• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    哺乳動(dòng)物卵母細(xì)胞的DNA損傷與修復(fù)研究進(jìn)展

    2023-05-23 03:29:40張楠張玨林戈
    遺傳 2023年5期
    關(guān)鍵詞:小鼠機(jī)制

    張楠,張玨,林戈,

    綜 述

    哺乳動(dòng)物卵母細(xì)胞的DNA損傷與修復(fù)研究進(jìn)展

    張楠1,張玨2,林戈1,2

    1. 中南大學(xué)基礎(chǔ)醫(yī)學(xué)院生殖與干細(xì)胞工程研究所,長(zhǎng)沙 410000 2. 中信湘雅生殖與遺傳專(zhuān)科醫(yī)院,長(zhǎng)沙 410000

    DNA損傷是影響配子發(fā)生和胚胎發(fā)育的關(guān)鍵因素之一。卵母細(xì)胞容易被各種內(nèi)外源因素(如活性氧、輻射、化療藥物等)誘發(fā)DNA損傷。目前研究發(fā)現(xiàn),對(duì)于各類(lèi)DNA損傷,各發(fā)育階段的卵母細(xì)胞能夠做出相應(yīng)的DNA損傷反應(yīng),通過(guò)復(fù)雜的機(jī)制對(duì)DNA進(jìn)行修復(fù)或者啟動(dòng)細(xì)胞凋亡。相比于進(jìn)入生長(zhǎng)階段的卵母細(xì)胞,原始卵泡卵母細(xì)胞更容易被DNA損傷誘導(dǎo)凋亡。DNA損傷不易誘導(dǎo)卵母細(xì)胞減數(shù)分裂成熟進(jìn)程停滯,然而攜帶DNA損傷的卵母細(xì)胞的發(fā)育能力明顯下降。在臨床上,衰老、放療和化療是導(dǎo)致女性卵母細(xì)胞DNA損傷、卵巢儲(chǔ)備降低和不孕的常見(jiàn)原因。為此,人們嘗試了能夠減輕卵母細(xì)胞DNA損傷和增強(qiáng)DNA修復(fù)能力的多種方法,試圖保護(hù)卵母細(xì)胞。本文對(duì)哺乳動(dòng)物的各發(fā)育階段卵母細(xì)胞的DNA損傷與修復(fù)的相關(guān)研究進(jìn)行了梳理和總結(jié),并討論了其潛在的臨床價(jià)值,以期為生育力保護(hù)提供新的策略。

    卵母細(xì)胞;DNA損傷;DNA修復(fù);DNA損傷反應(yīng)

    DNA作為遺傳信息的核心,是細(xì)胞存活和發(fā)揮功能的基石。對(duì)于生殖細(xì)胞而言,DNA的完好性是其正常發(fā)育和形成健康胚胎的基礎(chǔ)[1]。然而,DNA是脆弱的,許多有害物質(zhì)都會(huì)造成細(xì)胞DNA損傷。細(xì)胞能夠通過(guò)復(fù)雜的DNA修復(fù)機(jī)制對(duì)損傷的DNA進(jìn)行修復(fù)。如果損傷的DNA沒(méi)有被成功修復(fù),則有可能導(dǎo)致基因突變、細(xì)胞功能改變和疾病的發(fā)生[2]。哺乳動(dòng)物卵母細(xì)胞的質(zhì)量是早期胚胎發(fā)育能力的關(guān)鍵決定因素[3]。卵母細(xì)胞的DNA損傷可能導(dǎo)致機(jī)體的生殖功能下降甚至喪失[1,4]。近年來(lái),關(guān)于卵母細(xì)胞的DNA損傷與修復(fù)機(jī)制的研究逐漸成為一個(gè)熱點(diǎn)。在各種DNA損傷類(lèi)型中,對(duì)DNA雙鏈斷裂(double-strand breaks,DSBs)的研究是最多的。目前研究認(rèn)為,對(duì)于各種內(nèi)外源因素誘導(dǎo)的DNA損傷,哺乳動(dòng)物卵母細(xì)胞是敏感的,能夠及時(shí)啟動(dòng)DNA損傷反應(yīng)(DNA damage response,DDR),發(fā)生DNA修復(fù)或凋亡等一系列活動(dòng)[5~7]。這對(duì)于保障卵母細(xì)胞質(zhì)量及早期胚胎的正常發(fā)育是至關(guān)重要的。本文對(duì)哺乳動(dòng)物的各發(fā)育階段卵母細(xì)胞的DNA損傷與修復(fù)機(jī)制的研究現(xiàn)狀進(jìn)行了闡述,強(qiáng)調(diào)了卵母細(xì)胞DNA損傷在衰老和放化療導(dǎo)致的生育力下降中的重要作用,并簡(jiǎn)要總結(jié)了目前關(guān)于減輕卵母細(xì)胞DNA損傷和改善卵母細(xì)胞質(zhì)量的可能方法。

    1 體細(xì)胞的經(jīng)典DDR與DNA修復(fù)機(jī)制

    細(xì)胞的DNA損傷可由各種外源性或內(nèi)源性因素引起,前者即環(huán)境因素,如紫外線(xiàn)、電離輻射、毒性化學(xué)物質(zhì),后者即細(xì)胞內(nèi)代謝活動(dòng)的產(chǎn)物,如氧化呼吸、脂質(zhì)過(guò)氧化等活動(dòng)產(chǎn)生的活性氧(reactive oxygen species,ROS)。此外,DNA損傷也可以自發(fā)產(chǎn)生[2]。DNA損傷的形式包括堿基改變、單鏈斷裂、DSBs、加合物病變、鏈間交聯(lián)(interstrand crosslinks,ICLs)等[8]。這些損傷可能干擾DNA復(fù)制或轉(zhuǎn)錄過(guò)程進(jìn)而損害細(xì)胞功能。細(xì)胞通常能夠積極地做出DDR以應(yīng)對(duì)DNA損傷。DDR途徑由多種蛋白質(zhì)組成。根據(jù)功能的不同,這些蛋白質(zhì)可分為傳感器、調(diào)解器、轉(zhuǎn)導(dǎo)器和效應(yīng)器。DDR涉及許多細(xì)胞反應(yīng),包括細(xì)胞周期停滯、染色質(zhì)重塑、損傷修復(fù)和細(xì)胞凋亡,是應(yīng)對(duì)刺激較全面的細(xì)胞反應(yīng)之一[2,8]。細(xì)胞主要在G1/S期和G2/M期激活DDR機(jī)制。共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張突變蛋白(ataxia telangiectasia mutated,ATM)和ATM與Rad3相關(guān)蛋白(ATM and Rad3 related,ATR)是重要的DNA損傷檢查點(diǎn)激酶。在G1期,ATM和ATR激酶被招募至DNA損傷位點(diǎn)并發(fā)生磷酸化,隨即激活下游的細(xì)胞周期檢查點(diǎn)激酶1(checkpoint kinase 1,CHK1)和細(xì)胞周期檢查點(diǎn)激酶2(checkpoint kinase 2,CHK2)[9~11]。CHK1和CHK2激酶繼續(xù)激活下游效應(yīng)器p53。在p53的介導(dǎo)下,p21結(jié)合并抑制了細(xì)胞周期依賴(lài)性激酶(cyclin- dependent kinase,CDK)的活性,從而使細(xì)胞周期暫停[12,13]。在G2期,DNA損傷位點(diǎn)同樣會(huì)招募并激活A(yù)TM/ATR激酶和CHK1/CHK2激酶。不同的是,CHK1/CHK2激酶通過(guò)抑制細(xì)胞分裂周期因子25(cell division cyclin 25,CDC25)磷酸酶進(jìn)而抑制CDK1的激活,從而使細(xì)胞周期停滯[13~15]。在細(xì)胞周期停滯期間,細(xì)胞將通過(guò)復(fù)雜的機(jī)制對(duì)損傷的DNA進(jìn)行修復(fù)。在DNA修復(fù)完成后,DNA損傷檢查點(diǎn)激酶發(fā)生去磷酸化,細(xì)胞周期恢復(fù)[13~15]。當(dāng)DNA損傷不能被完全修復(fù)時(shí),p53將激活促凋亡基因如p53上調(diào)凋亡調(diào)節(jié)基因(p53-upregulated modu-lator of apoptosis,)和佛波醇-12-豆蔻酸-13-乙酸誘導(dǎo)蛋白1基因(phorbol-12-myristate-13-acetate- induced protein 1,/)的轉(zhuǎn)錄,從而誘導(dǎo)細(xì)胞凋亡[2,16,17]。

    對(duì)于不同類(lèi)型的DNA損傷,細(xì)胞能夠通過(guò)相應(yīng)的DNA修復(fù)機(jī)制進(jìn)行修復(fù)。DNA復(fù)制過(guò)程中發(fā)生的堿基錯(cuò)配能夠通過(guò)錯(cuò)配修復(fù)(mismatch repair,MMR)機(jī)制得到糾正;發(fā)生微小化學(xué)變化的堿基能夠通過(guò)堿基切除修復(fù)(base excise repair,BER)機(jī)制被去除;較大的DNA病變則可通過(guò)核苷酸切除修復(fù)(nucleotide excision repair,NER)機(jī)制被去除;DNA單鏈斷裂的修復(fù)過(guò)程涉及一組酶級(jí)聯(lián)反應(yīng);同源重組(homologous recombination,HR)與非同源末端連接(non-homologous end joining,NHEJ)是修復(fù)DSBs的兩種機(jī)制;ICLs病變的去除機(jī)制涉及一組與范可尼貧血蛋白相關(guān)的復(fù)雜反應(yīng)[2,18]。普遍認(rèn)為,DSBs是DNA損傷類(lèi)型中最嚴(yán)重的,可導(dǎo)致基因組重排和結(jié)構(gòu)變化,如缺失、易位、融合等[2,8,19]。DSBs的修復(fù)機(jī)制包括HR和NHEJ。在HR修復(fù)過(guò)程中,首先MRN復(fù)合物被招募至DSBs末端并對(duì)DNA末端進(jìn)行處理和切割以產(chǎn)生單鏈DNA[20,21]。之后,復(fù)制蛋白A(replication protein A,RPA)將單鏈DNA包裹,使其免受核酸酶作用并去除其二級(jí)結(jié)構(gòu)。在乳腺癌蛋白2(breast cancer 2,BRCA2)的介導(dǎo)下,RPA被DNA修復(fù)蛋白R(shí)AD51(DNA repair protein RAD51)替換。隨后,RAD51介導(dǎo)單鏈DNA侵入未受損的姐妹染色體[22,23]。最后在聚合酶、核酸酶、螺旋酶和其他分子的作用下,DNA進(jìn)行延伸并完成修復(fù)[24,25]。不同于HR,NHEJ是通過(guò)DNA連接酶將DSBs末端直接進(jìn)行連接。首先Ku70/Ku80蛋白識(shí)別并結(jié)合至DSBs末端,隨后招募并激活DNA依賴(lài)性蛋白激酶催化亞基蛋白(DNA-dependent protein kinase catalytic subunit,DNA-PKcs)[26,27]。之后,DNA-PKcs招募重組酶Artemis對(duì)DNA末端進(jìn)行處理,同時(shí)招募由X射線(xiàn)修復(fù)交叉互補(bǔ)蛋白4(X-ray repair cross-complementing protein 4,XRCC4)和DNA連接酶4(DNA ligase 4,LIG4)組成的蛋白復(fù)合物對(duì)DNA末端進(jìn)行連接[27,28]。HR發(fā)生在細(xì)胞周期的S期和G2期,利用未受損的姐妹染色體進(jìn)行修復(fù),因而更加精準(zhǔn)。NHEJ是將DSBs的兩端直接連接在一起,雖不精準(zhǔn),但可以在整個(gè)細(xì)胞周期運(yùn)作[25,29]。普遍認(rèn)為,DNA損傷的累積和錯(cuò)誤的DNA修復(fù)容易引起基因突變和染色體畸變,導(dǎo)致細(xì)胞功能的減退和喪失,進(jìn)而可能促進(jìn)衰老和疾病的發(fā)生[2,8,30]。因此,細(xì)胞保持其基因組的穩(wěn)定性和完整性是至關(guān)重要的。

    2 各發(fā)育階段卵母細(xì)胞的DNA損傷與修復(fù)機(jī)制

    2.1 原始卵泡卵母細(xì)胞

    胎兒期的卵母細(xì)胞開(kāi)始了第一次減數(shù)分裂,在前期的細(xì)線(xiàn)期至粗線(xiàn)期階段,同源染色體發(fā)生了聯(lián)會(huì)和重組事件。在同源染色體重組完成后,卵母細(xì)胞即停滯在第一次減數(shù)分裂前期的雙線(xiàn)期。在同源染色體聯(lián)會(huì)過(guò)程中,染色體內(nèi)主動(dòng)發(fā)生DNA DSBs,從而允許同源非姐妹染色體之間進(jìn)行基因重組和形成染色體交叉。染色體交叉對(duì)同源染色體的中期對(duì)齊和后期正確分離至關(guān)重要[31,32]。卵母細(xì)胞的減數(shù)分裂重組過(guò)程受到了時(shí)間和空間的嚴(yán)格調(diào)控,重組過(guò)程中的DSBs修復(fù)失敗會(huì)導(dǎo)致卵母細(xì)胞凋亡或卵母細(xì)胞染色體錯(cuò)誤[31~33]。哺乳動(dòng)物出生后的卵母細(xì)胞與周?chē)膯螌颖馄筋w粒細(xì)胞共同形成原始卵泡結(jié)構(gòu)。原始卵泡卵母細(xì)胞處于第一次減數(shù)分裂前期的雙線(xiàn)期,此時(shí)卵母細(xì)胞中的同源染色體通過(guò)染色體交叉連接在一起。在被招募進(jìn)入生長(zhǎng)發(fā)育軌道前,原始卵泡卵母細(xì)胞長(zhǎng)期維持在第一次減數(shù)分裂前期的雙線(xiàn)期,并保持代謝不活躍的狀態(tài)[34]。這一維持時(shí)間在小鼠()中可達(dá)數(shù)月,在人類(lèi)()中則長(zhǎng)達(dá)50年[35]。由于長(zhǎng)期停滯在第一次減數(shù)分裂前期的雙線(xiàn)期,原始卵泡卵母細(xì)胞發(fā)生并累積DNA損傷的風(fēng)險(xiǎn)較高。原始卵泡卵母細(xì)胞的DNA完好是卵母細(xì)胞后續(xù)發(fā)育的基本保障,此外原始卵泡庫(kù)代表著哺乳動(dòng)物生命中全部的生殖儲(chǔ)備。因此原始卵泡卵母細(xì)胞對(duì)DNA損傷有著敏感和嚴(yán)格的監(jiān)控反應(yīng)機(jī)制,以能夠修復(fù)DNA損傷或清除存在損傷的卵母細(xì)胞,從而確保個(gè)體排出最優(yōu)質(zhì)的卵母細(xì)胞用于受精和胚胎發(fā)育。

    大量動(dòng)物實(shí)驗(yàn)和臨床數(shù)據(jù)表明,輻射和化療藥物等外源性因素很容易誘導(dǎo)原始卵泡卵母細(xì)胞出現(xiàn)廣泛DNA損傷和發(fā)生凋亡[36~40]。在臨床上,化療和卵巢局部放療導(dǎo)致的原始卵泡庫(kù)的損耗容易誘發(fā)早發(fā)性卵巢功能不全(premature ovarian insufficiency,POI)、不孕或過(guò)早絕經(jīng)等疾病[36,37,41]。在體細(xì)胞DNA損傷時(shí),p53是介導(dǎo)細(xì)胞凋亡的關(guān)鍵因子。與體細(xì)胞不同的是,由基因(人類(lèi)為基因)編碼的反式激活p63蛋白(trans-activating p63,TAp63)是介導(dǎo)DNA損傷的卵母細(xì)胞發(fā)生凋亡的關(guān)鍵因子,TAp63特異性表達(dá)于原始卵泡和初級(jí)卵泡的卵母細(xì)胞中。是迄今為止發(fā)現(xiàn)的唯一參與卵母細(xì)胞DDR的家族成員[42~47]。人類(lèi)基因功能獲得性突變導(dǎo)致卵母細(xì)胞凋亡,最終導(dǎo)致POI的發(fā)生[48]。當(dāng)原始卵泡卵母細(xì)胞發(fā)生DNA損傷時(shí),在A(yíng)TM激酶和CHK2激酶的調(diào)控下,TAp63被磷酸化激活。TAp63由封閉的、無(wú)活性的二聚體構(gòu)象轉(zhuǎn)變?yōu)殚_(kāi)放的、有活性的四聚體構(gòu)象,其與DNA的結(jié)合親和力顯著提高[42,49]。磷酸化的TAp63繼而激活和等基因的轉(zhuǎn)錄和翻譯。之后PUMA和NOXA與促凋亡的BCL2相關(guān)的X蛋白(BCL2-associated X protein,BAX)和BCL2拮抗劑/殺傷蛋白(BCL2- antagonist/killer,BAK)相互作用,最終誘導(dǎo)細(xì)胞凋亡[36~40]。通過(guò)進(jìn)一步構(gòu)建、和等基因敲除的小鼠,研究發(fā)現(xiàn)經(jīng)γ輻射或化療藥物處理的基因敲除小鼠能夠維持原始卵泡數(shù)量,并生育正常的子代[38,40,45,50~52]。綜上所述,自然情況下,大部分原始卵泡卵母細(xì)胞在發(fā)生廣泛的DNA損傷時(shí),選擇啟動(dòng)凋亡程序以消除自身;然而當(dāng)人為阻斷其凋亡時(shí),這些基因受損的卵母細(xì)胞能夠存活,甚至可以完成生育的使命,表明原始卵泡卵母細(xì)胞有能力對(duì)DNA損傷進(jìn)行有效修復(fù)。

    在對(duì)于原始卵泡卵母細(xì)胞的DNA修復(fù)的相關(guān)研究中,關(guān)于DSBs修復(fù)的研究是最多的。由于原始卵泡卵母細(xì)胞長(zhǎng)期停滯在第一次減數(shù)分裂前期,細(xì)胞中存在的姐妹染色體可以提供準(zhǔn)確修復(fù)的模板,因此原始卵泡卵母細(xì)胞主要通過(guò)復(fù)雜而精確的HR機(jī)制對(duì)DSBs進(jìn)行修復(fù),以保障卵母細(xì)胞的基因組完整性。RAD51是重要的HR修復(fù)因子,Kujjo等[53]首次在小鼠的原始卵泡卵母細(xì)胞內(nèi)發(fā)現(xiàn)了RAD51。后續(xù)研究進(jìn)一步證明,小鼠原始卵泡卵母細(xì)胞通過(guò)激活A(yù)TM,磷酸化組蛋白H2AX(組蛋白H2A變體)的139位絲氨酸,即形成γH2AX位點(diǎn),將RAD51定位于DNA斷裂位點(diǎn),從而通過(guò)HR機(jī)制對(duì)γ輻射和化療藥物誘導(dǎo)的DSBs進(jìn)行快速修復(fù)[50,52]。乳腺癌蛋白1(breast cancer 1,BRCA1)也是HR修復(fù)因子家族的重要成員[25]。BRCA1在小鼠和人類(lèi)的原始卵泡卵母細(xì)胞的DSBs修復(fù)中發(fā)揮關(guān)鍵作用,基因突變?nèi)巳旱脑悸雅輧?chǔ)備減少[54,55]。NHEJ作為另一種DSBs修復(fù)機(jī)制,在原始卵泡卵母細(xì)胞中可能不發(fā)揮主要作用[52,56]。除DSBs損傷外,范可尼貧血互補(bǔ)群E型基因(Fanconi anemia complemen-tation group E,)在小鼠原始卵泡卵母細(xì)胞的ICLs損傷修復(fù)中發(fā)揮關(guān)鍵作用,基因敲除小鼠的原始卵泡幾乎耗竭[57]。關(guān)于原始卵泡卵母細(xì)胞的其他類(lèi)型DNA損傷與修復(fù)機(jī)制有待進(jìn)一步探索。

    2.2 生長(zhǎng)階段的卵母細(xì)胞

    在卵泡刺激素的作用下,原始卵泡被激活進(jìn)入生長(zhǎng)發(fā)育軌道,成為生長(zhǎng)卵泡。生長(zhǎng)卵泡進(jìn)一步可分為初級(jí)卵泡、次級(jí)卵泡和竇卵泡。生長(zhǎng)階段的卵母細(xì)胞依然維持在第一次減數(shù)分裂前期的雙線(xiàn)期。此階段的卵母細(xì)胞生長(zhǎng)發(fā)育十分活躍,表現(xiàn)為細(xì)胞體積增大,基因轉(zhuǎn)錄和蛋白質(zhì)合成顯著增加。這些母源RNA和蛋白質(zhì)被儲(chǔ)存在生發(fā)泡(germinal vesicle,GV)和胞質(zhì)中,以支持卵母細(xì)胞減數(shù)分裂成熟和早期胚胎發(fā)育[58]。類(lèi)似于原始卵泡卵母細(xì)胞,在應(yīng)對(duì)DNA損傷時(shí),初級(jí)卵泡卵母細(xì)胞也會(huì)發(fā)生由TAp63介導(dǎo)的細(xì)胞凋亡反應(yīng)?;蚯贸∈蟮某跫?jí)卵泡卵母細(xì)胞能抵抗一定劑量的輻射而存活[42]。因此,在原始卵泡和初級(jí)卵泡中,DNA損傷的卵母細(xì)胞均傾向于通過(guò)TAp63介導(dǎo)的凋亡程序清除自身。然而,在初級(jí)卵泡之后的生長(zhǎng)階段,卵母細(xì)胞中TAp63表達(dá)水平下降,因此生長(zhǎng)階段的卵母細(xì)胞在發(fā)生DNA損傷后不易凋亡。Puy等[59]報(bào)道,0.5 Gy的射線(xiàn)誘發(fā)了小鼠原始卵泡的大量損失,而大量生長(zhǎng)卵泡在經(jīng)8 Gy的射線(xiàn)照射后仍然存活。Luan等[40]也表明,與休眠的原始卵泡卵母細(xì)胞相比,激活后的卵母細(xì)胞對(duì)化療藥物(環(huán)磷酰胺)的敏感性更差。研究認(rèn)為,生長(zhǎng)階段的卵母細(xì)胞更傾向于對(duì)DNA損傷進(jìn)行修復(fù),此時(shí)卵母細(xì)胞中與DNA修復(fù)相關(guān)的基因表達(dá)增加[60~64]。對(duì)于DSBs損傷,與原始卵泡卵母細(xì)胞一樣,生長(zhǎng)階段的卵母細(xì)胞也主要通過(guò)HR機(jī)制進(jìn)行修復(fù)[50]。然而,如果DNA損傷超過(guò)了一定的限度,卵母細(xì)胞也將發(fā)生凋亡。多柔比星(doxorubicin,DOX)和依托泊苷(etoposide,ETP)是廣泛使用的DNA損傷誘導(dǎo)藥物。低劑量DOX和ETP對(duì)小鼠卵泡的存活和生長(zhǎng)影響較小,而高劑量DOX和ETP則會(huì)導(dǎo)致生長(zhǎng)卵泡存活率大幅下降,卵母細(xì)胞凋亡率增加[65,66]。

    2.3 完全生長(zhǎng)的卵母細(xì)胞

    卵泡生長(zhǎng)發(fā)育的最后階段為成熟卵泡。成熟卵泡的卵母細(xì)胞是完全生長(zhǎng)的卵母細(xì)胞。在完全生長(zhǎng)的卵母細(xì)胞中,染色質(zhì)結(jié)構(gòu)已從非包圍核仁狀態(tài)轉(zhuǎn)變?yōu)榘鼑巳薁顟B(tài),基因轉(zhuǎn)錄沉默[67]。在黃體生成素(luteinizing hormone,LH)峰的作用下,處于第一次減數(shù)分裂前期的完全生長(zhǎng)的GV卵母細(xì)胞恢復(fù)減數(shù)分裂,發(fā)生生發(fā)泡破裂(germinal vesicle breakdown,GVBD),進(jìn)入第一次減數(shù)分裂中期(metaphase I,MI),此時(shí)通過(guò)交叉連接的同源染色體排列在赤道板上。隨后同源染色體在紡錘絲的牽引下分離并向兩極移動(dòng)。移至兩極后,染色體解旋,核膜重建,同時(shí)細(xì)胞質(zhì)分裂,卵母細(xì)胞排出第一極體,卵母細(xì)胞中剩余每對(duì)同源染色體中的一條,至此第一次減數(shù)分裂完成。卵母細(xì)胞隨后進(jìn)入第二次減數(shù)分裂,并停滯在第二次減數(shù)分裂中期(metaphase II,MII),此時(shí)通過(guò)著絲粒連接的高度螺旋化的姐妹染色體排列在赤道板上。以上的過(guò)程被稱(chēng)為卵母細(xì)胞減數(shù)分裂成熟[58]。

    轉(zhuǎn)錄沉默的卵母細(xì)胞的DNA修復(fù)依賴(lài)于細(xì)胞中儲(chǔ)存的相關(guān)mRNA和蛋白質(zhì)。在完全生長(zhǎng)的GV和MII卵母細(xì)胞中,參與各種DNA修復(fù)途徑的mRNA和蛋白質(zhì)都已被確定[7,60~63,68,69]。研究已證明,完全生長(zhǎng)的卵母細(xì)胞能夠通過(guò)HR和NHEJ機(jī)制對(duì)DSBs進(jìn)行修復(fù)[70]。在小鼠完全生長(zhǎng)的GV卵母細(xì)胞中敲降、、等HR關(guān)鍵基因造成了卵母細(xì)胞DSBs增加,卵母細(xì)胞存活率降低[54]。蛋白磷酸酶4催化亞基基因(protein phosphatase 4 catalytic subunit,)是促進(jìn)HR修復(fù)的重要基因,條件性敲除小鼠的GV和MII卵母細(xì)胞的HR修復(fù)功能障礙,細(xì)胞出現(xiàn)大量DNA損傷[71]。Lee等[70]的研究進(jìn)一步表明,在減數(shù)分裂成熟期間,DSBs修復(fù)途徑從HR過(guò)渡到NHEJ,HR在GV卵母細(xì)胞中占優(yōu)勢(shì),NHEJ在MII卵母細(xì)胞中占優(yōu)勢(shì)。此外,兩項(xiàng)研究也證明小鼠MII卵母細(xì)胞能夠通過(guò)NHEJ機(jī)制,而不是HR機(jī)制,對(duì)DSBs進(jìn)行修復(fù)[72,73]。原因可能是相比于長(zhǎng)期停滯在第一次減數(shù)分裂前期雙線(xiàn)期的GV卵母細(xì)胞,一方面MII卵母細(xì)胞的染色體處于高度螺旋化的狀態(tài),HR機(jī)制在細(xì)胞分裂中期發(fā)揮的作用受限,另一方面減數(shù)分裂成熟期間的卵母細(xì)胞可能不具備進(jìn)行HR修復(fù)所需的較長(zhǎng)時(shí)間,因此能夠在整個(gè)細(xì)胞周期進(jìn)行快速修復(fù)的NHEJ機(jī)制是MII卵母細(xì)胞修復(fù)DSBs的主要選擇[74,75]。此外,BER途徑能夠修復(fù)氧化誘導(dǎo)的DNA損傷,即8-羥基脫氧鳥(niǎo)苷(8-hydroxy-2'-deoxyguanosine,8-OHdG)[76]。Lord等[77]發(fā)現(xiàn),小鼠MII卵母細(xì)胞具有參與BER途徑的幾乎所有蛋白質(zhì),并且卵母細(xì)胞受精后的一系列翻譯后修飾活動(dòng)能夠激活BER途徑的關(guān)鍵蛋白,增強(qiáng)細(xì)胞的DNA修復(fù)能力。ICLs修復(fù)途徑的FANCE蛋白也能夠保護(hù)小鼠GV和MII卵母細(xì)胞的DNA[57]。以上研究共同表明,哺乳動(dòng)物完全生長(zhǎng)的卵母細(xì)胞中存在活躍的DNA修復(fù)活動(dòng)。

    3 DNA損傷對(duì)卵母細(xì)胞減數(shù)分裂成熟的影響及機(jī)制

    前文已闡述,DNA損傷在一定程度上影響卵母細(xì)胞的存活和發(fā)育。考慮到卵母細(xì)胞的功能,隨之而來(lái)的問(wèn)題是,DNA損傷是否對(duì)卵母細(xì)胞的減數(shù)分裂成熟有所影響?眾所周知,卵母細(xì)胞長(zhǎng)期處于第一次減數(shù)分裂的G2/前期。直到排卵時(shí),卵母細(xì)胞恢復(fù)減數(shù)分裂,發(fā)育至MII期[58]。一些研究共同表明,外源誘導(dǎo)的DNA損傷不易導(dǎo)致GV卵母細(xì)胞停滯在G2/前期,大多數(shù)卵母細(xì)胞能夠恢復(fù)甚至完成第一次減數(shù)分裂。DNA損傷對(duì)卵母細(xì)胞的減數(shù)分裂成熟進(jìn)程影響較小,除非DNA損傷嚴(yán)重[6,70,78~82]。這與體細(xì)胞應(yīng)對(duì)DNA損傷時(shí)所發(fā)生的G2/M期停滯反應(yīng)有所不同。當(dāng)體細(xì)胞在G2/M期發(fā)生DNA損傷時(shí),細(xì)胞啟動(dòng)DDR,激活DNA損傷檢查點(diǎn)激酶,通過(guò)抑制CDC25磷酸酶最終抑制CDK1的激活,從而使細(xì)胞停滯在G2/M期,為修復(fù)病變提供時(shí)間[83]。卵母細(xì)胞不能建立強(qiáng)有力的G2/前期停滯反應(yīng)的原因可能是DNA損傷檢查點(diǎn)激酶被激活的強(qiáng)度不夠[78]。近期的兩項(xiàng)研究作出了更多的解釋。野生型P53誘導(dǎo)的磷酸酶1(wild-type p53-induced phosphatase 1,WIP1)能夠?qū)DR途徑的許多蛋白進(jìn)行去磷酸化[84]。Leem等[85]發(fā)現(xiàn),在卵母細(xì)胞減數(shù)分裂成熟過(guò)程中持續(xù)表達(dá)的WIP1阻礙了ATM的磷酸化,從而抑制了DNA損傷檢查點(diǎn)的激活,細(xì)胞周期無(wú)法暫停。另一種解釋是小鼠卵母細(xì)胞的DNA損傷檢查點(diǎn)的激活是延遲的,在DNA損傷發(fā)生數(shù)小時(shí)(20 小時(shí)以上)后才啟動(dòng)[86]。

    在經(jīng)典的G2/M DNA損傷檢查點(diǎn)不能被有效激活的情況下,卵母細(xì)胞依然有能力誘導(dǎo)細(xì)胞周期停滯以應(yīng)對(duì)DNA損傷,這與紡錘體組裝檢查點(diǎn)(spindle assembly checkpoint,SAC)有關(guān)。SAC在紡錘體組裝過(guò)程中負(fù)責(zé)監(jiān)測(cè)著絲粒與微管的附著狀態(tài),從而保障染色體的正確分離[87,88]。毒性藥物(如DOX、ETP)、紫外線(xiàn)B和電離輻射誘導(dǎo)的基因組損傷可激活SAC,誘導(dǎo)卵母細(xì)胞停滯在MI期。而抑制SAC則可以阻止DNA損傷誘導(dǎo)的MI期停滯反應(yīng)。然而,卵母細(xì)胞的基因組輕中度損傷可能不足以激活SAC,卵母細(xì)胞能夠發(fā)育至MII期。需注意的是,逃逸的卵母細(xì)胞存在DNA損傷、紡錘體變形、染色體紊亂等異常[70,78,80,87,88]。這些異??赡軐?duì)卵母細(xì)胞受精及后續(xù)胚胎發(fā)育過(guò)程造成影響。研究發(fā)現(xiàn),有DNA損傷的小鼠MII卵母細(xì)胞受精后形成的胚胎發(fā)育異常,囊胚率顯著下降[71,72]。近期,Leem等[89]發(fā)現(xiàn),在小鼠卵母細(xì)胞中存在一個(gè)依賴(lài)于DNA損傷檢查點(diǎn)1的介質(zhì)蛋白(mediator of DNA damage checkpoint 1,MDC1)的非經(jīng)典G2/M DNA損傷檢查點(diǎn)。在卵母細(xì)胞DNA損傷時(shí),MDC1與后期促進(jìn)復(fù)合物/環(huán)狀體(anaphase promoting complex/cyclosome,APC/C)- APC/C激活蛋白CDH1(APC/C activator protein CDH1,CDH1)發(fā)生解離,游離的APC/C-CDH1介導(dǎo)了細(xì)胞周期蛋白B1(cyclin B1)降解從而推遲M期的進(jìn)入。

    4 卵母細(xì)胞DNA損傷與修復(fù)相關(guān)研究的臨床價(jià)值

    4.1 生殖衰老與抗氧化

    當(dāng)今社會(huì)人們推遲生育的趨勢(shì)越來(lái)越明顯。隨著生育年齡的增長(zhǎng),女性的卵巢儲(chǔ)備和卵母細(xì)胞質(zhì)量大幅降低[90]。生殖衰老引起的卵母細(xì)胞質(zhì)量下降與卵母細(xì)胞的DNA損傷積累和DNA修復(fù)能力下降密切相關(guān)[1,91~95]。在人類(lèi)、豬()、小鼠等多個(gè)物種中,隨著機(jī)體年齡增長(zhǎng),卵母細(xì)胞的DSBs損傷逐漸積累,關(guān)鍵的DNA修復(fù)蛋白如BRCA1、RAD51、ATM、卵母細(xì)胞表達(dá)蛋白(oocyte expressed protein,OOEP)等的表達(dá)水平也逐漸下降[54,96~98]。Horta等[99]發(fā)現(xiàn)與年輕小鼠相比,老年小鼠的卵母細(xì)胞修復(fù)精子DNA損傷的能力下降。在人類(lèi)中也發(fā)現(xiàn),高齡女性的卵母細(xì)胞在注射高精子DNA碎片指數(shù)的精子后會(huì)發(fā)育成質(zhì)量較差的胚胎,從而導(dǎo)致較低的植入率、懷孕率以及較高的流產(chǎn)率[100]。此外,全基因組關(guān)聯(lián)研究表明,基因組不穩(wěn)定性可能是絕經(jīng)發(fā)生的一個(gè)因素,進(jìn)一步提供了卵巢衰老與卵母細(xì)胞DNA修復(fù)能力密切相關(guān)的證據(jù)[93,101]。以衰老為例,機(jī)體內(nèi)源性因素誘導(dǎo)的DNA損傷在很大程度上影響了卵母細(xì)胞的質(zhì)量和發(fā)育能力。研究表明,誘導(dǎo)卵母細(xì)胞DNA損傷的內(nèi)源性因素主要是以ROS為代表的細(xì)胞內(nèi)代謝活動(dòng)的產(chǎn)物[38,54,77,102,103]。因此,研究如何通過(guò)抗氧化方法減輕卵母細(xì)胞內(nèi)源性DNA損傷具有重要意義,有助于保護(hù)臨床中有需求人群的生育能力[91,104]。

    目前研究已發(fā)現(xiàn)多種能夠減輕卵母細(xì)胞DNA損傷的抗氧化劑。褪黑素是一種能夠清除超氧陰離子和過(guò)氧化氫的強(qiáng)效抗氧化劑,能夠維持抗氧化代謝物的水平,減少ROS的積累。關(guān)于小鼠、大鼠()、豬等的研究發(fā)現(xiàn),褪黑素能夠抑制卵母細(xì)胞ROS的產(chǎn)生,減輕化療藥物或衰老引起的DNA損傷,改善卵母細(xì)胞質(zhì)量[105~108]。褪黑素還能夠增強(qiáng)細(xì)胞的NHEJ修復(fù)活動(dòng),減輕DSBs損傷,促進(jìn)小鼠卵母細(xì)胞成熟[73]。輔酶Q10是一種天然抗氧化劑,能夠通過(guò)降低超氧化物和DNA損傷的水平來(lái)抑制氧化應(yīng)激和細(xì)胞凋亡,從而有效提高小鼠和大鼠的卵母細(xì)胞質(zhì)量[109,110]。N-乙酰-L-半胱氨酸是一種合成制劑,能夠刺激細(xì)胞合成谷胱甘肽。谷胱甘肽是由谷氨酸、半胱氨酸和甘氨酸組合而成的含巰基三肽,能夠通過(guò)巰基與氧自由基及其他親電體相互作用,也可作為各種酶的輔助因子來(lái)發(fā)揮抗氧化作用[111]。服用N-乙酰-L-半胱氨酸可以減輕小鼠卵母細(xì)胞的氧化DNA損傷,提高卵母細(xì)胞發(fā)育能力[112]。此外,煙酰胺單核苷酸(nicotinamide mononucleotide,NMN)和煙酰胺核糖苷(nicotinamide riboside,NR)也具有抗氧化功能。NMN和NR是生物合成煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)的必要前體。NAD+是一種重要的氧化還原輔助因子和酶底物,參與能量代謝和DNA修復(fù)等過(guò)程[113]。衰老和代謝異常引起機(jī)體NAD+水平下降。補(bǔ)充N(xiāo)MN和NR可降低ROS水平、減輕DNA損傷和抑制細(xì)胞凋亡,從而改善卵母細(xì)胞的發(fā)育潛力[114,115]。除使用藥物干預(yù)外,選擇健康的生活方式也是減輕機(jī)體氧化應(yīng)激的有效方法[116]。已有研究證明體育活動(dòng)能顯著降低肥胖大鼠卵母細(xì)胞的NADPH氧化酶的活性,減少ROS的產(chǎn)生,減輕卵母細(xì)胞損傷,改善卵母細(xì)胞質(zhì)量[117,118]。

    4.2 放化療患者的生育力保存

    在臨床上,化療和放療是針對(duì)癌癥的常用治療手段。然而,在治療癌癥的同時(shí),放療和化療對(duì)卵巢造成了嚴(yán)重的損害,直接損傷了卵母細(xì)胞DNA并誘導(dǎo)卵母細(xì)胞凋亡,進(jìn)而導(dǎo)致患者發(fā)生POI、不孕和提前絕經(jīng)等疾病[36,37]。對(duì)于接受放化療的有生育需求的女性來(lái)說(shuō),如何保存其生育力是值得研究且具有重要臨床意義的。目前人們提出了一些藥物治療的建議,包括性激素、鞘氨醇-1-磷酸、地塞米松等藥物。然而,沒(méi)有足夠的證據(jù)支持這些藥物的有效性和安全性[36,119]。更好的辦法是預(yù)先手術(shù)切除部分卵巢并冷凍保存,在癌癥治療結(jié)束后再將其重新植入患者體內(nèi),然而這種方法有重新引入腫瘤細(xì)胞的風(fēng)險(xiǎn)且受到手術(shù)時(shí)間的限制[120]。鑒于放化療誘導(dǎo)原始卵泡卵母細(xì)胞DNA損傷進(jìn)而導(dǎo)致卵母細(xì)胞凋亡的分子機(jī)制,靶向卵母細(xì)胞的DDR機(jī)制進(jìn)行藥物研發(fā)或許是保護(hù)患者生育力的有效策略。

    抑制卵母細(xì)胞凋亡可能是保護(hù)放化療患者卵母細(xì)胞的潛在靶點(diǎn)之一。研究表示,通過(guò)敲除介導(dǎo)卵母細(xì)胞凋亡的基因,如、、等基因,小鼠的大量卵母細(xì)胞能夠在輻射后存活,并且小鼠能夠生育健康的子代[38,40,45,50,51]。通過(guò)對(duì)、、等基因敲除小鼠的卵母細(xì)胞進(jìn)行γH2AX(DSBs標(biāo)志物)免疫熒光染色,研究發(fā)現(xiàn)輻射誘導(dǎo)的卵母細(xì)胞的DSBs損傷在5天后基本消失。且在輻射發(fā)生后的24小時(shí),基因敲除小鼠卵母細(xì)胞的RAD51蛋白水平明顯增加[38,50,51]。這說(shuō)明,在人為阻止凋亡發(fā)生后,小鼠的卵母細(xì)胞激活了DNA修復(fù)途徑,對(duì)損傷的DNA進(jìn)行了修復(fù)。此外,Luan等[40]報(bào)道,在基因敲除小鼠的原始卵泡卵母細(xì)胞中,標(biāo)志線(xiàn)粒體活性的OPA1線(xiàn)粒體動(dòng)力蛋白樣GTP酶(OPA1 mitochondrial dynamin like GTPase,OPA1)蛋白水平增加,標(biāo)志著卵母細(xì)胞生存能力增強(qiáng)。因此,抑制卵母細(xì)胞凋亡似乎可以間接促進(jìn)DNA修復(fù)和增強(qiáng)細(xì)胞生存能力。相較于基因編輯,使用抑制凋亡的小分子藥物是更可行的辦法。研究報(bào)道,靶向CHK2或ATM的小分子抑制劑可以阻止TAp63磷酸化,抑制輻射和化療藥物誘導(dǎo)的卵母細(xì)胞凋亡,對(duì)卵母細(xì)胞具有保護(hù)作用[40,45,121~124]。綜上所述,這些研究為放化療患者的生育力保護(hù)提供了理論依據(jù)和干預(yù)靶點(diǎn),然而這些小分子制劑作為生育保護(hù)劑的潛力和安全性仍需進(jìn)一步研究。

    此外,激活DNA修復(fù)途徑、補(bǔ)充關(guān)鍵的DNA修復(fù)因子等方法也顯現(xiàn)出了增強(qiáng)卵母細(xì)胞DNA修復(fù)能力的潛能。Sirtuins(SIRT)家族的許多成員是DNA修復(fù)途徑的關(guān)鍵因子[125],SIRT1、SIRT6和SIRT7蛋白分別在HR、BER和NHEJ修復(fù)中發(fā)揮了重要作用[126~130]。因此,針對(duì)SIRT的靶向激活藥物可能具有改善卵母細(xì)胞質(zhì)量的潛能。白藜蘆醇是一種SIRT1激活劑。研究報(bào)道,在小鼠、豬、牛的卵母細(xì)胞體外培養(yǎng)基添加白藜蘆醇能夠減輕卵母細(xì)胞DNA損傷、改善卵母細(xì)胞質(zhì)量和提高早期胚胎發(fā)育能力[131~133]。此外,哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信號(hào)通路的抑制劑雷帕霉素似乎也能夠增強(qiáng)細(xì)胞DNA修復(fù)能力。研究報(bào)道,在人類(lèi)和小鼠的卵母細(xì)胞中,雷帕霉素能夠增強(qiáng)DDR相關(guān)基因的表達(dá),減輕DNA損傷,提高卵母細(xì)胞的質(zhì)量和發(fā)育潛力[134~136]。此外,人們嘗試了對(duì)卵母細(xì)胞直接補(bǔ)充關(guān)鍵的DNA修復(fù)因子。Kujjo等[53]報(bào)道,向小鼠的老化卵母細(xì)胞中注射重組RAD51蛋白能夠減輕DSBs損傷,抑制卵母細(xì)胞凋亡,提高胚胎的發(fā)育能力。

    5 結(jié)語(yǔ)與展望

    與體細(xì)胞類(lèi)似,卵母細(xì)胞也容易被各種因素誘發(fā)DNA損傷。在基礎(chǔ)研究和臨床治療中,輻射和化療藥物經(jīng)常造成卵母細(xì)胞DNA損傷和卵巢儲(chǔ)備損失。除了外源因素,卵母細(xì)胞也容易被ROS等內(nèi)源因素誘發(fā)DNA損傷。對(duì)于DNA損傷,卵母細(xì)胞能夠啟動(dòng)DDR,發(fā)生包括DNA修復(fù)在內(nèi)的一系列活動(dòng)。圖1總結(jié)了各發(fā)育階段卵母細(xì)胞的DDR與DNA修復(fù)機(jī)制。在卵母細(xì)胞中,有關(guān)DSBs損傷與修復(fù)的研究是最多的。研究已經(jīng)證明,各發(fā)育階段的卵母細(xì)胞均能通過(guò)HR或NHEJ機(jī)制修復(fù)DSBs損傷。然而其他DNA損傷類(lèi)型的卵母細(xì)胞相關(guān)研究仍比較少。有趣的是,在應(yīng)對(duì)DNA損傷時(shí),不同發(fā)育階段卵母細(xì)胞的DDR有所不同。原始卵泡卵母細(xì)胞和初級(jí)卵泡卵母細(xì)胞傾向于通過(guò)TAp63途徑啟動(dòng)凋亡。然而,進(jìn)入生長(zhǎng)階段后的卵母細(xì)胞更傾向于選擇修復(fù),而不是凋亡,除非DNA損傷嚴(yán)重。卵母細(xì)胞這種選擇策略背后的原因不明。從進(jìn)化的角度看,在卵母細(xì)胞發(fā)育的最初階段,清除基因受損的卵母細(xì)胞能夠大大降低子代基因突變和染色體變異的風(fēng)險(xiǎn)。此外,輕中度DNA損傷對(duì)卵母細(xì)胞的減數(shù)分裂成熟影響較小,而嚴(yán)重的DNA損傷則可以通過(guò)激活DNA損傷檢查點(diǎn)誘導(dǎo)卵母細(xì)胞G2/前期停滯,或者通過(guò)激活SAC誘導(dǎo)卵母細(xì)胞MI期停滯。需注意的是,即使逃避了細(xì)胞周期檢查點(diǎn)的卵母細(xì)胞能夠完成第一次減數(shù)分裂,然而DNA損傷、染色體變異等異??赡艹掷m(xù)存在。這提示人們,在科研及臨床工作中,獲得的形態(tài)正常的MII卵母細(xì)胞可能存在DNA和染色體的異常,這些異??赡軐?duì)卵母細(xì)胞受精及早期胚胎發(fā)育造成影響。

    生育高齡女性的卵巢儲(chǔ)備減少和卵母細(xì)胞質(zhì)量下降是生殖臨床中的常見(jiàn)現(xiàn)象。衰老引起卵母細(xì)胞DNA損傷積累和DNA修復(fù)能力下降,而ROS增多是衰老損傷細(xì)胞DNA的主要機(jī)制之一。研究表明,褪黑素等抗氧化劑能夠有效減輕ROS誘導(dǎo)的DNA損傷和提高卵母細(xì)胞發(fā)育能力。此外,在癌癥的臨床治療中,放化療容易造成卵母細(xì)胞DNA損傷和誘導(dǎo)卵母細(xì)胞凋亡,由此引起的POI對(duì)患者的生育能力造成了極大威脅。關(guān)于卵母細(xì)胞的DNA損傷與修復(fù)機(jī)制的研究似乎為此類(lèi)患者保存生育力提供了新的策略。研究發(fā)現(xiàn),通過(guò)基因編輯或小分子靶向制劑阻止卵母細(xì)胞凋亡可以間接促進(jìn)DNA修復(fù),從而保護(hù)暴露于輻射和化療藥物的動(dòng)物的生育能力。其次,向卵母細(xì)胞直接補(bǔ)充重要DNA修復(fù)因子以及使用小分子制劑激活DNA修復(fù)途徑等方法也初步在動(dòng)物實(shí)驗(yàn)中顯現(xiàn)出有效效果??傮w而言,這些研究呈現(xiàn)出了較好的結(jié)果,然而涉及的藥物制劑的效果及作用機(jī)制仍需更多的評(píng)價(jià)和研究。

    圖1 各發(fā)育階段卵母細(xì)胞的DDR與DNA修復(fù)機(jī)制

    DNA損傷發(fā)生時(shí),原始卵泡和初級(jí)卵泡的卵母細(xì)胞均通過(guò)TAp63介導(dǎo)的反應(yīng)發(fā)生凋亡。卵母細(xì)胞進(jìn)入生長(zhǎng)階段后,TAp63水平下降,參與MMR、BER、NER、HR和NHEJ等DNA修復(fù)途徑的基因表達(dá)水平增加。HR和NHEJ機(jī)制在卵母細(xì)胞的DSBs修復(fù)中發(fā)揮重要作用。在卵母細(xì)胞減數(shù)分裂成熟期間,DSBs修復(fù)途徑從HR過(guò)渡到NHEJ。對(duì)于ICLs和8-OHdG損傷,卵母細(xì)胞可分別通過(guò)FANCE和BER途徑進(jìn)行修復(fù)。卵母細(xì)胞的其他類(lèi)型DNA損傷的修復(fù)機(jī)制有待驗(yàn)證。卵母細(xì)胞缺乏經(jīng)典的由ATM-CHK1介導(dǎo)的G2/前期DNA損傷檢查點(diǎn),但似乎具有一個(gè)由MDC1介導(dǎo)的非經(jīng)典G2/前期DNA損傷檢查點(diǎn)。此外,SAC介導(dǎo)了卵母細(xì)胞的MI期停滯反應(yīng)。

    綜上所述,卵母細(xì)胞的DDR與DNA修復(fù)機(jī)制十分復(fù)雜,許多問(wèn)題迄今只在動(dòng)物研究中得到了初步回答,關(guān)于人類(lèi)的相關(guān)研究仍很缺乏。伴隨著高通量技術(shù)、基因編輯技術(shù)、實(shí)驗(yàn)技術(shù)等的快速發(fā)展,人們將不斷拓寬和加深對(duì)于哺乳動(dòng)物卵母細(xì)胞的DNA損傷與修復(fù)機(jī)制的認(rèn)識(shí)。此領(lǐng)域的研究將為開(kāi)發(fā)生育力保護(hù)策略提供理論基礎(chǔ)和新的方向,具有重要意義。

    [1] Musson R, G?sior ?, Bisogno S, Ptak GE. DNA damage in preimplantation embryos and gametes: specifi-cation, clinical relevance and repair strategies., 2022, 28(3): 376–399.

    [2] Jackson SP, Bartek J. The DNA-damage response in human biology and disease., 2009, 461(7267): 1071–1078.

    [3] Keefe D, Kumar M, Kalmbach K. Oocyte competency is the key to embryo potential., 2015, 103(2): 317–322.

    [4] Winship AL, Stringer JM, Liew SH, Hutt KJ. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing., 2018, 24(2): 119–134.

    [5] Collins JK, Jones KT. DNA damage responses in mammalian oocytes., 2016, 152(1): R15– R22.

    [6] Pailas A, Niaka K, Zorzompokou C, Marangos P. The DNA damage response in fully grown mammalian oocytes., 2022, 11(5): 798.

    [7] Martin JH, Aitken RJ, Bromfield EG, Nixon B. DNA damage and repair in the female germline: contributions to ART., 2019, 25(2): 180–201.

    [8] Carusillo A, Mussolino C. DNA damage: from threat to treatment., 2020, 9(7): 1665.

    [9] Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage., 2007, 316(5828): 1160–1166.

    [10] Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response., 2017, 66(6): 801–817.

    [11] Collins PL, Purman C, Porter SI, Nganga V, Saini A, Hayer KE, Gurewitz GL, Sleckman BP, Bednarski JJ, Bassing CH, Oltz EM. DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner., 2020, 11(1): 3158.

    [12] Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective., 2016, 16(1): 35–42.

    [13] Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Kontek R. Cyclin-dependent kinases in DNA damage response., 2022, 1877(3): 188716.

    [14] Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25., 1997, 277(5331): 1497–1501.

    [15] Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas J. Rapid destruction of human Cdc25A in response to DNA damage., 2000, 288(5470): 1425–1429.

    [16] Blackford AN, Stucki M. How cells respond to DNA breaks in mitosis., 2020, 45(4): 321–331.

    [17] Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer., 2023, 23(2): 78–94.

    [18] He Y, Xie MN, Yu L, Ren Z, Zhu F, Fu C. The roles of Fanconi anemia genes in the regulation of follicle development., 2017, 39(6): 469–481. 賀燕, 謝夢(mèng)女, 余立, 任真, 朱芳, 符淳. 范可尼貧血基因在卵泡發(fā)育中的調(diào)節(jié)作用. 遺傳, 2017, 39(6): 469–481.

    [19] Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromo-somal integrity in vertebrate cells., 1998, 17(18): 5497–5508.

    [20] Lee JH, Paull TT. ATM activation by DNA double- strand breaks through the Mre11-Rad50-Nbs1 complex., 2005, 308(5721): 551–554.

    [21] Williams RS, Moncalian G, Williams JS, Yamada Y, Limbo O, Shin DS, Groocock LM, Cahill D, Hitomi C, Guenther G, Moiani D, Carney JP, Russell P, Tainer JA. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair., 2008, 135(1): 97–109.

    [22] Yang HJ, Li QB, Fan J, Holloman WK, Pavletich NP. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction., 2005, 433(7026): 653–657.

    [23] Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M, Griffith JD, West SC. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA., 2010, 17(10): 1263–1265.

    [24] McVey M, Khodaverdian VY, Meyer D, Cerqueira PG, Heyer WD. Eukaryotic DNA polymerases in homologous recombination., 2016, 50: 393–421.

    [25] Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells., 2019, 20(11): 698–714.

    [26] Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen., 1993, 72(1): 131–142.

    [27] Ochi T, Blackford AN, Coates J, Jhujh S, Mehmood S, Tamura N, Travers J, Wu Q, Draviam VM, Robinson CV, Blundell TL, Jackson SP. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair., 2015, 347(6218): 185–188.

    [28] Pannunzio NR, Watanabe G, Lieber MR. Nonhomo-logous DNA end-joining for repair of DNA double- strand breaks., 2018, 293(27): 10512– 10523.

    [29] Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, Tognetti M, Benner CW, Boulton SJ, Saghatelian A, Karlseder J. Regulation of DNA repair pathway choice in S and G2phases by the NHEJ inhibitor CYREN., 2017, 549(7673): 548–552.

    [30] Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage in the ageing process., 2021, 592(7856): 695–703.

    [31] Longhese MP, Bonetti D, Guerini I, Manfrini N, Clerici M. DNA double-strand breaks in meiosis: checking their formation, processing and repair., 2009, 8(9): 1127–1138.

    [32] Baudat F, Imai Y, de Massy B. Meiotic recombination in mammals: localization and regulation., 2013, 14(11): 794–806.

    [33] MacLennan M, Crichton JH, Playfoot CJ, Adams IR. Oocyte development, meiosis and aneuploidy., 2015, 45: 68–76.

    [34] Zhao Y, Feng HW, Zhang YH, Zhang JV, Wang XH, Liu DT, Wang TR, Li RHW, Ng EHY, Yeung WSB, Rodriguez-Wallberg KA, Liu K. Current understandings of core pathways for the activation of mammalian primordial follicles., 2021, 10(6): 1491.

    [35] Oktem O, Urman B. Understanding follicle growth., 2010, 25(12): 2944–2954.

    [36] Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, Klinger FG. Ovarian damage from chemotherapy and current approaches to its protection., 2019, 25(6): 673–693.

    [37] Marci R, Mallozzi M, Di Benedetto L, Schimberni M, Mossa S, Soave I, Palomba S, Caserta D. Radiations and female fertility., 2018, 16(1): 112.

    [38] Kerr JB, Hutt KJ, Michalak EM, Cook M, Vandenberg CJ, Liew SH, Bouillet P, Mills A, Scott CL, Findlay JK, Strasser A. DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63- mediated induction of Puma and Noxa., 2012, 48(3): 343–352.

    [39] Coutandin D, Osterburg C, Srivastav RK, Sumyk M, Kehrloesser S, Gebel J, Tuppi M, Hannewald J, Sch?fer B, Salah E, Mathea S, Müller-Kuller U, Doutch J, Grez M, Knapp S, D?tsch V. Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level., 2016, 5: e13909.

    [40] Luan Y, Yu SY, Abazarikia A, Dong R, Kim SY. TAp63 determines the fate of oocytes against DNA damage., 2022, 8(51): eade1846.

    [41] Green DM, Sklar CA, Boice JD Jr. , Mulvihill JJ, Whitton JA, Stovall M, Yasui Y. Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the Childhood Cancer Survivor Study., 2009, 27(14): 2374–2381.

    [42] Suh EK, Yang AN, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z, Elvin JA, Bronson RT, Crum CP, McKeon F. p63 protects the female germ line during meiotic arrest., 2006, 444(7119): 624–628.

    [43] Livera G, Petre-Lazar B, Guerquin MJ, Trautmann E, Coffigny H, Habert R. p63 null mutation protects mouse oocytes from radio-induced apoptosis., 2008, 135(1): 3–12.

    [44] Kim SY, Cordeiro MH, Serna VA, Ebbert K, Butler LM, Sinha S, Mills AA, Woodruff TK, Kurita T. Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network., 2013, 20(8): 987–997.

    [45] Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC. Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway., 2014, 343(6170): 533–536.

    [46] Adhikari D, Busayavalasa K, Zhang JJ, Hu MW, Risal S, Bayazit MB, Singh M, Diril MK, Kaldis P, Liu K. Inhibitory phosphorylation of Cdk1 mediates prolonged prophase I arrest in female germ cells and is essential for female reproductive lifespan., 2016, 26(11): 1212–1225.

    [47] Zhu H, Li A, Yu JH, Xiang CJ, Su SD, Huang L, Fan YJ, Luo Y, Tang WR. The new function of p53 family and its pathway related proteins in female reproduction., 2012, 34(8): 943–949. 朱暉, 李安, 余建華, 向超杰, 蘇世達(dá), 黃磊, 范豫杰, 羅瑛, 唐文如. p53家族及其通路相關(guān)蛋白調(diào)節(jié)母性生殖的新功能. 遺傳, 2012, 34(8): 943–949.

    [48] Huang CZ, Zhao SM, Yang YJ, Guo T, Ke HN, Mi X, Qin YY, Chen ZJ, Zhao SD. TP63 gain-of-function mutations cause premature ovarian insufficiency by inducing oocyte apoptosis., 2023, 133(5): e162315.

    [49] Deutsch GB, Zielonka EM, Coutandin D, Weber TA, Sch?fer B, Hannewald J, Luh LM, Durst FG, Ibrahim M, Hoffmann J, Niesen FH, Sentürk A, Kunkel H, Brutschy B, Schleiff E, Knapp S, Acker-Palmer A, Grez M, McKeon F, D?tsch V. DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer., 2011, 144(4): 566–576.

    [50] Stringer JM, Winship A, Zerafa N, Wakefield M, Hutt K. Oocytes can efficiently repair DNA double-strand breaks to restore genetic integrity and protect offspring health., 2020, 117(21): 11513–11522.

    [51] ElInati E, Zielinska AP, McCarthy A, Kubikova N, Maciulyte V, Mahadevaiah S, Sangrithi MN, Ojarikre O, Wells D, Niakan KK, Schuh M, Turner JMA. The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes., 2020, 11(1): 2598.

    [52] Nguyen QN, Zerafa N, Findlay JK, Hickey M, Hutt KJ. DNA repair in primordial follicle oocytes following cisplatin treatment., 2021, 38(6): 1405–1417.

    [53] Kujjo LL, Laine T, Pereira RJ, Kagawa W, Kurumizaka H, Yokoyama S, Perez GI. Enhancing survival of mouse oocytes following chemotherapy or aging by targeting Bax and Rad51., 2010, 5(2): e9204.

    [54] Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, Dickler M, Robson M, Moy F, Goswami S, Oktay K. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans., 2013, 5(172): 172ra121.

    [55] Oktay KH, Bedoschi G, Goldfarb SB, Taylan E, Titus S, Palomaki GE, Cigler T, Robson M, Dickler MN. Increased chemotherapy-induced ovarian reserve loss in women with germline BRCA mutations due to oocyte deoxyribonucleic acid double strand break repair deficiency., 2020, 113(6): 1251–1260. e1.

    [56] Kurimasa A, Ouyang H, Dong LJ, Wang S, Li X, Cordon-Cardo C, Chen DJ, Li GC. Catalytic subunit of DNA-dependent protein kinase: impact on lymphocyte development and tumorigenesis., 1999, 96(4): 1403–1408.

    [57] Yin H, Suye S, Zhou ZX, Cai HY, Fu C. The reduction of oocytes and disruption of the meiotic prophase I in Fanconi anemia E-deficient mice., 2022, 164(3): 71–82.

    [58] Sato E. Intraovarian control of selective follicular growth and induction of oocyte maturation in mammals., 2015, 91(3): 76–91.

    [59] Puy V, Barroca V, Messiaen S, Ménard V, Torres C, Devanand C, Moison D, Lewandowski D, Guerquin MJ, Martini E, Frydman N, Livera G. Mouse model of radiation-induced premature ovarian insufficiency reveals compromised oocyte quality: implications for fertility preservation., 2021, 43(5): 799–809.

    [60] Zeng FY, Baldwin DA, Schultz RM. Transcript profiling during preimplantation mouse development., 2004, 272(2): 483–496.

    [61] Zheng P, Schramm RD, Latham KE. Developmental regulation andculture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos., 2005, 72(6): 1359–1369.

    [62] Wang SF, Kou ZH, Jing ZY, Zhang Y, Guo XZ, Dong MQ, Wilmut I, Gao SR. Proteome of mouse oocytes at different developmental stages., 2010, 107(41): 17639–17644.

    [63] Jaroudi S, Kakourou G, Cawood S, Doshi A, Ranieri DM, Serhal P, Harper JC, SenGupta SB. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays., 2009, 24(10): 2649–2655.

    [64] Zhang YY, Yan ZQ, Qin QY, Nisenblat V, Chang HM, Yu Y, Wang TR, Lu CL, Yang M, Yang S, Yao Y, Zhu XH, Xia X, Dang YJ, Ren YX, Yuan P, Li R, Liu P, Guo HY, Han JS, He HJ, Zhang K, Wang YT, Wu Y, Li M, Qiao J, Yan J, Yan LY. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions., 2018, 72(6): 1021–1034. e4.

    [65] Stefansdottir A, Johnston ZC, Powles-Glover N, Anderson RA, Adams IR, Spears N. Etoposide damages female germ cells in the developing ovary., 2016, 16(1): 482.

    [66] Xiao S, Zhang JY, Liu MJ, Iwahata H, Rogers HB, Woodruff TK. Doxorubicin has dose-dependent toxicity on mouse ovarian follicle development, hormone secretion, and oocyte maturation., 2017, 157(2): 320–329.

    [67] Tan JH, Wang HL, Sun XS, Liu Y, Sui HS, Zhang J. Chromatin configurations in the germinal vesicle of mammalian oocytes., 2009, 15(1): 1–9.

    [68] Menezo Y Jr. , Russo G, Tosti E, El Mouatassim S, Benkhalifa M. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays., 2007, 24(11): 513–520.

    [69] Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, Tam WL, Rosa GJM, Halgren RG, Lim B, Fernandez E, Cibelli JB. The transcriptome of human oocytes., 2006, 103(38): 14027–14032.

    [70] Lee C, Leem J, Oh JS. Selective utilization of non-homologous end-joining and homologous recombi-nation for DNA repair during meiotic maturation in mouse oocytes., 2022, e13384.

    [71] Dong MZ, Ouyang YC, Gao SC, Ma XS, Hou Y, Schatten H, Wang ZB, Sun QY. PPP4C facilitates homologous recombination DNA repair by dephosphor-y-lating PLK1 during early embryo development., 2022, 149(10): dev200351.

    [72] Martin JH, Bromfield EG, Aitken RJ, Lord T, Nixon B. Double strand break DNA repair occurs via non-homologous end-joining in mouse MII oocytes., 2018, 8(1): 9685.

    [73] Leem J, Bai GY, Kim JS, Oh JS. Melatonin protects mouse oocytes from DNA damage by enhancing nonhomologous end-joining repair., 2019, 67(4): e12603.

    [74] Hakem R. DNA-damage repair; the good, the bad, and the ugly., 2008, 27(4): 589–605.

    [75] Cheng JM, Li J, Tang JX, Hao XX, Wang ZP, Sun TC, Wang XX, Zhang Y, Chen SR, Liu YX. Merotelic kinetochore attachment in oocyte meiosis II causes sister chromatids segregation errors in aged mice., 2017, 16(15): 1404–1413.

    [76] Zhao Y, Wang CX, Yang TM, Li CS, Zhang LH, Du DN, Wang RX, Wang J, Wei M, Ba XQ. Linking oxidative DNA lesion 8-OxoG to tumor development and progression., 2022, 44(6): 466–477. 趙巖, 王晨鑫, 楊天明, 李春爽, 張麗宏, 杜冬妮, 王若曦, 王靜, 魏民, 巴雪青. DNA氧化損傷8-羥鳥(niǎo)嘌呤與腫瘤的發(fā)生發(fā)展. 遺傳, 2022, 44(6): 466–477.

    [77] Lord T, Aitken RJ. Fertilization stimulates 8-hydroxy- 2'-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo., 2015, 406(1): 1–13.

    [78] Marangos P, Carroll J. Oocytes progress beyond prophase in the presence of DNA damage., 2012, 22(11): 989–994.

    [79] Lin F, Ma XS, Wang ZB, Wang ZW, Luo YB, Huang L, Jiang ZZ, Hu MW, Schatten H, Sun QY. Different fates of oocytes with DNA double-strand breaksand., 2014, 13(17): 2674–2680.

    [80] Rémillard-Labrosse G, Dean NL, Allais A, Mihajlovi? AI, Jin SG, Son WY, Chung JT, Pansera M, Henderson S, Mahfoudh A, Steiner N, Agapitou K, Marangos P, Buckett W, Ligeti-Ruiter J, FitzHarris G. Human oocytes harboring damaged DNA can complete meiosis I., 2020, 113(5): 1080–1089. e2.

    [81] Coticchio G, Dal Canto M, Guglielmo MC, Albertini DF, Mignini Renzini M, Merola M, Lain M, Sottocornola M, De Ponti E, Fadini R. Double-strand DNA breaks and repair response in human immature oocytes and their relevance to meiotic resumption., 2015, 32(10): 1509–1516.

    [82] Li TJ, Liu CY, Zhen XM, Yu Y, Qiao J. Actinomycin D causes oocyte maturation failure by inhibiting chromo-some separation and spindle assembly., 2021, 104(1): 94–105.

    [83] Solc P, Schultz RM, Motlik J. Prophase I arrest and progression to metaphase I in mouse oocytes: com-parison of resumption of meiosis and recovery from G2-arrest in somatic cells., 2010, 16(9): 654–664.

    [84] Yamaguchi H, Minopoli G, Demidov ON, Chatterjee DK, Anderson CW, Durell SR, Appella E. Substrate specificity of the human protein phosphatase 2Cdelta, Wip1., 2005, 44(14): 5285–5294.

    [85] Leem J, Kim JS, Oh JS. WIP1 phosphatase suppresses the DNA damage response during G2/prophase arrest in mouse oocytes., 2018, 99(4): 798–805.

    [86] Subramanian GN, Greaney J, Wei Z, Becherel O, Lavin M, Homer HA. Oocytes mount a noncanonical DNA damage response involving APC-Cdh1-mediated proteo-lysis., 2020, 219(4): e201907213.

    [87] Collins JK, Lane SIR, Merriman JA, Jones KT. DNA damage induces a meiotic arrest in mouse oocytes mediated by the spindle assembly checkpoint., 2015, 6: 8553.

    [88] Marangos P, Stevense M, Niaka K, Lagoudaki M, Nabti I, Jessberger R, Carroll J. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age., 2015, 6: 8706.

    [89] Leem J, Oh JS. MDC1 is essential for G2/M transition and spindle assembly in mouse oocytes., 2022, 79(4): 200.

    [90] Farquhar CM, Bhattacharya S, Repping S, Mastenbroek S, Kamath MS, Marjoribanks J, Boivin J. Female subfertility., 2019, 5(1): 7.

    [91] Secomandi L, Borghesan M, Velarde M, Demaria M. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions., 2022, 28(2): 172–189.

    [92] Horta F, Ravichandran A, Catt S, Vollenhoven B, Temple-Smith P. Ageing and ovarian stimulation modulate the relative levels of transcript abundance of oocyte DNA repair genes during the germinal vesicle-metaphase II transition in mice., 2021, 38(1): 55–69.

    [93] Ruth KS, Day FR, Hussain J, Martínez-Marchal A, Aiken CE, Azad A, Thompson DJ, Knoblochova L, Abe H, Tarry-Adkins JL, Gonzalez JM, Fontanillas P, Claringbould A, Bakker OB, Sulem P, Walters RG, Terao C, Turon S, Horikoshi M, Lin K, Onland-Moret NC, Sankar A, Hertz EPT, Timshel PN, Shukla V, Borup R, Olsen KW, Aguilera P, Ferrer-Roda M, Huang Y, Stankovic S, Timmers P, Ahearn TU, Alizadeh BZ, Naderi E, Andrulis IL, Arnold AM, Aronson KJ, Augustinsson A, Bandinelli S, Barbieri CM, Beaumont RN, Becher H, Beckmann MW, Benonisdottir S, Bergmann S, Bochud M, Boerwinkle E, Bojesen SE, Bolla MK, Boomsma DI, Bowker N, Brody JA, Broer L, Buring JE, Campbell A, Campbell H, Castelao JE, Catamo E, Chanock SJ, Chenevix-Trench G, Ciullo M, Corre T, Couch FJ, Cox A, Crisponi L, Cross SS, Cucca F, Czene K, Smith GD, de Geus E, de Mutsert R, De Vivo I, Demerath EW, Dennis J, Dunning AM, Dwek M, Eriksson M, Esko T, Fasching PA, Faul JD, Ferrucci L, Franceschini N, Frayling TM, Gago-Dominguez M, Mezzavilla M, García-Closas M, Gieger C, Giles GG, Grallert H, Gudbjartsson DF, Gudnason V, Guénel P, Haiman CA, H?kansson N, Hall P, Hayward C, He C, He W, Heiss G, H?ffding MK, Hopper JL, Hottenga JJ, Hu F, Hunter D, Ikram MA, Jackson RD, Joaquim MDR, John EM, Joshi PK, Karasik D, Kardia SLR, Kartsonaki C, Karlsson R, Kitahara CM, Kolcic I, Kooperberg C, Kraft P, Kurian AW, Kutalik Z, La Bianca M, LaChance G, Langenberg C, Launer LJ, Laven JSE, Lawlor DA, Le Marchand L, Li JM, Lindblom A, Lindstrom S, Lindstrom T, Linet M, Liu YM, Liu SM, Luan JA, M?gi R, Magnusson PKE, Mangino M, Mannermaa A, Marco B, Marten J, Martin NG, Mbarek H, McKnight B, Medland SE, Meisinger C, Meitinger T, Menni C, Metspalu A, Milani L, Milne RL, Montgomery GW, Mook-Kanamori DO, Mulas A, Mulligan AM, Murray A, Nalls MA, Newman A, Noordam R, Nutile T, Nyholt DR, Olshan AF, Olsson H, Painter JN, Patel AV, Pedersen NL, Perjakova N, Peters A, Peters U, Pharoah PDP, Polasek O, Porcu E, Psaty BM, Rahman I, Rennert G, Rennert HS, Ridker PM, Ring SM, Robino A, Rose LM, Rosendaal FR, Rossouw J, Rudan I, Rueedi R, Ruggiero D, Sala CF, Saloustros E, Sandler DP, Sanna S, Sawyer EJ, Sarnowski C, Schlessinger D, Schmidt MK, Schoemaker MJ, Schraut KE, Scott C, Shekari S, Shrikhande A, Smith AV, Smith BH, Smith JA, Sorice R, Southey MC, Spector TD, Spinelli JJ, Stampfer M, St?ckl D, van Meurs JBJ, Strauch K, Styrkarsdottir U, Swerdlow AJ, Tanaka T, Teras LR, Teumer A, Torsteinsdottir U, Timpson NJ, Toniolo D, Traglia M, Troester MA, Truong T, Tyrrell J, Uitterlinden AG, Ulivi S, Vachon CM, Vitart V, V?lker U, Vollenweider P, V?lzke H, Wang Q, Wareham NJ, Weinberg CR, Weir DR, Wilcox AN, van Dijk KW, Willemsen G, Wilson JF, Wolffenbuttel BHR, Wolk A, Wood AR, Zhao W, Zygmunt M, Biobank-based Integrative Omics Study (BIOS) Consortium, eQTLGen Consortium, Biobank Japan Project, China Kadoorie Biobank Collaborative Group, kConFab Investigators, LifeLines Cohort Study, InterAct consortium, 23andMe Research Team, Chen ZM, Li LM, Franke L, Burgess S, Deelen P, Pers TH, Gr?ndahl ML, Andersen CY, Pujol A, Lopez-Contreras AJ, Daniel JA, Stefansson K, Chang-Claude J, van der Schouw YT, Lunetta KL, Chasman DI, Easton DF, Visser JA, Ozanne SE, Namekawa SH, Solc P, Murabito JM, Ong KK, Hoffmann ER, Murray A, Roig I, Perry JRB. Genetic insights into biological mechanisms governing human ovarian ageing., 2021, 596(7872): 393– 397.

    [94] Perry JR, Murray A, Day FR, Ong KK. Molecular insights into the aetiology of female reproductive ageing., 2015, 11(12): 725–734.

    [95] Liu CM, Ding LJ, Li JY, Dai JW, Sun HX. Advances in the study of ovarian dysfunction with aging., 2019, 41(9): 816–826. 劉傳明, 丁利軍, 李佳音, 戴建武, 孫海翔. 衰老導(dǎo)致卵巢功能低下研究進(jìn)展. 遺傳, 2019, 41(9): 816–826.

    [96] Yuan LH, Yin P, Yan H, Zhong XF, Ren CX, Li K, Heng BC, Zhang WW, Tong GQ. Single-cell transcriptome analysis of human oocyte ageing., 2021, 25(13): 6289–6303.

    [97] He DJ, Wang L, Zhang ZB, Guo K, Li JZ, He XC, Cui QH, Zheng P. Maternal gene Ooep may participate in homologous recombination-mediated DNA double- strand break repair in mouse oocytes., 2018, 39(6): 387–395.

    [98] Lin T, Sun L, Lee JE, Kim SY, Jin DI. DNA damage repair is suppressed in porcine aged oocytes., 2021, 63(5): 984–997.

    [99] Horta F, Catt S, Ramachandran P, Vollenhoven B, Temple-Smith P. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice., 2020, 35(3): 529–544.

    [100] Setti AS, Braga D, Provenza RR, Iaconelli A Jr, Borges E Jr. Oocyte ability to repair sperm DNA fragmentation: the impact of maternal age on intracytoplasmic sperm injection outcomes., 2021, 116(1): 123–129.

    [101] Horikoshi M, Day FR, Akiyama M, Hirata M, Kamatani Y, Matsuda K, Ishigaki K, Kanai M, Wright H, Toro CA, Ojeda SR, Lomniczi A, Kubo M, Ong KK, Perry JRB. Elucidating the genetic architecture of reproductive ageing in the Japanese population., 2018, 9(1): 1977.

    [102] Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, Hurd WW, Singh KK. Mitochondria in ovarian aging and reproductive longevity., 2020, 63: 101168.

    [103] Santos AL, Sinha S. Obesity and aging: molecular mechanisms and therapeutic approaches., 2021, 67: 101268.

    [104] Immediata V, Ronchetti C, Spadaro D, Cirillo F, Levi-Setti PE. Oxidative stress and human ovarian response-from somatic ovarian cells to oocytes damage: a clinical comprehensive narrative review., 2022, 11(7): 1335.

    [105] Lord T, Nixon B, Jones KT, Aitken RJ. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro., 2013, 88(3): 67.

    [106] Zhang H, Li C, Wen DX, Li RY, Lu SH, Xu R, Tang YJ, Sun YD, Zhao XE, Pan MH, Ma BH. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply., 2022, 49: 102215.

    [107] Al-Shahat A, Hulail MAE, Soliman NMM, Khamis T, Fericean LM, Arisha AH, Moawad RS. Melatonin mitigates cisplatin-induced ovarian dysfunction via altering steroidogenesis, inflammation, apoptosis, oxidative stress, and PTEN/PI3K/Akt/mTOR/AMPK signaling pathway in female rats., 2022, 14(12): 2769.

    [108] Jiang Q, Qi X, Ding C, Liu XY, Lei YY, Li SY, Cao ZB. Melatonin rescues dimethoate exposure-induced meiotic and developmental defects of porcine oocytes., 2022, 12(7): 832.

    [109] Zhang MQ, ShiYang XY, Zhang YW, Miao YL, Chen Y, Cui ZK, Xiong B. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis., 2019, 143: 84–94.

    [110] ?zcan P, F???c?o?lu C, Kizilkale O, Yesiladali M, Tok OE, Ozkan F, Esrefoglu M. Can Coenzyme Q10 supp-lementation protect the ovarian reserve against oxidative damage?, 2016, 33(9): 1223–1230.

    [111] Niu BY, Liao KX, Zhou YX, Wen T, Quan GL, Pan X, Wu CB. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy., 2021, 277: 121110.

    [112] Liu JM, Liu MY, Ye XY, Liu K, Huang JJ, Wang LL, Ji GZ, Liu N, Tang XD, Baltz JM, Keefe DL, Liu L. Delay in oocyte aging in mice by the antioxidant N-acetyl- L-cysteine (NAC)., 2012, 27(5): 1411– 1420.

    [113] Bertoldo MJ, Listijono DR, Ho WJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM, Habibalahi A, Loh WN, Youngson NA, Maniam J, Wong ASA, Selesniemi K, Bustamante S, Li C, Zhao YQ, Marinova MB, Kim LJ, Lau L, Wu RM, Mikolaizak AS, Araki T, Le Couteur DG, Turner N, Morris MJ, Walters KA, Goldys E, O'Neill C, Gilchrist RB, Sinclair DA, Homer HA, Wu LE. NAD+repletion rescues female fertility during reproductive aging., 2020, 30(6): 1670–1681. e7.

    [114] Li H, Wang H, Xu JM, Zeng XX, Sun YP, Yang QL. Nicotinamide riboside supplementation ameliorated post-ovulatory oocyte quality decline., 2023, 165(1): 103–111.

    [115] Wang LY, Chen YR, Wei JR, Guo FC, Li LY, Han Z, Wang ZZ, Zhu HB, Zhang XL, Li ZY, Dai PX. Admini-stration of nicotinamide mononucleotide improves oocyte quality of obese mice., 2022, 55(11): e13303.

    [116] Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, Barker M, Saffery R, Yajnik CS, Eckert JJ, Hanson MA, Forrester T, Gluckman PD, Godfrey KM. Origins of lifetime health around the time of conception: causes and consequences., 2018, 391(10132): 1842–1852.

    [117] Szostak J, Laurant P. The forgotten face of regular physical exercise: a 'natural' anti-atherogenic activity., 2011, 121(3): 91–106.

    [118] Gilbert JS, Banek CT, Bauer AJ, Gingery A, Needham K. Exercise training attenuates placental ischemia-induced hypertension and angiogenic imbalance in the rat., 2012, 60(6): 1545–1551.

    [119] Kim S, Kim SW, Han SJ, Lee S, Park HT, Song JY, Kim T. Molecular mechanism and prevention strategy of chemotherapy- and radiotherapy-induced ovarian damage., 2021, 22(14): 7484.

    [120] Dolmans MM, Donnez J, Cacciottola L. Fertility preservation: the challenge of freezing and transplanting ovarian tissue., 2021, 27(8): 777–791.

    [121] Rinaldi VD, Hsieh K, Munroe R, Bolcun-Filas E, Schimenti JC. Pharmacological inhibition of the DNA damage checkpoint prevents radiation-induced oocyte death., 2017, 206(4): 1823–1828.

    [122] Tuppi M, Kehrloesser S, Coutandin DW, Rossi V, Luh LM, Strubel A, H?tte K, Hoffmeister M, Sch?fer B, De Oliveira T, Greten F, Stelzer EHK, Knapp S, De Felici M, Behrends C, Klinger FG, D?tsch V. Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63., 2018, 25(3): 261–269.

    [123] Kim SY, Nair DM, Romero M, Serna VA, Koleske AJ, Woodruff TK, Kurita T. Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies., 2019, 26(3): 502–515.

    [124] Kim SY, Cho GJ, Davis JS. Consequences of chemo-therapeutic agents on primordial follicles and future clinical applications., 2019, 62(6): 382–390.

    [125] Lagunas-Rangel FA. Current role of mammalian sirtuins in DNA repair., 2019, 80: 85–92.

    [126] Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu PF, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6., 2006, 124(2): 315–329.

    [127] McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan SH, Shi XB, Gozani O, Burlingame AL, Bohr VA, Chua KF. SIRT6 stabilizes DNA- dependent protein kinase at chromatin for DNA double-strand break repair., 2009, 1(1): 109–121.

    [128] Uhl M, Csernok A, Aydin S, Kreienberg R, Wiesmüller L, Gatz SA. Role of SIRT1 in homologous recombination., 2010, 9(4): 383–393.

    [129] Mao ZY, Tian X, Van Meter M, Ke ZH, Gorbunova V, Seluanov A. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence., 2012, 109(29): 11800–11805.

    [130] Vazquez BN, Thackray JK, Serrano L. Sirtuins and DNA damage repair: SIRT7 comes to play., 2017, 8(2): 107–115.

    [131] Han J, Wang HR, Zhang T, Chen ZQ, Zhao T, Lin L, Xia GL, Wang C. Resveratrol attenuates doxorubicin-induced meiotic failure through inhibiting oxidative stress and apoptosis in mouse oocytes., 2020, 12(9): 7717–7728.

    [132] Wang F, Tian XZ, Zhang L, He CJ, Ji PY, Li Y, Tan DX, Liu GS. Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development afterfertilization., 2014, 101(2): 577–586.

    [133] Li Y, Wang J, Zhang ZZ, Yi JY, He CJ, Wang F, Tian XZ, Yang MH, Song YK, He PL, Liu GS. Resvera-trol compares with melatonin in improvingporcine oocyte maturation under heat stress., 2016, 7: 33.

    [134] Yang QY, Hu J, Wang M, Guo N, Yang L, Xi QS, Zhu LX, Jin L. Rapamycin improves the quality and developmental competence ofmatured oocytes in aged mice and humans., 2022, 14(22): 9200–9209.

    [135] Yang QY, Xi QS, Wang M, Liu J, Li Z, Hu J, Jin L, Zhu LX. Rapamycin improves the developmental competence of human oocytes by alleviating DNA damage during IVM., 2022, 2022(4): hoac050.

    [136] Yang QY, Xi QS, Wang M, Long R, Hu J, Li Z, Ren XL, Zhu LX, Jin L. Rapamycin improves the quality and developmental competence of mice oocytes by pro-moting DNA damage repair duringmaturation., 2022, 20(1): 67.

    Advances in the study of DNA damage and repair in mammalian oocytes

    Nan Zhang1, Jue Zhang2, Ge Lin1,2

    DNA damage is one of the key factors affecting gametogenesis and embryo development. Oocytes are susceptible to DNA damage induced by various endogenous and exogenous factors (e.g., reactive oxygen species, radiation, chemotherapeutic agents, etc.). Current research has revealed that oocytes at various developmental stages are able to respond to various types of DNA damage, repairing DNA or initiating apoptosis through complex mechanisms. Primordial follicular oocytes are more susceptible to apoptosis induced by DNA damage than oocytes entering the growth stage. DNA damage is less likely to induce arrest of the meiotic maturation process in oocytes, however the developmental capacity of oocytes carrying DNA damage is significantly reduced. In clinical practice, aging, radiation and chemotherapy are common causes of oocyte DNA damage, reduced ovarian reserve and infertility in women. Therefore, various methods that can reduce DNA damage and enhance DNA repair in oocytes have been tried in an attempt to protect oocytes. In this review, we systematically summarize the mechanisms of DNA damage and repair in mammalian oocytes at various developmental stages and discuss their potential clinical value with the aim to provide new strategies for fertility protection.

    oocytes; DNA damage; DNA repair; DNA damage response

    2023-02-02;

    2023-03-23;

    2023-03-29

    中國(guó)博士后科學(xué)基金(編號(hào):2021M690983)資助[Supported by the Fellowship of China Postdoctoral Science Foundation (No. 2021M690983)]

    張楠,在讀碩士研究生,專(zhuān)業(yè)方向:生殖醫(yī)學(xué)。E-mail: csudnn@csu.edu.cn

    林戈,博士,研究員,研究方向:生殖醫(yī)學(xué)。E-mail: linggf@hotmail.com

    10.16288/j.yczz.23-018

    (責(zé)任編委: 黃俊)

    猜你喜歡
    小鼠機(jī)制
    構(gòu)建“不敢腐、不能腐、不想腐”機(jī)制的思考
    小鼠大腦中的“冬眠開(kāi)關(guān)”
    自制力是一種很好的篩選機(jī)制
    文苑(2018年21期)2018-11-09 01:23:06
    米小鼠和它的伙伴們
    定向培養(yǎng) 還需完善安置機(jī)制
    Avp-iCre轉(zhuǎn)基因小鼠的鑒定
    破除舊機(jī)制要分步推進(jìn)
    注重機(jī)制的相互配合
    加味四逆湯對(duì)Con A肝損傷小鼠細(xì)胞凋亡的保護(hù)作用
    打基礎(chǔ) 抓機(jī)制 顯成效
    亚洲色图av天堂| 18禁裸乳无遮挡免费网站照片| 国内精品久久久久久久电影| 看片在线看免费视频| 国产亚洲精品久久久久久毛片| 成人三级黄色视频| 18禁在线播放成人免费| 成人鲁丝片一二三区免费| 一区二区三区国产精品乱码| 日韩欧美国产一区二区入口| 俄罗斯特黄特色一大片| 在线看三级毛片| 美女被艹到高潮喷水动态| 熟女电影av网| 久久精品影院6| 青草久久国产| 午夜精品一区二区三区免费看| 婷婷亚洲欧美| 男女下面进入的视频免费午夜| 国产黄a三级三级三级人| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式 | 嫁个100分男人电影在线观看| 亚洲男人的天堂狠狠| 欧美绝顶高潮抽搐喷水| 国产一区二区在线观看日韩 | 丁香六月欧美| 人人妻,人人澡人人爽秒播| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 99久久精品一区二区三区| av在线蜜桃| 欧美黄色片欧美黄色片| 熟女人妻精品中文字幕| 亚洲午夜理论影院| 亚洲真实伦在线观看| 久久久久久大精品| 国内精品久久久久久久电影| 一个人看视频在线观看www免费 | 淫妇啪啪啪对白视频| 中文亚洲av片在线观看爽| 九九久久精品国产亚洲av麻豆| 欧美zozozo另类| 欧美成人免费av一区二区三区| 国产午夜精品论理片| av中文乱码字幕在线| 亚洲av电影在线进入| 黄色片一级片一级黄色片| 成人一区二区视频在线观看| 97碰自拍视频| 狠狠狠狠99中文字幕| 中出人妻视频一区二区| 欧美最新免费一区二区三区 | 亚洲熟妇熟女久久| 成年人黄色毛片网站| 国产又黄又爽又无遮挡在线| 两个人的视频大全免费| 有码 亚洲区| 亚洲人成电影免费在线| 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 国产亚洲欧美在线一区二区| 午夜激情福利司机影院| 特级一级黄色大片| 99久久精品热视频| 在线观看午夜福利视频| 国产色婷婷99| 免费看a级黄色片| 深爱激情五月婷婷| 亚洲一区高清亚洲精品| 欧美最新免费一区二区三区 | 丰满乱子伦码专区| 热99re8久久精品国产| 久久久久久久久中文| 国产三级中文精品| 最近最新中文字幕大全免费视频| 国产精品永久免费网站| 我的老师免费观看完整版| 亚洲av成人av| 99久久精品国产亚洲精品| 中文资源天堂在线| 国产高清激情床上av| 欧美成人一区二区免费高清观看| 99热精品在线国产| 亚洲美女黄片视频| 嫩草影院入口| 中文字幕久久专区| 少妇人妻一区二区三区视频| 久久精品91无色码中文字幕| 日韩大尺度精品在线看网址| av天堂在线播放| 免费看美女性在线毛片视频| 高清在线国产一区| 12—13女人毛片做爰片一| 国产精品三级大全| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 国产不卡一卡二| 免费搜索国产男女视频| 国产色婷婷99| 日韩成人在线观看一区二区三区| 亚洲精品久久国产高清桃花| 成人欧美大片| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 国产av一区在线观看免费| 全区人妻精品视频| or卡值多少钱| 欧洲精品卡2卡3卡4卡5卡区| 国产精品综合久久久久久久免费| 一个人免费在线观看电影| 亚洲av不卡在线观看| 99久久九九国产精品国产免费| 99久久精品热视频| bbb黄色大片| 日韩欧美国产在线观看| 97碰自拍视频| 嫩草影院入口| 小蜜桃在线观看免费完整版高清| 国产真人三级小视频在线观看| 嫩草影院入口| 免费在线观看日本一区| 人人妻,人人澡人人爽秒播| 午夜亚洲福利在线播放| 九色国产91popny在线| 99久久久亚洲精品蜜臀av| 90打野战视频偷拍视频| 日本在线视频免费播放| 亚洲专区中文字幕在线| 香蕉丝袜av| 欧美极品一区二区三区四区| 身体一侧抽搐| 国产伦人伦偷精品视频| 国产精品一区二区免费欧美| 免费看a级黄色片| 日韩av在线大香蕉| 欧美最黄视频在线播放免费| 美女免费视频网站| 午夜福利在线观看吧| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看| 中亚洲国语对白在线视频| 日韩欧美国产在线观看| 最好的美女福利视频网| 精品久久久久久久末码| 丁香六月欧美| 搡女人真爽免费视频火全软件 | 久久久久久久久中文| 91久久精品电影网| 热99在线观看视频| 亚洲专区中文字幕在线| 长腿黑丝高跟| 熟女人妻精品中文字幕| 天堂影院成人在线观看| 看免费av毛片| 身体一侧抽搐| 免费高清视频大片| 老汉色av国产亚洲站长工具| 日韩欧美精品免费久久 | 美女高潮的动态| 人人妻人人看人人澡| 99久久久亚洲精品蜜臀av| 男女床上黄色一级片免费看| 桃红色精品国产亚洲av| 99热这里只有是精品50| 亚洲成人免费电影在线观看| 欧美黄色片欧美黄色片| 久99久视频精品免费| 最新美女视频免费是黄的| 亚洲 欧美 日韩 在线 免费| 丰满人妻一区二区三区视频av | 国内久久婷婷六月综合欲色啪| 好看av亚洲va欧美ⅴa在| 久久精品人妻少妇| 久久中文看片网| 丝袜美腿在线中文| 国产亚洲欧美98| 欧美日韩国产亚洲二区| av天堂在线播放| 乱人视频在线观看| 亚洲人成伊人成综合网2020| 亚洲av中文字字幕乱码综合| 熟女电影av网| 亚洲内射少妇av| 久99久视频精品免费| 少妇的逼水好多| 午夜影院日韩av| 啪啪无遮挡十八禁网站| 法律面前人人平等表现在哪些方面| 国产成+人综合+亚洲专区| 亚洲av成人不卡在线观看播放网| 国产国拍精品亚洲av在线观看 | 亚洲不卡免费看| 国内精品一区二区在线观看| 国产一区在线观看成人免费| 天美传媒精品一区二区| 国产v大片淫在线免费观看| 美女被艹到高潮喷水动态| 日韩欧美 国产精品| 久久久久久久久久黄片| 久久久久九九精品影院| 国内久久婷婷六月综合欲色啪| 欧美激情久久久久久爽电影| 亚洲美女视频黄频| 91久久精品国产一区二区成人 | 国产精品国产高清国产av| 91字幕亚洲| 色吧在线观看| www.www免费av| 亚洲久久久久久中文字幕| 亚洲最大成人中文| 国产三级在线视频| 国产一区二区亚洲精品在线观看| 一本一本综合久久| 国产精品一区二区免费欧美| 1000部很黄的大片| 久久香蕉国产精品| 操出白浆在线播放| 国产成人av激情在线播放| 亚洲中文字幕日韩| 色综合亚洲欧美另类图片| 国产高清有码在线观看视频| 欧美成人免费av一区二区三区| 在线a可以看的网站| 久久精品国产亚洲av香蕉五月| 成人午夜高清在线视频| 成人鲁丝片一二三区免费| 久久久久免费精品人妻一区二区| 国产男靠女视频免费网站| 久久久久久大精品| 免费在线观看亚洲国产| 韩国av一区二区三区四区| 中文字幕av成人在线电影| 国产精品三级大全| 久9热在线精品视频| 精品久久久久久久久久久久久| 国产老妇女一区| 草草在线视频免费看| 狠狠狠狠99中文字幕| 97超视频在线观看视频| 国内毛片毛片毛片毛片毛片| 国产视频内射| netflix在线观看网站| 日本五十路高清| 偷拍熟女少妇极品色| 美女高潮的动态| 免费看光身美女| 在线观看一区二区三区| 久久精品91无色码中文字幕| av黄色大香蕉| 身体一侧抽搐| 亚洲av免费在线观看| 给我免费播放毛片高清在线观看| 制服人妻中文乱码| 国产精品99久久99久久久不卡| 久久久成人免费电影| 免费观看的影片在线观看| 亚洲在线观看片| 99久久久亚洲精品蜜臀av| 亚洲狠狠婷婷综合久久图片| 日本撒尿小便嘘嘘汇集6| 91九色精品人成在线观看| eeuss影院久久| 亚洲精华国产精华精| 观看免费一级毛片| 悠悠久久av| 听说在线观看完整版免费高清| 中国美女看黄片| 色尼玛亚洲综合影院| 夜夜看夜夜爽夜夜摸| 亚洲熟妇熟女久久| 精品无人区乱码1区二区| 国产亚洲精品一区二区www| 3wmmmm亚洲av在线观看| 最后的刺客免费高清国语| 黑人欧美特级aaaaaa片| 日韩欧美 国产精品| 偷拍熟女少妇极品色| 亚洲av电影不卡..在线观看| 小说图片视频综合网站| 国产欧美日韩精品亚洲av| 亚洲人成伊人成综合网2020| 天天一区二区日本电影三级| 国产伦精品一区二区三区视频9 | 99热这里只有是精品50| 两个人的视频大全免费| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 夜夜看夜夜爽夜夜摸| 国产精品日韩av在线免费观看| 性欧美人与动物交配| 亚洲色图av天堂| 亚洲国产欧洲综合997久久,| 精品无人区乱码1区二区| www日本在线高清视频| 色综合亚洲欧美另类图片| 久久性视频一级片| 真人做人爱边吃奶动态| 精华霜和精华液先用哪个| 十八禁人妻一区二区| av专区在线播放| 无遮挡黄片免费观看| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久一区二区三区 | 国产真实伦视频高清在线观看 | 村上凉子中文字幕在线| 欧美成人a在线观看| 看免费av毛片| 亚洲美女黄片视频| 亚洲五月天丁香| 欧美一级a爱片免费观看看| 亚洲精品在线观看二区| 51午夜福利影视在线观看| 国产精品永久免费网站| 一进一出抽搐gif免费好疼| 一个人免费在线观看电影| 成熟少妇高潮喷水视频| 亚洲精品一卡2卡三卡4卡5卡| 88av欧美| 免费在线观看亚洲国产| 伊人久久精品亚洲午夜| 丰满的人妻完整版| 1024手机看黄色片| www日本在线高清视频| 亚洲激情在线av| 最近在线观看免费完整版| 午夜精品一区二区三区免费看| av中文乱码字幕在线| 黄色视频,在线免费观看| 黄色丝袜av网址大全| 亚洲专区中文字幕在线| 欧美一区二区亚洲| 国产在视频线在精品| 又粗又爽又猛毛片免费看| 最近最新中文字幕大全免费视频| xxx96com| 99国产极品粉嫩在线观看| 69av精品久久久久久| 精品国内亚洲2022精品成人| 日韩欧美精品v在线| 桃红色精品国产亚洲av| 精品久久久久久久人妻蜜臀av| avwww免费| 国产真实乱freesex| 在线十欧美十亚洲十日本专区| 国产精品一及| 欧美3d第一页| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 日本在线视频免费播放| 日韩人妻高清精品专区| 亚洲av第一区精品v没综合| 日本在线视频免费播放| 久久欧美精品欧美久久欧美| 最后的刺客免费高清国语| 国产欧美日韩精品一区二区| 日本与韩国留学比较| 在线观看午夜福利视频| 久久久久免费精品人妻一区二区| 婷婷六月久久综合丁香| 叶爱在线成人免费视频播放| 校园春色视频在线观看| 日韩中文字幕欧美一区二区| 丰满乱子伦码专区| 国产精品永久免费网站| 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| 国产色爽女视频免费观看| 欧美精品啪啪一区二区三区| 国产黄a三级三级三级人| 日韩欧美国产在线观看| 五月伊人婷婷丁香| 国产日本99.免费观看| 精品一区二区三区视频在线观看免费| 男女之事视频高清在线观看| 国产探花在线观看一区二区| 五月伊人婷婷丁香| 国产成人aa在线观看| 女同久久另类99精品国产91| 听说在线观看完整版免费高清| 久久久久精品国产欧美久久久| 97人妻精品一区二区三区麻豆| tocl精华| 黄色成人免费大全| 偷拍熟女少妇极品色| 夜夜躁狠狠躁天天躁| 少妇丰满av| 97超级碰碰碰精品色视频在线观看| 国产午夜福利久久久久久| 最近最新中文字幕大全免费视频| 午夜视频国产福利| 美女黄网站色视频| 亚洲第一欧美日韩一区二区三区| 国产高清视频在线播放一区| 最近最新免费中文字幕在线| 国产成+人综合+亚洲专区| 亚洲精品粉嫩美女一区| 国产av一区在线观看免费| 亚洲精品日韩av片在线观看 | 欧美高清成人免费视频www| 亚洲国产欧洲综合997久久,| 亚洲不卡免费看| 色在线成人网| 最近在线观看免费完整版| 欧美不卡视频在线免费观看| or卡值多少钱| 国产探花在线观看一区二区| avwww免费| 99久久精品国产亚洲精品| 亚洲国产高清在线一区二区三| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 久久中文看片网| 亚洲人成网站在线播| av天堂在线播放| 亚洲av免费高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲内射少妇av| 中文字幕人妻熟人妻熟丝袜美 | 欧美黄色淫秽网站| 99久久久亚洲精品蜜臀av| 国模一区二区三区四区视频| 熟妇人妻久久中文字幕3abv| 国产三级黄色录像| 男女那种视频在线观看| eeuss影院久久| 成年免费大片在线观看| 国产极品精品免费视频能看的| 欧美在线一区亚洲| 成人精品一区二区免费| 精品乱码久久久久久99久播| 欧美丝袜亚洲另类 | 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久亚洲av鲁大| 久久性视频一级片| 亚洲av二区三区四区| 国产伦人伦偷精品视频| 午夜视频国产福利| 国产高清视频在线观看网站| 午夜久久久久精精品| 国产不卡一卡二| e午夜精品久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 性色avwww在线观看| 成人国产综合亚洲| 日韩欧美免费精品| 少妇的逼水好多| 欧美一区二区国产精品久久精品| 中文字幕人妻熟人妻熟丝袜美 | 亚洲精品乱码久久久v下载方式 | 国产成人啪精品午夜网站| 一级a爱片免费观看的视频| 亚洲国产欧美网| 搡老岳熟女国产| aaaaa片日本免费| 亚洲一区二区三区色噜噜| 99riav亚洲国产免费| 国产精品国产高清国产av| 俄罗斯特黄特色一大片| 欧美一级a爱片免费观看看| 国产高清激情床上av| 免费在线观看亚洲国产| 波多野结衣高清无吗| 非洲黑人性xxxx精品又粗又长| 国产免费一级a男人的天堂| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av| 搡老妇女老女人老熟妇| 亚洲无线观看免费| 最近视频中文字幕2019在线8| 波多野结衣巨乳人妻| 久久久久久久久久黄片| 高清在线国产一区| 久久亚洲精品不卡| 亚洲久久久久久中文字幕| 亚洲成人中文字幕在线播放| 国内精品久久久久久久电影| 亚洲精品在线观看二区| 午夜激情欧美在线| 精品人妻偷拍中文字幕| 最近在线观看免费完整版| 国产午夜福利久久久久久| 久久久色成人| 国产99白浆流出| a在线观看视频网站| 老司机在亚洲福利影院| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 亚洲性夜色夜夜综合| 99热精品在线国产| 欧美一区二区国产精品久久精品| 成人一区二区视频在线观看| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 亚洲精品色激情综合| 国产aⅴ精品一区二区三区波| 国产一区二区在线观看日韩 | 欧美精品啪啪一区二区三区| 国产黄色小视频在线观看| 香蕉久久夜色| 我要搜黄色片| 亚洲无线观看免费| 俄罗斯特黄特色一大片| 亚洲一区二区三区不卡视频| 18禁在线播放成人免费| 国产亚洲精品一区二区www| 俄罗斯特黄特色一大片| 韩国av一区二区三区四区| 精品久久久久久久毛片微露脸| 久久久久久久久中文| 国产精品爽爽va在线观看网站| 人人妻人人看人人澡| 舔av片在线| 亚洲一区二区三区不卡视频| 免费看美女性在线毛片视频| 欧美+日韩+精品| 性色av乱码一区二区三区2| 一个人看视频在线观看www免费 | 欧美日韩精品网址| 夜夜爽天天搞| 三级男女做爰猛烈吃奶摸视频| 成人无遮挡网站| 九九在线视频观看精品| 18美女黄网站色大片免费观看| av天堂中文字幕网| 18美女黄网站色大片免费观看| 欧美日韩综合久久久久久 | 国产老妇女一区| 嫩草影院入口| 中文亚洲av片在线观看爽| 久久九九热精品免费| 一区二区三区高清视频在线| 成人性生交大片免费视频hd| 日韩人妻高清精品专区| 精品无人区乱码1区二区| 免费看a级黄色片| 久久草成人影院| 午夜福利欧美成人| 久久伊人香网站| 亚洲,欧美精品.| 淫妇啪啪啪对白视频| 亚洲内射少妇av| 美女被艹到高潮喷水动态| 欧美性猛交黑人性爽| 中文资源天堂在线| 国产伦人伦偷精品视频| 国产精品国产高清国产av| 久久亚洲真实| 老熟妇乱子伦视频在线观看| 免费看十八禁软件| 夜夜看夜夜爽夜夜摸| 99在线视频只有这里精品首页| 国内少妇人妻偷人精品xxx网站| 日韩有码中文字幕| 99国产极品粉嫩在线观看| 成年女人毛片免费观看观看9| 国产一区二区在线观看日韩 | 国产亚洲精品一区二区www| 亚洲av第一区精品v没综合| 欧美日韩瑟瑟在线播放| 69av精品久久久久久| 久久国产精品影院| 欧美乱妇无乱码| 国内少妇人妻偷人精品xxx网站| 99热6这里只有精品| 成人三级黄色视频| 欧美中文综合在线视频| 国产精品,欧美在线| 日韩大尺度精品在线看网址| 久久久久久大精品| 99国产精品一区二区三区| 日本 欧美在线| 国产极品精品免费视频能看的| 操出白浆在线播放| 久久国产乱子伦精品免费另类| 蜜桃久久精品国产亚洲av| 久久久久久久久久黄片| 国产激情偷乱视频一区二区| av在线天堂中文字幕| 激情在线观看视频在线高清| 18禁裸乳无遮挡免费网站照片| 两个人的视频大全免费| 两人在一起打扑克的视频| 男女下面进入的视频免费午夜| 最近最新中文字幕大全电影3| 欧美一区二区国产精品久久精品| 两性午夜刺激爽爽歪歪视频在线观看| 最近最新免费中文字幕在线| 色哟哟哟哟哟哟| 99热6这里只有精品| 久久国产乱子伦精品免费另类| 法律面前人人平等表现在哪些方面| 男女床上黄色一级片免费看| 天堂av国产一区二区熟女人妻| 日韩欧美免费精品| 黄色日韩在线| 好男人在线观看高清免费视频| 99国产极品粉嫩在线观看| 成人亚洲精品av一区二区| 国产精品免费一区二区三区在线| 国产激情欧美一区二区| 免费看美女性在线毛片视频| 在线天堂最新版资源| 一级黄片播放器| 精品国产三级普通话版| 精品久久久久久久久久免费视频| 久久久久久久午夜电影| 欧美精品啪啪一区二区三区| 十八禁人妻一区二区| 欧美+亚洲+日韩+国产| 精品日产1卡2卡| 美女高潮喷水抽搐中文字幕| 中文字幕av在线有码专区| 日本a在线网址|