• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A clustering based method to complete frame of discernment

    2023-05-19 03:40:46WenrnYANGXindeLIYongDENG
    CHINESE JOURNAL OF AERONAUTICS 2023年4期

    Wenrn YANG, Xinde LI, Yong DENG,c,d,e,*

    aInstitute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China

    bKey Laboratory of Measurement and Control of CSE, School of Automation, Southeast University, Nanjing 210096, China

    cSchool of Education, Shannxi Normal University, Xi’an 710062, China

    dSchool of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan

    eDepartment of Management, Technology, and Economics, ETH Zurich, Zurich 8092, Switzerland

    KEYWORDSDempster-Shafer evidence theory;Generalized evidence theory;Information fusion;K-means clustering;Open world assumption;Target recognition

    AbstractWhen the existing information does not contain all categories,the Generalized Evidence Theory (GET) can deal with information fusion.However, the question of how to determine the number of categories through GET is still intriguing.To address this question, a modified kmeans clustering, named centers initialized clustering is proposed, filling the gap of identification and complement of the frame of discernment.Based on this clustering method, the number of categories is determined.The initialized centers selected by center density keep the cluster results constant, enhancing the stability of clustering results.Besides, constructing Generalized basic Probability Assignment (GBPA) modules in a conservative way improves the reliability of the results.The mass of empty set in combined GBPAs is the indicator of the number of categories.Experiments on real and artificial data sets are conducted to show the effectiveness.

    1.Introduction

    Dempster-Shafer evidence theory (DS theory)1,2has many advantages in dealing with uncertainty and unknown information, which requires less information than probability theory.3,4DS theory has been studied deeply through the past few years, such as probabilistic data modelling,5risk analysis,6,7evidential reasoning,8,9pattern recognition,10–12decision making13,14and the generalization of evidence.15,16

    Although DS theory has been widely used, the conflict problem is still unsolved, that is, the combination results of highly conflict evidence are counter-intuitive.To address this problem, some new combination methods based on network,17,18gravity,19conflict measurement20and others21are proposed.However, these solutions above are based on the close world,which assumes that all kinds of targets are known,but the close world assumption conflicts with the open world reality.In some real world situations, target numbers are not constant.Take COVID-19 as an example, the number of species is changing all the time because of mutations, so the close world assumption is not reliable all the time.Therefore, when the existing information does not contain all categories, the incompleteness of the frame of discernment is one source of the conflict.

    Based on the open world assumption, the Generalized Evidence Theory (GET) is developed.15The basic framework of mass function is extended by viewing the empty set as the representation of the unknown targets.

    However, the determination of the exact number of categories is rarely studied.Recently, Liu and Deng found that the target number could be determined by Elbow method22which requires manual observation.Since the empty set in GET represents the unknown, the motivation of this work is to take advantage of GET and output the accurate number of categories.Furthermore, the process of dividing unlabeled samples into several classes is called unsupervised learning and is deeply studied in the field of machine learning.23Among them,typical algorithms are clustering algorithms,including kmeans clustering,24density peak clustering,25and adjacent propagation clustering.26Using clustering algorithms,it is possible to model the division of data into categories.

    Therefore,the task of this paper is to complete the frame of discernment by clustering and generating GBPAs for data with incomplete frame.Through clustering, unlabeled data is separated into different clusters.Traverse all possible numbers of clusters and analyze the degree of data conflict through GET.Since the conflict is minimized when the number of types is correct, the correct number of types can be obtained.However,there is always a difference between the clustering results and the real classification and it is a challenge to make the clustering results as close to the real situation as possible.

    In the following section, some necessary preliminaries are presented shortly.Then,the proposed clustering based method is demonstrated.To illustrate the effectiveness,experiments on Iris data set and simulated Gaussian data set are conducted.Finally, conclusions are stated.

    2.Preliminaries

    2.1.D-S evidence theory

    To a given question, all hypotheses Hiconstruct the Frame of Discernment (FOD), denoted as Ω.

    A Basic Probability Assignment(BPA)is to assign each element in power set P(Ω)a value,under the constrain of Eq.(3)and Eq.(4).

    BPAs can be deemed as a generalized probability distribution.5,27,28Compared with the probability distribution, BPAs take the advantage of modeling uncertainty.29–31Many functions are proposed to handling BPAs, such as entropy function,32–34information volume35–37information quality measure,38complexity analysis39,40and uncertainty measure.41–44For two BPAs, the combination rule in DS theory is to combine them to a new BPA, which is represented in Eq.(5) and Eq.(6).

    Information fusion is important and widely used.45,46In addition, the inverse process of fusion, the de-combination method, is also proposed.47

    2.2.Generalized evidence theory

    There are many mathematical models to explain evidence theory.48For example, a geometric approach is proposed to explore evidence theory.49Nevertheless, an intriguing and longtime unsolved problem is the conflict management.50,51A typical way is to consider the reliability of evidence.52–54On the other hand,the incomplete frame of discernment is also an important reason to cause conflict.To address this issue,an open world assumption, called transferable belief model, is developed.55,56In addition, another model to deal with the open world is GET.15In D-S evidence theory, m(?)should always be zero.However, in GET, m(?)is not necessarily zero,and is treated as other focal elements.GET combination rule is shown in Eqs.(7)–(10).

    2.3.K-means clustering

    K-means clustering24classifies unlabeled data into different categories.To divide n samples to k clusters, K-means clustering assigns each sample to the nearest cluster center.Then centers are updated with the mean of each cluster.The calculation steps are shown in Algorithm 1.

    Algorithm 1 K-means clustering.

    3.Proposed method

    The proposed method is to make use of m(?)and estimate the number of targets.Traverse the number of targets from 2 to N,and calculate the corresponding m(?).N is the maximum number of possible species we believe.The proposed method can be divided into two main steps.Firstly,categorize samples into different groups based on distribution features.Secondly,construct GBPA models and take m(?)as an indicator to determine the possible number of targets.Fig.1(a) visualizes the above steps, and the diagram of centers initialized clustering is shown in Fig.1(b).

    3.1.Centers initialized clustering

    One popular method to classify samples is K-means clustering.However, this method has a drawback that the clustering results keep changing during the repeated experiences because of the randomly selected initial centers.Inspired by density peak clustering 25,our method initializes centers with samples having high density and large distances from other regions of higher density.

    In our method, the density of each point is represented by Eq.(11), where dijdenotes the distance between point i and j.

    Since the higher the density, the more likely the data is a cluster center.The point with the biggest q is firstly chosen as an initial center and added to center set Cse.Then, the remains (k-1)centers are chosen by the consideration of both the density of itself and the distribution of centers, that is,the newly added center should be away from existing centers and have high density.The distance between point i and the nearest center is denoted by γi, then the selected center is to maximum q ?γ.Since the choice of centers is based on the order of q ?γ, the set of initial centers just add a point when the cluster number k increases by one.Moreover, the clustering result is constant because of the constant initial centers.The details are shown in Algorithm 2.

    With Algorithm 2, the randomly selected initial centers in Algorithm 2 are replaced by centers selected based on density.This change makes the output of clustering remain unchanged in the repeated experiences and make full use of the distribution features of data sets.

    Fig.1 Diagram of the proposed method.

    3.2.Generate GBPA

    The most popular method to generate GBPA is shown in Ref.22.Since parameters of GBPA models totally come from cluster results, some misclassified points have a great influence on GBPA models.In our method,GBPAs are generated in a conservative way.The details are introduced in the following.

    With centers initialized clustering, samples are divided into k clusters.Usually,each cluster is used to generate a fuzzy triangle57directly.In this article, the points, whose distance to the nearest center point is greater than the ninth quantile,are ignored in constructing fuzzy triangles as shown in Fig.1(b).The generated fuzzy triangles are supposed to represent the category information based on clustering.However, the clustering result is not all reliable since the boundary point between class A and B with closer distance to center A owns the possibility that it actually belongs to class B.The misclassified point makes the parameters of both fuzzy triangle A and B inaccurate.Therefore, in our method, the points away from centers, with high possibility to be misclassified, are discarded and interpreted as noise.

    With k fuzzy triangles {T1;T2;???;Tk}, k intersections{x1;x2;???;xk}are available.{ω1;ω2;???;ωk}are intersections in descending order.Assuming there exists only one positive intersection ω, the degree of belonging to the proposition P is shown in Eq.(12).

    Then, the generated GBPA is shown in Eq.(16) and Eq.(17).If the sum of the belonging degrees is greater than one,then normalize directly;if it is less than one,assign the part less than one to the empty set.

    Algorithm 2 Density based center finding.

    3.3.Combine GBPAs and produce m(?)

    Given a data set with n samples and s attributes,each attribute corresponds to a GBPA model.Therefore, a sample with s attributes generates s GBPAs m1;m2;???;ms.Each GBPA represents the degree of membership to subsets from the perspective of each attribute.

    Combine s GBPAs with Eq.(18),where ⊕denotes the combination rule illustrated in Eq.(7).Since m(?)is an indicator of conflict degree, if cluster number is larger than real kinds,the increased misclassified samples will increase the value of m(?).

    3.4.Iteration

    Using the above steps,when the number of clusters k is changing from 2 to a relatively large value, each k corresponds to a value of m(?)respectively.If k is smaller than true species,the empty set value m(?)of the generated GBPA will be larger than the correct clustering.If k is greater than true species,the empty set value m(?)of the generated GBPA will decrease but the m(?)of the combined GBPA will increase,because of the increased degree of conflict.Therefore, m(?)will be minimum if the number of species is correct.

    4.Experiments

    In the assumption of close world, evidence theory takes the advantage of efficient modeling uncertainty58–60and information fusion.61,62It has been widely used in classification,63–65decision-making systems,66,67autonomous driving,68human reliability analysis69,70and many other engineering applications.71–74However, the real application is often based on the assumption of open world.We construct experiments on Iris data set and simulated Gaussian data set to show the effectiveness under the assumption of incomplete discernment.

    4.1.Experiments on Iris data

    The experiments are constructed through the following steps.Firstly, centers initialized clustering is used to separate samples.GBPA generation and combination method are used to produce the final m(?).Different numbers of clusters result in different values of m(?).Finally, the number of types is predicted based on m(?).

    Iris data set75consists of 150 samples with 4 attributes,sepal length,sepal width,petal length and petal width,shorten as SL,SW,PL and PW.There are 3 categories,setosa(a),versicolar (b), virginica (c), and 50 samples in each category.

    First of all, all samples are normalized to [0;1] using

    Assuming the known categories are a and b, the FOD is{a;b}.2 center points are selected by Algorithm 2.The randomly selected initial centers in classical k-means clustering are replaced by these two points.The clustering result is used to represent the distribution feature of data and construct GBPA models.However, since clustering results always contain some misclassified points,a relatively conservative method is proposed.The outer points, whose distance to the nearest center point is greater than the ninth quantile, are ignored in generating GBPA.

    Fig.2 Cluster results shown in attribute SL, SW, PL and PW.

    Table 1 Specific fuzzy triangle feature information of Iris data set.

    Distribution features of Iris data are shown in Fig.2 and Fig.2(a) demonstrates data in the perspective of attribute SL and SW.Fig.2(b) is from the perspective of attribute PL and PW.The outer points, the gray points in figures, are far from centers and likely to be the misclassified points.Therefore,these gray points,whose distance to center points is larger than the ninth quantile, are discarded in constructing GBPA modules.

    Then, the clustering result is used to construct fuzzy triangles.For each cluster, the maximum, average and minimum values of each attribute are used in Eq.(20).Table 1 shows the specific fuzzy triangle feature information after omitting outer points.

    The generated GBPA is shown in Fig.3.Fig.s 3(a)–(d)correspond to attribute SL, SW, PL and PW respectively.

    The m(?)of 4 attributes is calculated and combined in Table 2.

    Fig.3 GBPA model for attributes SL, SW, PL and PW with 2 clusters.

    Table 2 Sum of m().

    Then, change the data into 3 clusters and repeat the above steps.The generated GBPAs are demonstrated in Fig.4.Compared with Fig.3, the increased number of clusters decreases the value of m(?).

    Increase the number of clusters from 2 to 8 and repeat the generation and combination steps.The change of m(?)along with cluster numbers is illustrated in Fig.5.

    As the cluster number k increases, the overall trend of the m(?)of each attribute decreases, since the increased number of triangles occupies more space and the space labeled as unknown decreases.However, the combined m(?)reaches the minimum when samples are clustered into 3 categories.The conflict degree is small when samples are classified correctly.If the number of categories is larger than real kinds,the increased number of misclassified samples will lead to an increased degree of conflict and manifested in the increase of the m(?)value.Since the experiment result reaches the minimum when the cluster number is three, the complete frame of discernment is supposed to contain three elements.

    Fig.4 GBPA model for attributes SL, SW, PL and PW with 3 clusters.

    Fig.5 Changing of m(?)with cluster numbers.

    In order to filter out outliers while retaining the category features, the defined criterion for judging a point as an outlier is that its distance from the nearest center point is greater than the ninth quantile of the distances.The ninth quantile,denoted as q=0.9,corresponds to results shown in Fig.5.The increase of q brings the risk of using misclassified samples, while the decrease of q increases the possibility of missing correctly classified points and destroying category features.The experiment results corresponding to q changing from 0.85 to 0.95 are shown in Fig.6.

    With different q, the overall trends of m(?)in combined GBPAs are all increasing.With the decrease of q, the number of outliers screened out increases, therefore, the established GBPA model loses some data features,resulting in the gradual increase of conflict degree after fusion.But only when q ?{0.90;0.91;0.92}, m(?)reaches minimum when cluster number is 3.When q takes other values, the minimum points all occur at the beginning.If q is larger than 0.92, undeleted outliers cause m(?)to keep increasing.If q is less than 0.90,the incorrectly removed points result in the loss of data feature, making the conflict degree large even when samples are separated into the right number of clusters.In conclusion,the choice of q is essential and it is reasonable to choose q ?[0.90;0.92] for Iris data set.

    Fig.6 Changing of m(?)in combined GBPAs with cluster numbers.

    4.2.Experiments on simulated Gaussian data set

    The experiments on simulated Gaussian data set are constructed through the following steps.Firstly, generate data set with pre-set parameters.Then,centers initialized clustering is used to cluster data.GBPA generation and combination methods are used to produce the final m(?).Different numbers of clusters result in different values of m(?).Finally,the number of types is predicted based on m(?).

    Since the degree of conflict between GBPAs is revealed through the combination process, the dimension of simulated data is set to 3, so that the generation of m(?)contains two combination processes.

    The artificial Gaussian data set consists of 4 distributions with the following characteristics:

    where I is identity matrix.Fig.7 demonstrates the generated data from × and y dimension.

    The clustering result is shown in Fig.8.Each cluster along with a center denoted as a black point, some outer points labeled as gray points are discarded in generating GBPAs.

    Fig.7 A Gaussian data set of 800 instances.

    Fig.8 A Gaussian data set with centers and outer points.

    Fig.9 GBPA model for attribute x.

    Fig.10 Changing of m(?)with cluster numbers.

    The generated GBPAs from the perspective of × is shown in Fig.9.

    Iterate the process of clustering and generate the corresponding m(?).The results are shown in Fig.10.Just as the result of the Iris data set,the overall trend of m(?)each attribute is decreasing.The value of m(?)also reaches the minimum when cluster number k equals the real number of categories.

    5.Conclusions

    A clustering based method to determine the number of categories and complete FOD is presented above.Firstly, data samples are clustered into several categories with initialized centers chosen based on density peaks.Then,the cluster results are used to generate GBPAs, after omitting outer points.Finally, the FOD is determined by the value of m(?)in combined GBPAs.The effectiveness is illustrated by both real data set and simulated data set.However,the preset value to define outliers endows an impact on final results.Hence,how to give a data-driven threshold requires further research.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The work was partially supported by the National Natural Science Foundation of China(No.61973332),the JSPS Invitational Fellowships for Research in Japan (Short-term).

    日韩免费高清中文字幕av| 久久久国产欧美日韩av| 99久久久亚洲精品蜜臀av| 国产亚洲av高清不卡| 亚洲av五月六月丁香网| 757午夜福利合集在线观看| 亚洲一区二区三区不卡视频| 一级毛片高清免费大全| 黄色a级毛片大全视频| 91麻豆av在线| 校园春色视频在线观看| 两人在一起打扑克的视频| 国产国语露脸激情在线看| 久久午夜亚洲精品久久| 超色免费av| 免费在线观看黄色视频的| 国产精品偷伦视频观看了| 两性夫妻黄色片| 午夜老司机福利片| 亚洲免费av在线视频| 极品人妻少妇av视频| 午夜精品在线福利| 99在线视频只有这里精品首页| 日韩有码中文字幕| 真人一进一出gif抽搐免费| 91国产中文字幕| 国产欧美日韩一区二区精品| 国产精品久久视频播放| 嫩草影院精品99| 丝袜美腿诱惑在线| 黄频高清免费视频| 人成视频在线观看免费观看| 欧美成人性av电影在线观看| 天堂中文最新版在线下载| 久久久久久久精品吃奶| 亚洲精品中文字幕一二三四区| 男女之事视频高清在线观看| 男女之事视频高清在线观看| 亚洲国产精品一区二区三区在线| 久久久久久久久久久久大奶| 亚洲av日韩精品久久久久久密| 国产欧美日韩精品亚洲av| 国产午夜精品久久久久久| 亚洲av日韩精品久久久久久密| 久久天堂一区二区三区四区| 欧美+亚洲+日韩+国产| 老汉色av国产亚洲站长工具| а√天堂www在线а√下载| 精品乱码久久久久久99久播| 啦啦啦免费观看视频1| 香蕉久久夜色| av电影中文网址| 亚洲欧美激情在线| 国产成人欧美| 亚洲成人免费av在线播放| 巨乳人妻的诱惑在线观看| 国产主播在线观看一区二区| 美女高潮喷水抽搐中文字幕| av有码第一页| 99精国产麻豆久久婷婷| 老鸭窝网址在线观看| 亚洲五月婷婷丁香| 黄色片一级片一级黄色片| 性少妇av在线| 多毛熟女@视频| 精品一区二区三区av网在线观看| 一区二区三区国产精品乱码| 欧美精品啪啪一区二区三区| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 午夜a级毛片| 18禁国产床啪视频网站| 成人免费观看视频高清| 国产伦人伦偷精品视频| 国产精品 国内视频| 成人黄色视频免费在线看| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 国产成人av激情在线播放| 欧美乱码精品一区二区三区| 老熟妇乱子伦视频在线观看| 久久香蕉精品热| 亚洲伊人色综图| 精品一区二区三卡| 亚洲成av片中文字幕在线观看| 天天添夜夜摸| 色精品久久人妻99蜜桃| 欧美日韩福利视频一区二区| 色综合欧美亚洲国产小说| 国产在线精品亚洲第一网站| netflix在线观看网站| 欧美精品亚洲一区二区| 热re99久久精品国产66热6| 99国产极品粉嫩在线观看| 亚洲片人在线观看| 国产精品九九99| 亚洲国产欧美一区二区综合| 青草久久国产| 亚洲一区高清亚洲精品| 久久热在线av| 91九色精品人成在线观看| 激情在线观看视频在线高清| 亚洲一区二区三区色噜噜 | 精品久久久久久,| 日韩欧美一区二区三区在线观看| 亚洲精品粉嫩美女一区| 久久久久久久精品吃奶| 国产成人一区二区三区免费视频网站| 成人18禁在线播放| 国产精品野战在线观看 | 国产三级黄色录像| 国产亚洲精品久久久久5区| 午夜免费激情av| 国产成人一区二区三区免费视频网站| 成人国语在线视频| 精品日产1卡2卡| 男女高潮啪啪啪动态图| 久久人人爽av亚洲精品天堂| 国产99久久九九免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品偷伦视频观看了| 视频区图区小说| 日本三级黄在线观看| xxxhd国产人妻xxx| 色婷婷久久久亚洲欧美| 妹子高潮喷水视频| 亚洲第一av免费看| 欧美激情 高清一区二区三区| 亚洲狠狠婷婷综合久久图片| 18禁美女被吸乳视频| 亚洲人成电影观看| av福利片在线| 免费久久久久久久精品成人欧美视频| 久久影院123| 国产1区2区3区精品| 欧美性长视频在线观看| 亚洲精品中文字幕在线视频| 久久人人精品亚洲av| 91精品三级在线观看| 久久精品人人爽人人爽视色| 欧美激情高清一区二区三区| 精品福利永久在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 91麻豆av在线| 亚洲精品久久午夜乱码| 亚洲av五月六月丁香网| 亚洲全国av大片| 亚洲精品久久成人aⅴ小说| 91精品三级在线观看| 亚洲av第一区精品v没综合| 国产精品成人在线| av片东京热男人的天堂| 日日夜夜操网爽| 精品少妇一区二区三区视频日本电影| 国产av在哪里看| 精品国产美女av久久久久小说| 亚洲av日韩精品久久久久久密| 免费搜索国产男女视频| 免费在线观看黄色视频的| 精品午夜福利视频在线观看一区| 久久精品国产亚洲av高清一级| 母亲3免费完整高清在线观看| 99在线视频只有这里精品首页| 欧美中文综合在线视频| 国产成人av教育| 久99久视频精品免费| 成年女人毛片免费观看观看9| 窝窝影院91人妻| 亚洲午夜精品一区,二区,三区| 波多野结衣高清无吗| 亚洲av美国av| 国产精品久久视频播放| 亚洲成国产人片在线观看| 脱女人内裤的视频| 九色亚洲精品在线播放| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区三| 国产免费现黄频在线看| 大香蕉久久成人网| 亚洲成a人片在线一区二区| 久久青草综合色| 免费日韩欧美在线观看| 久久人人97超碰香蕉20202| 欧美激情 高清一区二区三区| 欧美日韩亚洲综合一区二区三区_| 久久精品成人免费网站| 老司机午夜福利在线观看视频| 精品国产国语对白av| 女人被躁到高潮嗷嗷叫费观| 国产高清激情床上av| 国产精品av久久久久免费| 别揉我奶头~嗯~啊~动态视频| 伦理电影免费视频| 色老头精品视频在线观看| 亚洲欧美日韩无卡精品| 午夜福利免费观看在线| 欧美精品一区二区免费开放| 亚洲欧美精品综合久久99| 99国产精品99久久久久| 亚洲中文字幕日韩| 他把我摸到了高潮在线观看| 啪啪无遮挡十八禁网站| 国产成人一区二区三区免费视频网站| 黄色a级毛片大全视频| 性色av乱码一区二区三区2| 日日干狠狠操夜夜爽| 狂野欧美激情性xxxx| 在线观看舔阴道视频| 黄色 视频免费看| av视频免费观看在线观看| 亚洲七黄色美女视频| 性少妇av在线| 欧美最黄视频在线播放免费 | 成人三级黄色视频| 天天添夜夜摸| 国产单亲对白刺激| 精品国产国语对白av| 欧美日韩亚洲高清精品| 国产91精品成人一区二区三区| 交换朋友夫妻互换小说| 首页视频小说图片口味搜索| 亚洲在线自拍视频| 手机成人av网站| 国产真人三级小视频在线观看| 国产精品av久久久久免费| bbb黄色大片| 久久人人爽av亚洲精品天堂| 高清欧美精品videossex| 国产欧美日韩一区二区三区在线| 精品一品国产午夜福利视频| 中文字幕人妻丝袜制服| 在线观看免费午夜福利视频| 久久影院123| 亚洲专区国产一区二区| 色在线成人网| 成人亚洲精品一区在线观看| 一级,二级,三级黄色视频| 亚洲成a人片在线一区二区| 在线观看免费高清a一片| 在线观看www视频免费| 男女做爰动态图高潮gif福利片 | 久久久久久人人人人人| 日韩欧美三级三区| 日韩人妻精品一区2区三区| 欧美日韩亚洲国产一区二区在线观看| 国产免费男女视频| 欧美日本亚洲视频在线播放| 亚洲熟妇中文字幕五十中出 | 亚洲午夜精品一区,二区,三区| 国产真人三级小视频在线观看| 男女下面插进去视频免费观看| 中文字幕人妻熟女乱码| www.精华液| 国产激情久久老熟女| 91精品国产国语对白视频| 日韩免费高清中文字幕av| 亚洲欧美激情在线| 国产又色又爽无遮挡免费看| 天堂中文最新版在线下载| 国产成人欧美在线观看| 又黄又粗又硬又大视频| 久久人人精品亚洲av| 99国产综合亚洲精品| 免费在线观看亚洲国产| 精品久久久久久久久久免费视频 | 久久精品aⅴ一区二区三区四区| 淫秽高清视频在线观看| 99精品久久久久人妻精品| 可以在线观看毛片的网站| 不卡一级毛片| 亚洲熟妇熟女久久| 波多野结衣一区麻豆| 人人澡人人妻人| 亚洲三区欧美一区| 亚洲成av片中文字幕在线观看| 青草久久国产| 国产片内射在线| 黑人巨大精品欧美一区二区mp4| av欧美777| 亚洲五月天丁香| 日本三级黄在线观看| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 亚洲aⅴ乱码一区二区在线播放 | √禁漫天堂资源中文www| 一级黄色大片毛片| 亚洲av美国av| 69精品国产乱码久久久| 久久影院123| 麻豆久久精品国产亚洲av | xxxhd国产人妻xxx| 精品电影一区二区在线| 五月开心婷婷网| 日本撒尿小便嘘嘘汇集6| 国产成人精品久久二区二区免费| 韩国精品一区二区三区| 日韩视频一区二区在线观看| 欧美黄色淫秽网站| 色婷婷久久久亚洲欧美| 亚洲片人在线观看| 中文欧美无线码| 人人澡人人妻人| ponron亚洲| 日韩视频一区二区在线观看| 亚洲免费av在线视频| www日本在线高清视频| 亚洲成人免费av在线播放| cao死你这个sao货| 正在播放国产对白刺激| 变态另类成人亚洲欧美熟女 | 欧美黄色片欧美黄色片| tocl精华| 脱女人内裤的视频| 久久久久久人人人人人| 嫩草影院精品99| 成年女人毛片免费观看观看9| 亚洲一区中文字幕在线| av视频免费观看在线观看| 国产精华一区二区三区| 可以在线观看毛片的网站| 伊人久久大香线蕉亚洲五| 国产精品自产拍在线观看55亚洲| 97超级碰碰碰精品色视频在线观看| 国产伦一二天堂av在线观看| 欧美av亚洲av综合av国产av| 在线免费观看的www视频| 国产精品久久久久久人妻精品电影| 在线播放国产精品三级| 九色亚洲精品在线播放| 亚洲精品一二三| 国产av又大| 一级毛片高清免费大全| 亚洲av成人不卡在线观看播放网| 国产精品自产拍在线观看55亚洲| 国产精品亚洲av一区麻豆| 国产精品1区2区在线观看.| 日韩欧美一区二区三区在线观看| 亚洲五月天丁香| 久久影院123| 久久久久久免费高清国产稀缺| 女生性感内裤真人,穿戴方法视频| 久久精品国产99精品国产亚洲性色 | 99精国产麻豆久久婷婷| av网站在线播放免费| 亚洲成人免费电影在线观看| 啦啦啦 在线观看视频| 欧美中文日本在线观看视频| 黑人巨大精品欧美一区二区mp4| 免费高清视频大片| 精品久久久久久电影网| 国产乱人伦免费视频| 午夜福利,免费看| 无人区码免费观看不卡| a级毛片黄视频| 黄片小视频在线播放| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看| 久热这里只有精品99| 中文欧美无线码| 91九色精品人成在线观看| 国产一区在线观看成人免费| 欧美乱妇无乱码| 在线观看舔阴道视频| 国产av一区二区精品久久| 在线观看免费午夜福利视频| 欧美性长视频在线观看| 欧美老熟妇乱子伦牲交| 午夜老司机福利片| 亚洲专区国产一区二区| 久久久水蜜桃国产精品网| 久久久久国产一级毛片高清牌| 午夜两性在线视频| 欧美日韩乱码在线| 欧洲精品卡2卡3卡4卡5卡区| 色哟哟哟哟哟哟| 亚洲性夜色夜夜综合| 精品第一国产精品| 欧美日本亚洲视频在线播放| av超薄肉色丝袜交足视频| 亚洲精品av麻豆狂野| 日韩 欧美 亚洲 中文字幕| 大香蕉久久成人网| 欧美人与性动交α欧美软件| 黄色女人牲交| 女警被强在线播放| 激情在线观看视频在线高清| 美女高潮到喷水免费观看| 国产激情久久老熟女| 妹子高潮喷水视频| 国产精品av久久久久免费| 欧美另类亚洲清纯唯美| 欧美一区二区精品小视频在线| 午夜亚洲福利在线播放| 脱女人内裤的视频| 男人舔女人下体高潮全视频| 黄色片一级片一级黄色片| 侵犯人妻中文字幕一二三四区| 一个人免费在线观看的高清视频| 精品久久久久久成人av| www.自偷自拍.com| 亚洲精华国产精华精| 亚洲中文日韩欧美视频| 日韩欧美三级三区| 女人被狂操c到高潮| 精品国产超薄肉色丝袜足j| 天堂中文最新版在线下载| 淫妇啪啪啪对白视频| 亚洲自拍偷在线| 欧美精品一区二区免费开放| 欧美乱色亚洲激情| 亚洲第一青青草原| 亚洲欧美精品综合久久99| 女人被躁到高潮嗷嗷叫费观| 在线看a的网站| 可以在线观看毛片的网站| 80岁老熟妇乱子伦牲交| 97超级碰碰碰精品色视频在线观看| 久久香蕉精品热| 91av网站免费观看| 亚洲 欧美一区二区三区| 啦啦啦免费观看视频1| 超色免费av| 激情在线观看视频在线高清| av有码第一页| 伦理电影免费视频| 亚洲成人免费av在线播放| 国产av又大| 97人妻天天添夜夜摸| 黄色视频,在线免费观看| 91老司机精品| 亚洲第一av免费看| 欧美精品一区二区免费开放| 亚洲自偷自拍图片 自拍| 人人妻人人爽人人添夜夜欢视频| 久久久国产成人精品二区 | 视频在线观看一区二区三区| 欧美乱色亚洲激情| 国产三级黄色录像| 久久午夜综合久久蜜桃| 搡老岳熟女国产| 无人区码免费观看不卡| 欧美日韩av久久| 琪琪午夜伦伦电影理论片6080| 国产aⅴ精品一区二区三区波| 亚洲精品久久成人aⅴ小说| 男女之事视频高清在线观看| 9色porny在线观看| 国产xxxxx性猛交| 女警被强在线播放| 精品国产亚洲在线| 日韩av在线大香蕉| 久久精品亚洲精品国产色婷小说| 国产精品二区激情视频| 多毛熟女@视频| 国产又爽黄色视频| 老司机午夜十八禁免费视频| 日本黄色视频三级网站网址| 国产成人精品久久二区二区91| 精品卡一卡二卡四卡免费| 成年人免费黄色播放视频| av天堂久久9| 99re在线观看精品视频| 久久久国产成人免费| 亚洲 欧美 日韩 在线 免费| 交换朋友夫妻互换小说| 无限看片的www在线观看| 亚洲精品国产精品久久久不卡| 久久久久久久久免费视频了| 一区二区日韩欧美中文字幕| 丝袜在线中文字幕| 国产亚洲精品久久久久5区| 丝袜美足系列| 欧美黄色片欧美黄色片| 校园春色视频在线观看| 午夜视频精品福利| 久久性视频一级片| 亚洲欧美日韩另类电影网站| 精品福利永久在线观看| 欧美乱色亚洲激情| 久久久久久大精品| 看免费av毛片| 亚洲视频免费观看视频| 校园春色视频在线观看| 在线视频色国产色| 女人精品久久久久毛片| 99久久99久久久精品蜜桃| 人人妻,人人澡人人爽秒播| 一区二区三区精品91| 又紧又爽又黄一区二区| 男女下面插进去视频免费观看| 国产黄色免费在线视频| 欧美日韩av久久| 男女下面插进去视频免费观看| 欧美乱码精品一区二区三区| av有码第一页| 人人澡人人妻人| 欧美老熟妇乱子伦牲交| 丝袜在线中文字幕| av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 啦啦啦 在线观看视频| 黄片播放在线免费| 在线观看午夜福利视频| 欧美性长视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 又黄又粗又硬又大视频| 午夜亚洲福利在线播放| 国产精品一区二区精品视频观看| 老鸭窝网址在线观看| 97人妻天天添夜夜摸| 在线看a的网站| 激情在线观看视频在线高清| 麻豆av在线久日| 亚洲人成网站在线播放欧美日韩| 在线观看免费日韩欧美大片| 12—13女人毛片做爰片一| 人人妻人人澡人人看| av天堂在线播放| 亚洲成国产人片在线观看| 久久国产乱子伦精品免费另类| 最新在线观看一区二区三区| 国产99白浆流出| 久久久国产成人免费| 好男人电影高清在线观看| 亚洲av成人一区二区三| 国产一区二区三区综合在线观看| 久久影院123| 欧美黑人欧美精品刺激| 精品久久久久久久久久免费视频 | 国产一区二区在线av高清观看| 成人影院久久| 日韩欧美国产一区二区入口| 免费看十八禁软件| 欧美日韩精品网址| 一区二区三区国产精品乱码| 国产三级黄色录像| 色综合婷婷激情| 亚洲性夜色夜夜综合| 咕卡用的链子| 久久精品国产亚洲av高清一级| 看黄色毛片网站| 91成年电影在线观看| 亚洲国产欧美网| 国内毛片毛片毛片毛片毛片| 午夜福利影视在线免费观看| av在线天堂中文字幕 | 国产男靠女视频免费网站| 国产亚洲欧美98| 国产不卡一卡二| 多毛熟女@视频| 一进一出好大好爽视频| 久久影院123| 18禁国产床啪视频网站| 日韩大尺度精品在线看网址 | 亚洲精品粉嫩美女一区| 亚洲精品av麻豆狂野| 久久久国产精品麻豆| 久久国产亚洲av麻豆专区| 成在线人永久免费视频| 咕卡用的链子| 久久精品国产亚洲av高清一级| 9热在线视频观看99| 夜夜爽天天搞| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 亚洲五月色婷婷综合| 大香蕉久久成人网| 悠悠久久av| 无人区码免费观看不卡| 色在线成人网| 成人亚洲精品av一区二区 | 黄色丝袜av网址大全| 岛国视频午夜一区免费看| 91精品国产国语对白视频| 午夜福利在线免费观看网站| 亚洲 欧美一区二区三区| 日日夜夜操网爽| 视频区欧美日本亚洲| 香蕉久久夜色| 国产精品久久久久久人妻精品电影| 久热爱精品视频在线9| 国产精华一区二区三区| 亚洲专区中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 日本欧美视频一区| 成人18禁在线播放| 人人妻人人爽人人添夜夜欢视频| 国产成人免费无遮挡视频| 俄罗斯特黄特色一大片| 女性被躁到高潮视频| 日韩大码丰满熟妇| 动漫黄色视频在线观看| 欧美乱妇无乱码| 伊人久久大香线蕉亚洲五| 久久久国产成人精品二区 | 精品欧美一区二区三区在线| 日韩欧美一区视频在线观看| 久久热在线av| 国产精品九九99| 91九色精品人成在线观看| 欧美日韩亚洲综合一区二区三区_| 在线国产一区二区在线| 亚洲九九香蕉| 一二三四在线观看免费中文在| tocl精华| 久久久久亚洲av毛片大全| 成人亚洲精品av一区二区 | 久久伊人香网站| 国产欧美日韩精品亚洲av| 欧美乱码精品一区二区三区| 久久精品国产亚洲av高清一级| 亚洲五月色婷婷综合| 午夜精品在线福利| 精品人妻1区二区| 高清av免费在线|