 在线看a的网站| 亚洲国产av影院在线观看| 亚洲 欧美一区二区三区| 国产乱来视频区| 久久国产精品男人的天堂亚洲 | 亚洲综合色网址| 日日摸夜夜添夜夜爱| av在线app专区| 色94色欧美一区二区| 免费播放大片免费观看视频在线观看| 国产片内射在线| 女性被躁到高潮视频| 在线亚洲精品国产二区图片欧美| 九草在线视频观看| 大码成人一级视频| 精品少妇内射三级| 国产精品久久久久久久久免| 香蕉国产在线看| www日本在线高清视频| 18+在线观看网站| 久久ye,这里只有精品| 国产深夜福利视频在线观看| 又大又黄又爽视频免费| 99热这里只有是精品在线观看| 久久99精品国语久久久| 国产精品久久久久成人av| 插逼视频在线观看| 亚洲色图综合在线观看| 色94色欧美一区二区| 狂野欧美激情性xxxx在线观看| 亚洲,欧美精品.| 女人精品久久久久毛片| 巨乳人妻的诱惑在线观看| 成人黄色视频免费在线看| 纯流量卡能插随身wifi吗| 成人毛片60女人毛片免费| a级毛片黄视频| 国产白丝娇喘喷水9色精品| 免费观看无遮挡的男女| 久久这里有精品视频免费| 日韩制服骚丝袜av| 久热久热在线精品观看| 最新的欧美精品一区二区| 99热这里只有是精品在线观看| 蜜臀久久99精品久久宅男| 亚洲av免费高清在线观看| 成人毛片60女人毛片免费| 99九九在线精品视频| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 黄色配什么色好看| 亚洲av电影在线观看一区二区三区| 色5月婷婷丁香| 有码 亚洲区| 午夜免费男女啪啪视频观看| av又黄又爽大尺度在线免费看| 精品国产一区二区三区四区第35| 人人妻人人澡人人看| 午夜精品国产一区二区电影| 亚洲精品,欧美精品| 国产一级毛片在线| freevideosex欧美| 飞空精品影院首页| freevideosex欧美| 国产精品99久久99久久久不卡 | 久久久精品区二区三区| 如日韩欧美国产精品一区二区三区| 国产黄色视频一区二区在线观看| 国产在线免费精品| 在线观看美女被高潮喷水网站| 麻豆乱淫一区二区| 国产 一区精品| 欧美xxxx性猛交bbbb| 夫妻性生交免费视频一级片| 一区二区三区四区激情视频| videos熟女内射| 又粗又硬又长又爽又黄的视频| 亚洲av在线观看美女高潮| 日韩大片免费观看网站| 亚洲伊人色综图| 日本与韩国留学比较| 99久国产av精品国产电影| 久久精品人人爽人人爽视色| 婷婷色综合www| 性高湖久久久久久久久免费观看| 一本大道久久a久久精品| 两性夫妻黄色片 | 一级黄片播放器| 免费观看在线日韩| 亚洲欧美日韩另类电影网站| 天天操日日干夜夜撸| 国产黄色视频一区二区在线观看| 成人毛片a级毛片在线播放| 麻豆乱淫一区二区| 午夜日本视频在线| 欧美亚洲日本最大视频资源| 国产成人91sexporn| 男人舔女人的私密视频| 五月玫瑰六月丁香| 丁香六月天网| 欧美另类一区| 日韩电影二区| 视频中文字幕在线观看| 久久女婷五月综合色啪小说| 18禁裸乳无遮挡动漫免费视频| 老司机影院成人| 毛片一级片免费看久久久久| 国产亚洲一区二区精品| 亚洲,欧美精品.| av片东京热男人的天堂| 妹子高潮喷水视频| 久久99一区二区三区| 97在线视频观看| 伊人久久国产一区二区| 久久久久精品人妻al黑| 亚洲av成人精品一二三区| 伦理电影免费视频| 香蕉精品网在线| 免费高清在线观看日韩| 亚洲精品久久午夜乱码| 亚洲精品中文字幕在线视频| 99re6热这里在线精品视频| 精品一区二区免费观看| 咕卡用的链子| 男女无遮挡免费网站观看| 草草在线视频免费看| 精品一区二区三区视频在线| 黑丝袜美女国产一区| 又粗又硬又长又爽又黄的视频| 久久久欧美国产精品| 97在线视频观看| 伦理电影大哥的女人| 久久99热这里只频精品6学生| 精品国产一区二区三区久久久樱花| 国产成人a∨麻豆精品| 中文天堂在线官网| 欧美国产精品va在线观看不卡| 国产极品天堂在线| 99热6这里只有精品| 国产永久视频网站| 熟女人妻精品中文字幕| 欧美精品高潮呻吟av久久| av有码第一页| 美女福利国产在线| 女性生殖器流出的白浆| av女优亚洲男人天堂| 精品福利永久在线观看| 久久久久久久国产电影| 国产一区二区在线观看日韩| 天天影视国产精品| 中国三级夫妇交换| 91成人精品电影| 国产日韩一区二区三区精品不卡| 新久久久久国产一级毛片| 狂野欧美激情性xxxx在线观看| 国产成人午夜福利电影在线观看| av国产久精品久网站免费入址| 亚洲人成77777在线视频| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人 | 久久99热这里只频精品6学生| 人体艺术视频欧美日本| 国产免费一区二区三区四区乱码| 婷婷色麻豆天堂久久| 水蜜桃什么品种好| 人人妻人人澡人人看| 18禁动态无遮挡网站| 日本午夜av视频| 男人舔女人的私密视频| 又大又黄又爽视频免费| 久久精品aⅴ一区二区三区四区 | 五月伊人婷婷丁香| 国产精品一二三区在线看| 国产一区二区在线观看av| 亚洲精品一二三| 美女xxoo啪啪120秒动态图| 99国产综合亚洲精品| 在线观看美女被高潮喷水网站| 大香蕉久久网| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人 | 色婷婷久久久亚洲欧美| 在线天堂最新版资源| av不卡在线播放| 国产 一区精品| 亚洲av在线观看美女高潮| 精品国产乱码久久久久久小说| 韩国精品一区二区三区 | 久久精品久久久久久久性| 欧美xxⅹ黑人| 韩国高清视频一区二区三区| 久久99精品国语久久久| 免费少妇av软件| 中国三级夫妇交换| 亚洲精品美女久久av网站| 9热在线视频观看99| 边亲边吃奶的免费视频| 中文字幕免费在线视频6| 欧美国产精品一级二级三级| 国产免费现黄频在线看| 在线免费观看不下载黄p国产| 久久99蜜桃精品久久| 国产一区有黄有色的免费视频| 九色成人免费人妻av| 成人免费观看视频高清| 成人无遮挡网站| 免费人妻精品一区二区三区视频| 日本91视频免费播放| 国产国拍精品亚洲av在线观看| 亚洲成色77777| av电影中文网址| 婷婷色综合大香蕉| 国产av一区二区精品久久| www.熟女人妻精品国产 | 成人黄色视频免费在线看| 在线观看一区二区三区激情| 人人妻人人添人人爽欧美一区卜| 日韩,欧美,国产一区二区三区| www.熟女人妻精品国产 | 午夜久久久在线观看| 国产成人精品在线电影| 午夜免费鲁丝| 男女啪啪激烈高潮av片| 亚洲av在线观看美女高潮| 国产亚洲欧美精品永久| 成人免费观看视频高清| 丝袜美足系列| 国产精品偷伦视频观看了| 亚洲国产看品久久| 男女国产视频网站| 午夜福利在线观看免费完整高清在| 我要看黄色一级片免费的| 国产极品粉嫩免费观看在线|