權(quán)帆, 張健, 顏健, 黎平
大葉藤黃葉片的化學(xué)成分及其抗氧化活性研究
權(quán)帆, 張健, 顏健, 黎平*
(華南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,農(nóng)業(yè)農(nóng)村部華南熱帶農(nóng)業(yè)環(huán)境重點實驗室,廣州 510642)
為了解藥用植物大葉藤黃()葉片的化學(xué)成分,采用UPLC-QTOF-MS從葉片中得到19個化合物,主要為雙黃酮類、黃酮類和間苯三酚類化合物。采用色譜分離法從葉片的80%甲醇提取物中分離得到5個單體化合物,根據(jù)理化性質(zhì)及波譜數(shù)據(jù),分別鑒定為二氫山奈酚 (1)、dulcisbiflavonoid A (2)、7-去甲基銀杏雙黃酮(3)、mono-[2-(4-carboxy- phenoxycarbonyl)-vinyl] ester (4)、山奈酚(5)?;衔?和2為首次從大葉藤黃中分離得到,化合物3和4為首次從藤黃屬植物中分離得到。化合物1和5 清除DPPH自由基的IC50值分別為146.8和39.0g/mL,表明其具有抗氧化活性。
大葉藤黃;葉;化學(xué)成分;黃酮類;抗氧化活性
大葉藤黃()為藤黃科(Clusiaceae)藤黃屬植物,俗稱假山竹,主要分布在云南南部、西南部至西部、廣西南部、臺灣南部、福建、廣東、海南等地區(qū)[1]。在民間大葉藤黃廣泛用于治療腹瀉、痢疾、惡心和嘔吐[2],大葉藤黃也是我國傳統(tǒng)的傣藥之一[3],莖和葉的汁用于驅(qū)蟲, 清火退熱,解食物中毒,其成熟果實可直接食用, 味道較酸,嫩葉作為蔬菜煮食,而在東南亞地區(qū),有許多國家以大葉藤黃入藥[4]。
現(xiàn)代植物化學(xué)研究表明,大葉藤黃的化學(xué)成分為苯甲酮、黃酮、雙黃酮、三萜和多異戊烯基呫噸酮等化合物[5]。為了進(jìn)一步了解大葉藤黃的化學(xué)成分,促進(jìn)該植物的綜合開發(fā)利用,本研究對云南西雙版納產(chǎn)大葉藤黃葉片的化學(xué)成分進(jìn)行分析,超高液相-四極桿飛行時間質(zhì)譜聯(lián)用儀(UPLC-QTOF-MS)分析和鑒定了19個化合物,通過多種色譜法和波譜法分離和鑒定了5個化合物。
AVANCE-600型核磁共振波譜儀(德國Bruker公司);紫外光譜儀Evolution 300紫外-可見光譜儀(Thermo Fisher Scientific);TLC (薄層層析)硅膠板和柱色譜硅膠(青島海洋化工有限公司);MCI GEL (日本三菱公司);Sephadex LH-20葡聚糖凝膠(美國安瑪西公司);超高液相-四極桿飛行時間質(zhì)譜聯(lián)用儀(UPLC-QTOF-MS, Xevo G2, 美國沃特世科技有限公司);Synergy MX酶標(biāo)儀(BIOTEK公司);色譜純甲酸和乙腈(美國Thermo Fisher公司);其余試劑均為分析純分析級試劑(廣州化學(xué)試劑廠)。
本研究所用大葉藤黃采自云南西雙版納,經(jīng)華南農(nóng)業(yè)大學(xué)羊海軍博士鑒定為藤黃科藤黃屬植物大葉藤黃(),憑證標(biāo)本存放于華南農(nóng)業(yè)大學(xué)標(biāo)本館。
供試品溶液的制備 大葉藤黃葉片經(jīng)粉碎后,以體積分?jǐn)?shù)80%甲醇浸泡提取3次,合并提取液,減壓濃縮后得到浸膏,取適量葉片提取物溶于色譜甲醇,配制成1 mg/mL樣品溶液,用0.22m微孔濾膜過濾,裝于2 mL液相樣品瓶,備用。
色譜條件 Waters ACQUITY UPLC?BEH C18色譜柱(2.1 mm×100 mm, 1.70m);流動相: A為0.1%甲酸-水溶液,B為0.1%甲酸-乙腈溶液,梯度洗脫程序為:0~1.0 min,15%~20% B; 1.0~3.0 min, 20%~60% B;3.0~5.0 min, 60%~75% B;5.0~7.5 min, 75%~80% B; 7.5~8.5 min, 80%~95% B; 8.5~10.0 min,95% B; 10.0~10.1 min, 95%~15% B; 10.1~12 min, 15% B; 流速為0.3 mL/min; 柱溫40 ℃; 進(jìn)樣量 2L。
質(zhì)譜條件 質(zhì)譜檢測采用電噴霧離子源(ESI),在正離子模式和負(fù)離子模式下,質(zhì)量掃描范圍100~1 000 Da,正態(tài)的毛細(xì)管電壓設(shè)定為3 kV, 負(fù)態(tài)的毛細(xì)管電壓設(shè)定為1.5 kV,源溫度保持在120 ℃。碰撞氣體為氬氣,氮氣在400 ℃下用作去溶劑,掃描時間為0.5 s,通過MSE模式收集測試數(shù)據(jù)。
將葉片用80%體積分?jǐn)?shù)甲醇提取得到的浸膏,均勻分散在適量純水中,依次用等體積石油醚、氯仿和乙酸乙酯萃取后,減壓濃縮獲得各個萃取層的提取物。其中,乙酸乙酯層浸膏(450 g)進(jìn)行硅膠柱色譜分離,以不同比例的二氯甲烷-甲醇(100:0→ 0:100)進(jìn)行梯度洗脫,得到11個組分Fr.1~Fr.11。取組分Fr.4 (16 g)過MCI柱,得到組分Fr.4-1,F(xiàn)r.4-1經(jīng)硅膠柱層析,二氯甲烷-甲醇體系(40:1→8:1)梯度洗脫,得到29個子餾分(Fr.4-1-1~Fr.4-1-29)。餾分Fr.4-1-12經(jīng)Sephadex LH-20純化得化合物1 (9 mg), Fr.4-1-11經(jīng)Sephadex LH-20純化得化合物2 (10 mg),Fr.4-1-21經(jīng)Sephadex LH-20純化得化合物3 (12 mg),合并Fr.4-1-13和Fr.4-1-14經(jīng)Sephadex LH-20純化得化合物4 (20 mg)和5 (13 mg)。
化合物1 白色粉末;HR-ESI-MS:287.057 4 [M ? H]?, 分子式C15H12O6;1H NMR (600 MHz, DMSO-6):11.91 (s, 1H, 5-OH), 7.32 (d,= 8.5 Hz, 2H, H-2′, 6′), 6.80 (d,= 8.5 Hz, 2H, H-3′, 5′), 5.93 (d,= 2.0 Hz, 1H, H-8), 5.87 (d,= 2.0 Hz, 1H, H-6), 5.05 (d,= 11.4 Hz, 1H, H-2), 4.59 (dd,= 11.3, 2.8 Hz, 1H, H-3);13C NMR (150 MHz, DMSO-6):197.93 (C-4), 166.88 (C-5), 163.39 (C-7), 162.66 (C-9), 157.82 (C-4′), 129.54 (C-2′, 6′), 127.65 (C-1′), 115.01 (C-3′, 5′), 100.55 (C-10), 96.13 (C-6), 95.10 (C-8), 82.97 (C-2), 71.56 (C-3)。以上數(shù)據(jù)與文獻(xiàn)[6]報道一致,故鑒定為二氫山奈酚。
化合物2 黃色粉末;HR-ESI-MS:675.221 9 [M + H]+, 分子式C40H34O10;1H NMR (600 MHz, DMSO-6):13.40 (s, 1H, 5″-OH), 12.98 (s, 1H, 5-OH), 10.80 (s, 1H), 10.27 (s, 1H), 7.89 (d,= 2.2 Hz, 1H, H-2′), 7.78 (d,= 2.0 Hz, 1H, H-6′), 7.54 (d,= 8.8 Hz, 2H, H-2?, H-6?), 6.83 (s, 1H, H-3), 6.79 (s, 1H, H-3″), 6.71 (d,= 8.7 Hz, 2H, H-3?, H- 5?), 6.46 (d,= 1.8 Hz, 1H, H-8), 6.18 (d,= 1.9 Hz, 1H, H-6), 5.44 (t,= 7.1 Hz, 1H, H-8′), 5.25 (t,= 7.1 Hz, 1H, H-10″), 3.46 (d,= 7.1 Hz, 1H, H-7′), 3.43 (d,= 7.2 Hz, 1H, H-9″), 1.76 (d,= 4.8 Hz, 9H, H-10′, H-11′, H-13″), 1.65 (s, 3H, H-12″);13C NMR (150 MHz, DMSO-6):182.23 (C-4″), 181.66 (C-4), 164.08 (C-7), 163.87 (C-2), 163.32 (C-2″), 161.42 (C-5, C-7″), 160.93 (C-4?), 157.97 (C-4′, C-5″), 157.31 (C-8a), 152.86 (C-8a″), 131.96 (C-9′), 130.61 (C-11″), 129.55 (C-3′), 129.30 (C-6′), 128.08 (C-2?, C-6?), 127.55 (C-2′), 122.38 (C-10″), 122.31 (C-8′), 121.41 (C-1?), 115.69 (C-3?, C-5?), 111.51 (C-6″), 103.89 (C-4a″), 103.67 (C-4a, C-8″), 102.98 (C-3), 102.50 (C-3″), 98.80 (C-6), 93.98 (C-8), 28.79 (C-7′), 25.61 (C-12″), 25.52 (C-11′), 21.48 (C-9″), 17.80 (C- 10′), 17.75 (C-13″)。以上數(shù)據(jù)與文獻(xiàn)[7]報道一致, 故鑒定為dulcisbiflavonoid A。
化合物3 黃色粉末;HR-ESI-MS:551.098 6 [M ? H]?,分子式C31H20O10;1H NMR(600 MHz, DMSO):13.07 (s, 1H, OH), 12.97 (s, 1H, OH), 8.00 (dd,= 7.6, 2.0 Hz, 2H, H-2′, 6′), 7.67 (d,= 9.0 Hz, 2H, H-2′′′, 6′′′), 7.15 (d,= 9.2 Hz, 1H, H-5′), 6.92 (d,= 9.0 Hz, 2H, H-3′′′, 5′′′), 6.87 (s, 1H, H-3′′), 6.82 (s, 1H, H-3), 6.45 (d,= 2.1 Hz, 1H, H-8), 6.41 (s, 1H, H-6′′), 6.18 (d,= 2.1 Hz, 1H, H-6), 3.75 (s, 3H, OCH3);13C NMR (150 MHz, DMSO):182.12 (C-4′′), 181.71 (C-4), 164.10 (C-2), 163.81 (C-2′′), 163.19 (C-7), 162.18 (C-7′′), 161.93 (C-5), 161.44 (C-4′′′), 160.54 (C-5′′), 159.65 (C-4′), 157.36 (C-8a), 154.54 (C-8a′′), 131.36 (C-6′), 127.96 (C-2′, C-2′′′), 127.78 (C-6′′′), 122.99 (C-3′), 120.94 (C-1′), 120.05 (C-1′′′), 116.26 (C-5′, C-3′′′), 114.46 (C-5′′′), 104.07 (C-8′′), 103.65 (C-4a′′), 103.6 (C-4a), 103.22 (C-3), 102.99 (C-3′′), 98.82 (C-6), 98.77 (C-6′′), 93.93 (C-8), 55.48 (OCH3)。以上數(shù)據(jù)與文獻(xiàn)[8]報道一致,故鑒定為7-去甲基銀杏雙黃酮。
化合物4 黃色粉末;HR-ESI-MS:357.135 4 [M + H]+,分子式C18H12O8;1H NMR (600 MHz, DMSO-6):7.63 (d,= 8.5 Hz, 2H, H-2, H-6), 7.52 (d,= 8.0 Hz, 2H, H-13, H-15), 7.50 (s, 1H, H-8), 6.80 (d,= 8.3 Hz, 2H, H-3, H-5), 6.76 (d,= 8.5 Hz, 2H, H-12, H-16), 6.73 (d,= 13.1 Hz, 1H, H-2), 6.30 (d,= 15.9 Hz, 1H, H-9), 5.73 (d,= 12.8 Hz, 1H, H-6);13C NMR (150 MHz, DMSO-6):168.15 (C-10), 167.93 (C-17), 159.73 (C-7), 158.60 (C-18), 144.26 (C-8), 141.43 (C-1), 132.39 (C-2, C-6), 130.18 (C-13, C-15), 125.93 (C-11), 125.42 (C-6), 117.32 (C- 3, C-5), 115.90 (C-9), 115.54 (C-12, C-16), 115.00 (C- 14)。以上數(shù)據(jù)與文獻(xiàn)[9]報道一致,故鑒定為mono- [2-(4-carboxy-phenoxycarbonyl)-vinyl] ester。
化合物5 黃色粉末;HR-ESI-MS:287.056 7 [M + H]+,分子式C15H10O6;1H NMR (600 MHz, DMSO-6):12.48 (s, 1H, 5-OH), 10.79 (s, 1H, 7-OH), 10.11 (s, 1H, 4′-OH), 9.38 (s, 1H, 3- OH), 8.04 (d,= 9.0 Hz, 2H, H-2′, 6′), 6.93 (d,= 9.0 Hz,2H, H-3′, 5′), 6.44 (d,= 2.0 Hz, 1H, H-8), 6.19 (d,= 2.0 Hz, 1H, H-6);13C NMR (150 MHz, DMSO-6):175.93 (C-4), 163.91 (C-7), 160.74 (C-5), 159.22 (C- 9), 156.21 (C-4′), 146.84 (C-2), 135.69 (C-3), 129.53 (C-2′, C-6′), 121.71 (C-1′), 115.47 (C-5′, C-3′), 103.08 (C-10), 98.23 (C-6), 93.51 (C-8)。以上數(shù)據(jù)與文獻(xiàn)[10]報道基本一致,故鑒定為山奈酚。
將分離得到的化合物配制成質(zhì)量濃度為5、10、20、40、60、80、100g/mL的樣品,以維生素C為陽性對照,取樣品和維生素C溶液各20L,加入100 mg/L的DPPH乙醇溶液180L,避光反應(yīng)30 min,在517 nm下檢測OD值。DPPH清除率(%)= [1-(1-2)/0]×100%, 式中,0為空白對照吸光度值,1為樣品溶液的吸光度,2為無水乙醇與樣品溶液的吸光度值。
利用UPLC-QTOF-MS對大葉藤黃葉片進(jìn)行化學(xué)成分分析,得到葉片提取物中主要成分的保留時間和準(zhǔn)分子離子峰,此外,還從MSE數(shù)據(jù)分析模式中獲得所有化合物的碎片離子或二級質(zhì)譜。通過準(zhǔn)確分子量,MSE二級質(zhì)譜與公共質(zhì)譜數(shù)據(jù)庫(METLIN,MassBank,ReSpect等)及藤黃屬植物化合物的文獻(xiàn)比較,鑒定化合物的可能結(jié)構(gòu)或類型。初步從大葉藤黃葉片中鑒定了19個化合物,包括雙黃酮類、黃酮類和間苯三酚類化合物(表1),大葉藤黃葉片提取物的總離子圖見圖2。
通過與文獻(xiàn)對比以及分析離子斷裂途徑,共鑒定出2個黃酮和10個雙黃酮類化合物。峰2和13由準(zhǔn)分子離子峰339.027 6 [M - H]–和593.127 4 [M - H]–推斷分子式分別為C15H15O9和C30H25O13, 經(jīng)文獻(xiàn)比對,分別鑒定為eucryphin和銀椴甙;峰4 由準(zhǔn)分子離子峰719.157 0 [M + H]+推斷分子式為C36H30O16。在二級質(zhì)譜圖中,其進(jìn)一步產(chǎn)生557.108 0 [M + H]+碎片離子,該碎片離子在C環(huán)進(jìn)行Diels-Alder重排,得到431.071 0 [M + H]+碎片離子,隨后該碎片離子失去羰基得到403.082 6 [M + H]+碎片離子,通過裂解途徑(圖3)初步鑒定峰4為福木苷。
表1 大葉藤黃葉片化合物UPLC-QTOF-MS檢測結(jié)果
續(xù)表(Continued)
圖2 大葉藤黃葉片提取物的負(fù)態(tài)總離子圖。1~19見表1。
在初步分離鑒定葉片中化合物的過程中,通過數(shù)據(jù)庫比較及推斷離子片段裂解途徑,共鑒定出2個間苯三酚類化合物。峰17由準(zhǔn)分子離子峰483.311 4 [M - H]–推斷分子式為C30H44O5,特征碎片離子為329.174 7 [M - H]–和287.128 4[M - H]–,通過裂解途徑(圖4)初步鑒定峰17為garcinielliptone F。
從大葉藤黃中分離得到的化合物1和5均表現(xiàn)出有效的DPPH自由基清除效果,在5~100g/mL范圍內(nèi),其清除能力隨著質(zhì)量濃度的升高而逐漸增強,IC50值分別為146.8和39.0g/mL (圖5)。
圖3 褔木苷(峰4)的推斷過程。A:褔木苷質(zhì)譜裂解途徑; B: MSE質(zhì)譜圖譜(正態(tài))。
圖4 garcinielliptone F (峰17)的推斷過程。A: garcinielliptone F質(zhì)譜裂解途徑; B: MSE質(zhì)譜圖譜(負(fù)態(tài))。
圖5 化合物1和5對DPPH自由基的清除作用
本研究采用UPLC-QTOF-MS對大葉藤黃葉片的主要化學(xué)成分進(jìn)行分析,嘗試性地鑒定出19個化合物,主要為雙黃酮類、黃酮類和間苯三酚類化合物,其中,峰1、2、5、13~19為首次從該植物中報道?,F(xiàn)代藥理研究證明,黃酮類化合物具有抗腫瘤、抗自由基、抗氧化等作用[28]。此外,從大葉藤黃中分離鑒定了5個化合物,分別為二氫山奈酚(1)、dulcisbiflavonoid A (2)、7-去甲基銀杏雙黃酮(3)、mono-[2-(4-carboxy-phenoxycarbonyl)-vinyl] ester (4)、山奈酚(5)。其中,化合物1和2為首次從大葉藤黃中分離得到,化合物3和4為首次從藤黃屬植物中分離得到;化合物1和5對DPPH自由基具有較強的清除活性,IC50值分別為146.8和39.0g/mL,其他化合物未顯示活性。
據(jù)報道,化合物1通過抑制活性T細(xì)胞的細(xì)胞核因子活性來調(diào)節(jié)Ca2+內(nèi)流,從而抑制T細(xì)胞的活性[29],同時,該化合物也對MCF7細(xì)胞系具有一定的抑制作用,IC50值為12.5g/mL[30];化合物3對細(xì)胞色素P450 2J2 (CYP2J2)具有較強的抑制作用, 可以作為CYP2J2抑制劑用于藥物代謝[31];化合物5具有抗氧化、抗菌、抗炎、降脂以及抗癌效應(yīng)等多種生物學(xué)作用[32]。本研究所得化合物可用于相關(guān)活性篩選,以期為大葉藤黃進(jìn)行活性化學(xué)成分開發(fā)和利用提供參考。
[1] SONG J L, GAO H, YUAN L, et al. Study on the chemical constituents of[J]. J Anhui Agric Sci, 2015, 43(32): 222– 224. [宋敬麗, 高慧, 袁林, 等. 大葉藤黃化學(xué)成分研究 [J]. 安徽農(nóng)業(yè)科學(xué), 2015, 43(32): 222–224. doi: 10.3969/j.issn.0517-6611.2015. 32.077.]
[2] JI F, LI Z L, NIU S L, et al. Studies on the chemical constituents of the barks of[J]. Chin J Med Chem, 2012, 22(6): 507–510. [季豐, 李占林, 牛生吏, 等. 大葉藤黃莖皮化學(xué)成分研究 [J]. 中國藥物化學(xué)雜志, 2012, 22(6): 507–510. doi: 10.14142/j.cnki. cn21-1313/r.2012.06.004.]
[3] ZHANG J Y, HAN Y M, CHANG Y P. Advances in studies on chemical constituents of plants inL. and their pharmaco- logical activities [J]. Drugs Clins, 2012, 27(3): 297–303. [張俊艷, 韓英梅, 常允平. 藤黃屬植物的化學(xué)成分和藥理作用研究進(jìn)展 [J]. 現(xiàn)代藥物與臨床, 2012, 27(3): 297–303.]
[4] HAN Q B, QIAO C F, SONG J Z, et al. Cytotoxic prenylated phenolic compounds from the twig bark of[J]. Chem Biodivers, 2007, 4(5): 940–946. doi: 10.1002/cbdv.200790083.
[5] KHAIRINA N, HASSAN N C, TAHER M, et al. Phytochemical constituents and pharmacological properties of: A review [J]. Biomed Pharmacother, 2018, 106: 1378–1389. doi: 10. 1016/j.biopha.2018.07.087.
[6] MALMIR M, GOHARI A R, SAEIDNIA S, et al. A new bioactive monoterpene-flavonoid from[J]. Fitoterapia, 2015, 105: 107–112. doi: 10.1016/j.fitote.2015.06.012.
[7] Saelee A, Phongpaichit S, Mahabusarakam W. A new prenylated biflavonoid from the leaves of[J]. Nat Prod Res, 2015, 29(20): 1884–1888. doi: 10.1080/14786419.2015.1010087.
[8] Feng W S, Zhu B, Zheng X K, et al. Chemical constituents of[J]. Chin J Nat Med, 2011, 9(2): 108–111. doi: 10.3724/SP.J.1009.2011.00108.
[9] Wei W X, Pan Y J, Chen Y Z, et al. Carboxylic acids from[J]. Chem Nat Compd, 2005, 41(1): 17–21. doi: 10.1007/s10600-005-0064-4.
[10] WANG J R, DUAN J A, ZHOU R H. Chemical constituents from the bark of[J]. Acta Bot Sin, 1999, 41(2): 209– 212. [王靜蓉, 段金廒, 周榮漢. 連香樹樹皮化學(xué)成分的研究 [J]. 植物學(xué)報, 1999, 41(2): 209–212. doi: 10.3321/j.issn:1672-9072.999. 02.020.]
[11] Varugese S, Thomas S, Haleema S, et al. Synthesis of enantiopure concave (+)-avenaciolide and (–)-canadensolide skeletons [J]. Tetrahedron Lett, 2007, 48(46): 8209–8212. doi: 10.1016/j.tetlet. 2007.09.081.
[12] Yoshimura M, Ninomiya K, Tagashira Y, et al. Polyphenolic constituents of the pericarp of mangosteen (L) [J]. J Agric Food Chem, 2015, 63(35): 7670–7674. doi: 10.1021/acs. jafc.5b01771.
[13] Li Y F, Chen Y, Xiao C Y, et al. Rapid screening and identification of-amylase inhibitors fromusing enzyme- immobilized magnetic nanoparticles coupled with HPLC and MS [J]. J Chromatogr B, 2014, 960: 166–173. doi: 10.1016/j.jchromb.2014.04. 041.
[14] Pandey R, Chandra P, Kumar B, et al. Simultaneous deter- mination of multi-class bioactive constituents for quality assessment ofspecies using UHPLC-QqQLIT-MS/MS [J]. Ind Crops Prod, 2015, 77: 861–872. doi: 10.1016/j.indcrop.2015.09.041.
[15] Stark T D, Ranner J, Stiglbauer B, et al. Construction and application of a database for a five-dimensional identification of natural compounds inspecies by means of UPLC-ESI- TWIMS-TOF-MS: Introducing gas phase polyphenol conformer drift time distribution intensity ratios [J]. J Agric Food Chem, 2019, 67(3): 975–985. doi: 10.1021/acs.jafc.8b06157.
[16] Aravind A P A, Pandey R, Kumar B, et al. Phytochemical screening ofby HPLC-ESI-QTOF mass spectro- metry and cytotoxicity studies of the major biflavonoid fukugiside [J]. Nat Prod Commu, 2016, 11(12): 1839–1842.
[17] Aravind A P A, Pandey R, Kumar B, et al. Phytochemical screening ofby HPLC-ESI-QTOF mass spectro- metry and cytotoxicity studies of the major biflavonoid fukugiside [J]. Nat Prod Commun, 2016, 11(12): 1839–1842. doi: 10.1177/1934578X 1601101216.
[18] CHEN Y, GAN F, JIN S, et al. Adamantyl derivatives and rearranged benzophenones fromfruits [J]. RSC Adv, 2017, 7(28): 17289–17296. doi: 10.1039/C7RA01543G.
[19] Li P, Yue G G L, Kwok H F, et al. Using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry-based chemometrics for the identification of anti-angiogenic biflavonoids from ediblespecies [J]. J Agric Food Chem, 2017, 65(38): 8348–8355. doi: 10.1021/acs.jafc.7b02867.
[20] Parveen N S, Singh M P, Khan U, et al. Flavonoid constituents of Gleaves [J]. Fitoterapia, 1994, 65(1): 89–90.
[21] Quan G H, Oh S R, Kim J H, et al. Xanthone constituents of the fruits ofwith anticomplement activity [J]. Phytother Res, 2010, 24(10): 1575–1577. doi: 10.1002/ptr.3177.
[22] Shiekh K A, Benjakul S, Sae-Leaw T. Effect of chamuang (Roxb.) leaf extract on inhibition of melanosis and quality changes of pacific white shrimp during refrigerated storage [J]. Food Chem, 2019, 270: 554–561. doi: 10.1016/j.foodchem.2018.07. 139.
[23] Xu X M, Shi J L, Li L, et al. Biphenyls from the twigs ofand their antitobacco mosaic virus activities [J]. Rec Nat Prod, 2016, 10(5): 566–571.
[24] Li Y K, Wang Z Y, Wu X X, et al. Biphenyl derivatives from the twigs ofand their biological activities [J]. Phyto- chem Lett, 2015, 11: 24–27.
[25] Grossman R B, Yang X W. Structural revision of garcinielliptin oxide and garcinielliptone E [J]. J Nat Prod, 2020, 83(6): 2041–2044. doi: 10.1021/acs.jnatprod.0c00306.
[26] Yun Y, Shioura M, Hitotsuyanagi Y, et al. Garcinielliptone G frominduces apoptosis in acute leukemia cells [J]. Molecules, 2021, 26(9): 2422. doi: 10.3390/molecules26092422.
[27] Klaiklay S, Sukpondma Y, Rukachaisirikul V, et al. Friedolanostanes and xanthones from the twigs of[J]. Phytochemistry, 2013, 85: 161–166. doi: 10.1016/j.phyto chem.2012.08.020.
[28] FENG D P, DUAN B Z, XIA C L, et al. Study on the chemical constituents of[J]. Chin Trad Pat Med, 2021, 43(8): 2253–2255. [馮丹萍, 段寶忠, 夏從龍, 等. 紅花化學(xué)成分的研究 [J]. 中成藥, 2021, 43(8): 2253–2255. doi: 10.3969/j.issn.1001- 1528.2021.08.051.]
[29] Lee H S, Jeong G S. Aromadendrin inhibits T cell activation via regulation of calcium influx and NFAT activity [J]. Molecules, 2020, 25(19): 4590. doi: 10.3390/molecules25194590.
[30] Elghondakly M, Moawad A, Hetta M. Cytotoxicity and chromatographic analysis of, family Zamiaceae [J]. J Appl Pharm Sci, 2020, 10(12): 75–82. doi: 10.7324/JAPS.2020.101 210.
[31] WU Z X, JANG S N, PARK S Y, et al. Inhibitory potential of bilobetin against CYP2J2 activities in human liver microsomes [J]. Mass Spectrom Lett, 2020, 11(4): 113–117. doi: 10.5478/MSL.2020.11.4. 113.
[32] LEI X Q, CHEN A, LIU Y, et al. Research advances on pharmaco- logical effect of kaempferol [J]. Stu Tra Elem Heal, 2017, 34(2): 61–62. [雷曉青, 陳鰲, 劉毅, 等. 山萘酚藥理作用的研究進(jìn)展 [J]. 微量元素與健康研究, 2017, 34(2): 61–62.]
Chemical Constituents and Antioxidant Activities ofLeaves
QUAN Fan, ZHANG Jian, YAN Jian, LI Ping*
(Laboratory of Tropical Agro-Environment in South China, Ministry of Agriculture and Rural Affairs, College of Resources and Environment, South China Agricultural University,Guangzhou 510642, China)
To study the chemical constituents ofleaves, nineteen compounds were obtained from its leaves by UPLC-QTOF-MS, including bioflavonoids, flavonoids and phloroglucinols. Five compounds were isolated from 80% methanol extract of leaves by chromatographic methods. On the basis of spectral data, they were identified as dihydrokaempferol (1), dulcisbiflavonoid A (2), bilobetin (3), mono-[2- (4-carboxy- phenoxycarbonyl)-vinyl] ester (4) and kaempferol (5). Compounds 1 and 2 were isolated fromfor the first time, while compounds 3 and 4 were isolated from genusfor the first time. Compounds 1 and 5 showed antioxidant activity with IC50of 146.8 and 39.0g/mL, respectively.
; Leaf; Chemical constituent; Flavonoid; Antioxidant activity
10.11926/jtsb.4608
2022-01-17
2022-02-22
國家自然科學(xué)基金項目(31800283)資助
This work was supported by the National Nature Science Foundation of China (Grant No. 31800283).
權(quán)帆(1997年生),女,碩士研究生,研究方向為植物資源開發(fā)及利用研究。E-mail: 15060059695@163.com
. E-mail: liping2016@scau.edu.cn