• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-entropy(La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7thermal barrier coating material with significantly enhanced fracture toughness

    2023-05-19 03:41:52DonghuiGUOFeifeiZHOUBoshengXUYigungWANGYouWANG
    CHINESE JOURNAL OF AERONAUTICS 2023年4期

    Donghui GUO,Feifei ZHOU,*,Bosheng XU,Yigung WANG,You WANG

    aInstitute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China

    bDepartment of Materials Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001,China

    KEYWORDSFracture toughness;High-entropy ceramics;High-temperature phase stability;Rare-earth zirconate;Thermal barrier coatings

    AbstractPoor fracture toughness leads to premature failure of La2(Zr0.75Ce0.25)2O7(LCZ) thermal barrier coatings in an elevated temperature service environment.A novel coating material,namely (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7(LNSGY) based on the high-entropy concept, was successfully fabricated by solid-state sintering.The microstructure of LCZ and LNSGY was investigated by X-Ray Diffraction(XRD),Raman Spectrometer(RS),Transmission Electronic Microscopy(TEM)and Scanning Electron Microscopy(SEM).The fracture toughness of the LCZ and LNSGY ceramics was evaluated.The LNSGY has excellent high-temperature phase stability,and the grain size of LNSGY ceramic is smaller than that of LCZ ceramic at an elevated temperature due to the sluggish diffusion effect.Compared with LCZ (fracture toughness is (1.4 ± 0.1)MPa?m1/2), the fracture toughness of LNSGY is significantly enhanced (fracture toughness is(2.0±0.3)MPa?m1/2).Therefore, the LNSGY can be a promising advanced thermal barrier coating material in the future.

    1.Introduction

    Thermal Barrier Coatings (TBCs) are applied to the hot components of gas turbine engines to protect the inner superalloy components from overheating and corrosion.TBCs can dramatically improve service life and efficiency of engines.Yttria-Stabilised Zirconia (YSZ) has become the most widely used ceramic TBC material because of its high thermal expansion coefficient and fracture toughness.However, the operating temperature of YSZ is limited to below 1200 °C due to the non-transformable tetragonal phase degradation and poor sintering resistance.1–3Rare-Earth Zirconates (REZ) have the advantages of high temperature stability,low thermal conductivity and superior CMAS (CaO-MgO-Al2O3-SiO2) resistance.4Nevertheless, the fracture toughness of REZ is lower than that of YSZ, which restrict the wide application of REZ.

    Doping or defect engineering is an effective way to improve thermo-physical and mechanical properties of REZ.5,6Additionally, high entropy ceramics, also known as multiprincipal element ceramics, usually refer to the solid solution formed by five or more ceramic components.It has become a popular topic in the ceramic field in recent years due to the unique high entropy effect.The earliest research of high entropy ceramics can be traced back to 2015.Rost et al.7reported a bulk entropy-stabilised oxide ceramic for the first time,i.e.high entropy ceramics.Subsequently,more and more high entropy ceramics, including high entropy oxide ceramics with fluorite structure, perovskite structure and spinel structure,as well as nitride and silicide,gradually attracted research attention.In recent years,High Entropy Rare-Earth Zirconate(HE-REZ) exhibited superior performance due to structural stability, a sluggish diffusion effect, corrosion and oxidation resistance.8Fan et al.9investigated the microstructure of dual-phase REZ medium-and high-entropy ceramics,and proposed the principal element design criterion of pyrochlorefluorite dual-phase ceramics.Moreover, A2B2O7compounds with pyrochlore and/or defective fluorite structures have many advantages as TBCs.Chen et al.10fabricated the RE3NbO7ceramics(RE=La,Nd,Sm,Eu,Gd,Dy)by solid state reaction and reported that the thermal expansion coefficient and thermal conductivity of Dy3NbO7ceramics with fluorite structure were 11.0 × 10-6K-1(1200 °C) and 1.0 W?m-1?K-1(25 °C), respectively.Wu et al.11synthesised the novel ZrO2-Dy3TaO7ceramics and found the thermal conductivity was lower than that of YSZ.Ren et al.12prepared a single defective fluorite structure (Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Zr2O7, and found that the multi-component HE-REZ had lower thermal conductivity and larger thermal expansion coefficient.Zhou et al.13reported that (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7/YSZ coatings had excellent thermal insulating property and hightemperature phase stability compared with the La2Zr2O7/YSZ coatings.Zhu et al.14found that dual-phase HE-REZ(La0.2Nd0.2Y0.2Er0.2Yb0.2)2Zr2O7exhibited enhanced Vickers’hardness and thermal expansion coefficients.To date, the change of elements located at A or B sites have received extensive attention.However, studies on both A and B sites are lacking.

    In our previous studies, the La2(Zr0.75Ce0.25)2O7(LCZ)coatings were fabricated, which exhibited lower thermal conductivity and higher thermal expansion coefficient compared with single rare-earth La2Zr2O7(LZ) coatings.15–17However,the main drawback of LCZ coatings is poor fracture toughness.Based on the high-entropy engineering, a new high-entropy (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7(LNSGY) ceramic with pyrochlore structure was designed,where the phase composition and microstructure were characterised.In addition, the fracture toughness of LNSGY was studied.The results would give guidance for the design of advanced TBCs materials.

    2.Experimental procedure

    2.1.Synthesis of LNSGY ceramic

    To obtain LNSGY powders,a solid-state reaction method was conducted.Different raw ceramic powders, such as La2O3,Nd2O3, Sm2O3, Gd2O3, Yb2O3, ZrO2, and CeO2(99.9wt%,Beijing InnoChem Science and Technology Co., ltd.) were used.Firstly,according to the designed molecular formula,different ceramic powders were precisely weighed and then mixed with zirconia milling balls and ethanol by using a planetary mill (Fritsch, Pulverisette 6) for 24 h at 260 r/min.The weighing accuracy of the equipment is two decimal points.The mass ratios of powder and ball, and powder and ethanol were 1∶10 and 1∶1.5, respectively.Subsequently, the obtained slurries were dried at 80 °C for 12 h in a drying oven, and the dried powder was sieved by a screen (200-mesh).To further synthesise LNSGY powders, the sieved powders were calcined at 1500 °C for 10 h.Then, the calcined powders were granulated by using the 5wt% Poly Vinyl Alcohol (PVA), and drypressing was carried out at 7.5 MPa for 60 s.Following that,green bodies were fabricated by uniaxial cold pressing at 200 MPa for 2 min.Finally, the green bodies were sintered at 500 °C for 2 h to burn out PVA and then sintered at 1600 °C for 40 h in air.For comparison, dense LCZ ceramics were synthesised by using the same method.

    2.2.Characterization

    The phase composition of synthetised powder and ceramic samples was identified using X-Ray Diffraction(XRD,Ultima IV,Japan)with a scan rate of 5(°)/min and Raman spectrometer (HORIBA Scientific LabRAM HR Evolution, France)with a 532 nm laser source.The crystal structure and elemental distribution of powder were observed by a Transmission Electronic Microscopy(TEM,FEI Talos F200s,Netherlands).The structure and grain size were characterised using a fieldemission Scanning Electron Microscope (SEM, JSM-7500F,Japan).To further observe and analyse the grain boundaries,the surface of ceramic samples was thermally etched at 1500 °C for 40 min.

    To measure fracture toughness (KIC), each sample was tested eight times by using a micro-hardness testing instrument(HV-10Z,China)at 9.8 N pressing load.The Vickers hardness can be calculated by

    where F is the pressing load of indentation; d is the length of diagonal of indentation.

    The thermal conductivity of LCZ and LNSGY ceramics was determined by a laser flash analyser (Netzsch HFM 446 Lambda, Germany) with argon gas.The samples were machined into dimensions of ?12.7 mm×1.5 mm discs before the test.The measurement was conducted in the temperature range of 200–1200 °C at an interval of 200 °C.The thermal conductivity can be calculated by

    where Cpis the thermal capacity calculated based on Neumann-Kopp law; q is the density of ceramic obtained by the Archimedes method; λ is the thermal diffusivity measured by a laser flash analyser with argon gas.

    The LCZ and LNSGY ceramics were machined into dimensions of 4 mm × 4 mm × 12 mm cuboids before the test.The thermal expansion coefficient of the LCZ and LNSGY ceramics was measured by a high-temperature dilatometer(NETZSCH DIL402C, Germany) with argon gas.The measurement was conducted at the temperature range of 25–1300 °C with a heating rate of 5 °C/min.

    3.Results and discussion

    Figs.1 (a) and (b) display the XRD patterns of the LCZ and LNSGY powder and sintered ceramic,respectively.The phase structure is a single-phase cubic pyrochlore structure whether it is the powder or the sintered ceramic.No impurity phases exist, which indicates that the LCZ and LNSGY materials have excellent phase stability.18In general,the phase structure of a typical A2B2O7ceramic is determined by the radius ratio rA/Bof A3+and B4+.19For instance, the extent of structural disordering in REZ,is related to the RE3+radius,which leads to different phase structures.The cubic pyrochlore structure(P) is stable when it ranges from 1.46 to 1.78, whereas the defective fluorite structure (F) is easier to form when rA/Bis below 1.46.20The rA/Bof LNSGY can be expressed as

    where r(RE) is the cation radius of RE.The cation radii of La3+, Nd3+, Sm3+, Gd3+, Yb3+, Zr4+and Ce4+can be found in a previous study.21Thus, according to Eq.(3), the phase structure of LNSGY is expected to be fluorite, because rA/B= 1.422.In contrast, the XRD patterns imply that the phase structure of LNSGY was a single-phase pyrochlore.In addition, as previously reported,22–25it is worth noting that nano-sized REZ ceramics usually exhibit defective fluorite structure, whereas sub-micron- or micron-sized ceramics demonstrate pyrochlore structure, when the rA/Bvalue lies at the boundary of 1.46.According to the theory of Navrotsky,because the surface/interface energy has an effect on the Gibbs free energy of the system,the ultra nano powder always forms a high temperature phase (fluorite phase).The surface/interface energy of sub-micron or micron level is smaller than that of the ultra nano powder.Therefore,nano powder can provide abundant surface energy,which is conducive to the generation of fluorite phase during the subsequent sintering,whereas submicron or micron powder tends to generate pyrochlore phase.The phase structures of REZ ceramics may also conform to this rule.

    Fig.1 XRD patterns and Raman spectra of LCZ and LNSGY.

    Fig.2 HRTEM photograph, SAED pattern, and corresponding compositional mapping of LNSGY powder.

    The Raman spectra can obtain the precise information of phase composition with short-range and long-range order,especially vibrations about oxygen ions, compared with the XRD patterns, thereby distinguishing between the pyrochlore and fluorite structures.26Therefore, to further verify phase structures, the Raman spectra of the synthesised LCZ and LNSGY powder and sintered ceramic are shown in Figs.1(c) and (d).The synthesised LCZ and LNSGY powder and sintered ceramic demonstrate four typical Raman bands of the pyrochlore structure, and this result further confirms the results of XRD.For the LCZ ceramic, the band at around 683 cm-1is interestingly detected as well, which might be attributed to the optical mode.27Two Raman bands at approximately 292 cm-1and 389 cm-1represent the O–La–O bending vibration and Zr(Ce)–O stretching mode, respectively.In addition, the bands at about 493 cm-1and 567 cm-1indicate the La–O stretching modes.Meanwhile,the Raman bands of LCZ sample are consistent with the results in another study.28For the LNSGY ceramic, the Raman band of LNSGY ceramic at approximately 303 cm-1imply the O–RE–O bending vibration, and the Raman band at approximately 374 cm-1indicates Zr(Ce)–O stretching mode.Moreover, the bands at about 526 cm-1and 598 cm-1are RE–O stretching modes.The band at about 598 cm-1is a unique peak for pyrochlore.

    Fig.2 shows the TEM images of synthesised LNSGY ceramic powder.The High-Resolution Transmission Electron Microscopy(HRTEM)photograph demonstrates the structure with a long-range order of LNSGY powder, where the interplanar distance of 0.32 nm corresponds to the (222) plane of pyrochlore(Fig.2(a)).Fig.2(b)shows the Selected Area Electron Diffraction (SAED) pattern.The single-phase structure has diffraction spots along the[10 1]zone axis, which confirms the pyrochlore structure.This result is in accordance with that of XRD and Raman spectra.Fig.2(c) displays the compositional distribution of La, Nd, Sm, Gd, Yb, Zr, Ce and O.The result indicates the elemental homogeneity of LNSGY powder and further corroborates the formation of singlephase structure.The results of TEM analysis are consistent with that in a previous study.29

    The morphologies of synthesised LCZ and LNSGY powder are exhibited in Figs.3(a) and (b), respectively.The irregular particles are composed of raw particles with a size less than sub-micron.Additionally, the average particle sizes of LCZ and LNSGY powders are 1.03 μm and 0.91 μm, respectively(Fig.4).This result is consistent with SEM observation.The density of the LCZ and LNSGY ceramic are 6.25 g/cm3and 6.67 g/cm3, respectively.The densification rates of the two samples are 98.8% and 96.2%, respectively.Figs.3(c) and(d) show the microstructure of sintered LCZ and LNSGY ceramic.The two ceramic samples are dense with little pores.Dramatically,the average grain size of LCZ is 22.85 μm,which is obviously larger than the grain size of LNSGY (approximately 3.92 μm), as shown in Fig.4.Compared with LCZ,the grain size of LNSGY is obviously lower, and this is due to the sluggish diffusion effect of HE-REZ.30

    Fig.5 exhibits SEM-Energy Dispersive Spectroscopy(EDS)mapping of sintered LCZ and LNSGY ceramics.Figs.5(c)and(d)show that the elements of LCZ and LNSGY are still homogeneously distributed.Furthermore, the EDS is carried out to further discuss the element content.The results of element content are shown in Table 1.The compositions marked A and B are LCZ and LNSGY,respectively.The results of EDS analysis are consistent with the XRD pattern.

    The macroscopic change of green bodies is volume shrinkage after high temperature sintering.Meanwhile, the density and strength increase.It is necessary to characterise the sintering degree by volume shrinkage ratio.Fig.6 depicts the volume shrinkage ratio of LCZ and LNSGY ceramic sintered at 1600 °C for 40 h.The volume shrinkage ratio of LCZ is(30.6 ± 1.8)%, which is slightly larger than that of LNSGY(25.8 ± 2.1)%.This finding may be due to the high entropy effect of HE-REZ,31which means the anti-sinterability of the LNSGY is better than that of LCZ.

    The fracture toughness which reveals interfacial strain tolerance, determines the reliability of TBCs.17The fracture toughness can be measured by indentation method.5The typical indentation photograph of LNSGY ceramic is exhibited in Fig.7(a).The fracture toughness can be expressed as32

    where a is the length from the centre point to the edge corner of the indentation;c is the total length of the radial crack plus a.Based on Eq.(4), the fracture toughness of LZ, LCZ and LNSGY ceramic is depicted in Fig.7(b)33.Fig.7(b)33shows that the fracture toughness of LZ,LCZ and LNSGY ceramics is(1.1±0.1),(1.4±0.1),(2.0±0.3)MPa?m1/2,respectively.Among them, the fracture toughness of LZ was demonstrated in a previous study.33Moreover, YSZ is a state-of-the-art TBCs material and its fracture toughness is 2.4 MPa?m1/2.10No obvious variation exists between the fracture toughness of LNSGY and YSZ ceramics.The TBCs materials have a good high temperature fracture toughness, mainly because TBCs materials with lower fracture toughness are prone to delamination during service.Compared with LCZ,the fracture toughness of LNSGY ceramic is significantly enhanced by more than 40%.

    Fig.4 Grain size of LCZ and LNSGY.

    To further investigate the high toughness of LNSGY, the crack propagation path is observed, as shown in Fig.8.For LNSGY ceramics, the crack bridging and deflection can be found in the crack propagation path.Their existence means cracks need to absorb more energy for propagation, thereby improving the fracture toughness.Moreover, LNSGY ceramics have higher fracture toughness, which might be due to the presence of ferroelastic domains, similar to YSZ.34Compared with LCZ,LNSGY ceramics can adjust the density of dislocations due to the entropy gain.The strain field of dislocation can be enlarged by multivalent cations of LNSGY ceramics,which can enhance the chance of crack bridging and deflection.High density dislocations increase the local plasticity of LNSGY ceramics surface and may become an additional toughening mechanism of LNSGY ceramics.35In short, the crack direction changes due to the local stress around the crack tip during crack propagation,which is the main reason for the excellent fracture toughness.

    The thermal conductivities of LCZ and LNSGY ceramics are depicted in Fig.9.The thermal conductivity of LNSGY ceramics(1.63–1.84 W?m-1?K-1at 200–1200°C)is lower than that of LCZ ceramics(2.10–2.27 W?m-1?K-1at 200–1200°C).The thermal conductivity of LNSGY ceramics decreases as a result of the enhanced phonon scattering with increasing cation numbers.36–38

    Generally speaking, the thermal conductivity of insulating crystalline could be explained by

    where v is the velocity of phonons; l is the phonons mean free path.Hence, the thermal conductivity is proportional to the phonons mean free path.The phonons mean free path could be expressed as39

    where li(w;T)is the mean free path due to phonon–phonon scattering,the subscript i means the the abbreviation of intrinsic, w is the frequency, T is the temperature; lp(w;T)is the mean free path owing to defects scattering, the subscript p means the abbreviation of point defect.Based on Eqs.(5) and(6), the phonon–phonon scattering enhances with increasing temperature.This leads to a shorter mean free path of phonons, thereby causing a lower thermal conductivity.

    Fig.5 SEM-EDS mapping of LCZ and LNSGY.

    Table 1 EDS analysis of A and B positions.

    Fig.6 Volume shrinkage ratio of LCZ and LNSGY ceramic sintered at 1600 °C for 40 h.

    Fig.10 displays the thermal expansion coefficients of LCZ and LNSGY ceramics under different temperatures,where L0and dL are initial length and change of sample length cuased by temperature change, respectively.Fig.10(a) shows that the deformation variable increases with increasing temperature, which indicates that LCZ and LNSGY ceramics have good thermal stability.However,the thermal expansion coefficient of LNSGY ceramic(10.98 × 10-6K-1at 1300 °C) is higher than that of LCZ ceramic (9.95 × 10-6K-1at 1300 °C), as shown in Fig.10(b).This may be attributed to the lower cationic bonding strength of LNSGY.40

    Considering that the binding energy of Nd, Sm, Gd, Yb and O is lower than that of La and O.Therefore, the ionic bonding strength at A and B sites is considered.The ionic bonding strength could be expressed by14

    Fig.7 Indentation photograph of LNSGY ceramic and fracture toughness of LZ, LCZ and LNSGY ceramics.33

    Fig.8 SEM photographs of indentation of LNSGY ceramic and locally enlarged tip of radial crack.

    Fig.9 Thermal diffusivities and thermal conductivities of LCZ and LNSGY ceramics.

    Fig.10 dL/L0and thermal expansion coefficients of LCZ and LNSGY ceramics under different temperatures.

    where IABis the cationic bonding strength of A and B;xAand xBare average electronegativity of A3+and B4+.According to the electronegativity data, the average electronegativity of La,Nd,Sm,Gd,Yb,Ce,and Zr is 1.10,1.14,1.17,1.20,1.30,1.12,and 1.33, respectively.The cationic bonding strength of LCZ and LNSGY is 0.0078 and 0.0023 by Eq.(7).Hence, the thermal expansion coefficient of LNSGY ceramic is higher than that of LCZ ceramic.In summary,LNSGY can be a potential material for TBCs applications.

    4.Conclusions

    The novel LNSGY high-entropy ceramics are successfully prepared by solid-state sintering.The microstructure and fracture toughness of the LCZ and LNSGY are comparatively investigated.Overall, meaningful conclusions are drawn as follows:

    (1) Both LCZ and LNSGY exhibit a single-phase pyrochlore structure, and the element distribution of LNSGY is homogenous.

    (2) The average grain size of LNSGY ceramic is 3.92 μm after sintering at 1600 °C for 40 h, which is extremely smaller than that of LCZ ceramic (approximately 22.85 μm).Moreover, LCZ ceramic exhibits a larger volume shrinkage ratio((30.6 ± 1.8)%) than LNSGY ceramic ((25.8 ± 2.1)%).

    (3) Compared with the fracture toughness of LCZ((1.4 ± 0.1) MPa?m1/2), the fracture toughness of LNSGY ceramic ((2.0 ± 0.3) MPa?m1/2) is significantly enhanced by more than 40%, which is favourable for the service life of TBCs material.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(No.52202057)and the National Science and Technology Major Project, China (2017-VI-0020-0093).

    啪啪无遮挡十八禁网站| 天堂中文最新版在线下载| 午夜福利一区二区在线看| av视频免费观看在线观看| 另类亚洲欧美激情| 久久毛片免费看一区二区三区| 免费女性裸体啪啪无遮挡网站| 最黄视频免费看| 成人18禁高潮啪啪吃奶动态图| 美女福利国产在线| 女人高潮潮喷娇喘18禁视频| 国产亚洲欧美在线一区二区| 一进一出抽搐动态| 成人18禁在线播放| 亚洲精品一卡2卡三卡4卡5卡| 丝袜喷水一区| 国内毛片毛片毛片毛片毛片| 国产成人欧美在线观看 | 亚洲中文日韩欧美视频| 黑人巨大精品欧美一区二区蜜桃| 啦啦啦 在线观看视频| 老鸭窝网址在线观看| 婷婷丁香在线五月| av不卡在线播放| 新久久久久国产一级毛片| 五月开心婷婷网| 欧美日韩视频精品一区| 免费一级毛片在线播放高清视频 | 最新在线观看一区二区三区| 国产在视频线精品| 午夜福利视频在线观看免费| 久久久久久久精品吃奶| 亚洲精品国产一区二区精华液| 超碰成人久久| 久久精品aⅴ一区二区三区四区| 亚洲欧美一区二区三区黑人| 多毛熟女@视频| 国产精品一区二区精品视频观看| 亚洲,欧美精品.| 男女边摸边吃奶| 一本—道久久a久久精品蜜桃钙片| 99九九在线精品视频| 好男人电影高清在线观看| 久久久水蜜桃国产精品网| 久久青草综合色| 午夜免费鲁丝| 美女福利国产在线| 一区二区三区乱码不卡18| 亚洲午夜精品一区,二区,三区| 亚洲五月色婷婷综合| 12—13女人毛片做爰片一| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人看| 日日摸夜夜添夜夜添小说| 欧美 日韩 精品 国产| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 国产av国产精品国产| 欧美 日韩 精品 国产| 成年人免费黄色播放视频| 亚洲色图 男人天堂 中文字幕| 亚洲情色 制服丝袜| 天堂俺去俺来也www色官网| 国产主播在线观看一区二区| 亚洲av国产av综合av卡| 亚洲精品久久午夜乱码| 欧美 日韩 精品 国产| 美女高潮到喷水免费观看| 精品熟女少妇八av免费久了| 91九色精品人成在线观看| 国产在线一区二区三区精| 国产男女超爽视频在线观看| 欧美黄色淫秽网站| 一边摸一边抽搐一进一出视频| 国产精品麻豆人妻色哟哟久久| 精品国产乱码久久久久久男人| 一本色道久久久久久精品综合| 我要看黄色一级片免费的| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 黑人欧美特级aaaaaa片| 好男人电影高清在线观看| 精品久久久久久久毛片微露脸| 国产一区二区在线观看av| 精品久久久精品久久久| 精品人妻在线不人妻| 久久天躁狠狠躁夜夜2o2o| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区精品视频观看| 天堂动漫精品| 99热网站在线观看| 又黄又粗又硬又大视频| 国产精品久久久人人做人人爽| 麻豆av在线久日| 久久久精品94久久精品| 久久久久久久大尺度免费视频| 国产精品九九99| 国产成人av教育| 99久久99久久久精品蜜桃| 国产野战对白在线观看| 极品教师在线免费播放| 免费av中文字幕在线| 精品少妇一区二区三区视频日本电影| 亚洲精品美女久久久久99蜜臀| 99热国产这里只有精品6| 中文字幕高清在线视频| 精品国产一区二区三区四区第35| a级毛片在线看网站| 久久ye,这里只有精品| 国产无遮挡羞羞视频在线观看| 日韩三级视频一区二区三区| 国产单亲对白刺激| 日韩一区二区三区影片| 午夜福利在线免费观看网站| 国产男女内射视频| 飞空精品影院首页| 男女免费视频国产| 两个人看的免费小视频| 亚洲少妇的诱惑av| 男女下面插进去视频免费观看| 伦理电影免费视频| 欧美日韩黄片免| 视频区欧美日本亚洲| www日本在线高清视频| 男女午夜视频在线观看| 这个男人来自地球电影免费观看| 亚洲av片天天在线观看| h视频一区二区三区| 亚洲av国产av综合av卡| 亚洲色图综合在线观看| 亚洲国产看品久久| 久久久国产成人免费| 色播在线永久视频| 久久精品国产亚洲av香蕉五月 | 国产高清videossex| 动漫黄色视频在线观看| 欧美激情高清一区二区三区| 欧美中文综合在线视频| 中文字幕人妻丝袜制服| 日韩精品免费视频一区二区三区| 男人舔女人的私密视频| 多毛熟女@视频| av片东京热男人的天堂| 91精品三级在线观看| 精品久久蜜臀av无| 久久中文字幕人妻熟女| 亚洲成国产人片在线观看| 男女边摸边吃奶| 亚洲av欧美aⅴ国产| 宅男免费午夜| 国产av又大| 每晚都被弄得嗷嗷叫到高潮| 欧美成人免费av一区二区三区 | 无人区码免费观看不卡 | 成人国产一区最新在线观看| 精品一品国产午夜福利视频| av有码第一页| 欧美人与性动交α欧美精品济南到| 国产精品久久电影中文字幕 | 久久久久视频综合| 91精品国产国语对白视频| 蜜桃国产av成人99| 免费看a级黄色片| 亚洲第一青青草原| 国产亚洲精品久久久久5区| 精品国产乱码久久久久久小说| 黄片播放在线免费| 在线 av 中文字幕| 三上悠亚av全集在线观看| 久久狼人影院| 日韩欧美一区二区三区在线观看 | 欧美日韩精品网址| 欧美亚洲日本最大视频资源| 午夜福利欧美成人| 国产av精品麻豆| av超薄肉色丝袜交足视频| 免费看十八禁软件| 考比视频在线观看| 国产xxxxx性猛交| 欧美午夜高清在线| 日本a在线网址| 女警被强在线播放| 精品一区二区三区av网在线观看 | 91麻豆精品激情在线观看国产 | 一本色道久久久久久精品综合| 成人三级做爰电影| 日本av手机在线免费观看| 99国产精品一区二区三区| 九色亚洲精品在线播放| 看免费av毛片| 精品少妇久久久久久888优播| 一级毛片精品| 激情在线观看视频在线高清 | 悠悠久久av| 亚洲精品美女久久av网站| 免费看十八禁软件| 怎么达到女性高潮| 水蜜桃什么品种好| 欧美精品高潮呻吟av久久| 99在线人妻在线中文字幕 | 新久久久久国产一级毛片| 视频区图区小说| 两人在一起打扑克的视频| 搡老乐熟女国产| 中文字幕精品免费在线观看视频| 久久久精品区二区三区| 另类亚洲欧美激情| 性色av乱码一区二区三区2| 三级毛片av免费| 国产成人av激情在线播放| 亚洲五月色婷婷综合| 国产淫语在线视频| 男女床上黄色一级片免费看| 欧美激情极品国产一区二区三区| 国产成人精品久久二区二区91| 国产av又大| 国产精品熟女久久久久浪| 国产亚洲精品一区二区www | 丝袜喷水一区| 叶爱在线成人免费视频播放| 亚洲成国产人片在线观看| 国产精品熟女久久久久浪| 巨乳人妻的诱惑在线观看| 国产成人精品无人区| 国产单亲对白刺激| 色婷婷久久久亚洲欧美| 欧美精品高潮呻吟av久久| 俄罗斯特黄特色一大片| 欧美日韩视频精品一区| 可以免费在线观看a视频的电影网站| 国产区一区二久久| 老司机午夜福利在线观看视频 | 美女扒开内裤让男人捅视频| 久久午夜综合久久蜜桃| 99国产精品99久久久久| 亚洲自偷自拍图片 自拍| 天堂俺去俺来也www色官网| 亚洲少妇的诱惑av| 无遮挡黄片免费观看| 老熟女久久久| 亚洲美女黄片视频| 国产亚洲精品第一综合不卡| 免费看a级黄色片| h视频一区二区三区| videos熟女内射| 黄色 视频免费看| 一二三四在线观看免费中文在| 亚洲专区中文字幕在线| 免费黄频网站在线观看国产| 人妻 亚洲 视频| 成年人免费黄色播放视频| 免费女性裸体啪啪无遮挡网站| 久久精品91无色码中文字幕| 免费看十八禁软件| 操出白浆在线播放| 老司机午夜十八禁免费视频| e午夜精品久久久久久久| 精品欧美一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| 亚洲欧洲日产国产| 久久久久久久久久久久大奶| 久久国产精品大桥未久av| 久久久久久人人人人人| 精品人妻1区二区| 午夜福利视频在线观看免费| 午夜福利,免费看| 国产精品九九99| 69av精品久久久久久 | 亚洲色图av天堂| 老熟女久久久| 久热这里只有精品99| 十八禁网站免费在线| 最近最新中文字幕大全免费视频| 日本av免费视频播放| 可以免费在线观看a视频的电影网站| 国产激情久久老熟女| 黑人操中国人逼视频| 老司机在亚洲福利影院| 天天躁夜夜躁狠狠躁躁| 亚洲精品一二三| 免费女性裸体啪啪无遮挡网站| 国产精品美女特级片免费视频播放器 | 俄罗斯特黄特色一大片| 69av精品久久久久久 | 久久久精品区二区三区| 色在线成人网| 国产亚洲欧美在线一区二区| 视频在线观看一区二区三区| 日本一区二区免费在线视频| 成人三级做爰电影| 久久99热这里只频精品6学生| 97人妻天天添夜夜摸| 999久久久国产精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产主播在线观看一区二区| 亚洲av第一区精品v没综合| 超色免费av| 国产单亲对白刺激| 在线观看免费高清a一片| 国产日韩欧美视频二区| 国产又色又爽无遮挡免费看| 精品久久久久久久毛片微露脸| 男人操女人黄网站| 高清在线国产一区| 欧美激情久久久久久爽电影 | 自线自在国产av| 久久亚洲精品不卡| 人人妻人人澡人人爽人人夜夜| 三级毛片av免费| 黄色毛片三级朝国网站| 亚洲精品成人av观看孕妇| 巨乳人妻的诱惑在线观看| 国产欧美日韩一区二区三| 亚洲国产精品一区二区三区在线| 欧美日韩一级在线毛片| 国产片内射在线| 757午夜福利合集在线观看| 免费看a级黄色片| 中文字幕最新亚洲高清| 成人影院久久| 欧美人与性动交α欧美软件| 91字幕亚洲| 精品少妇黑人巨大在线播放| 大陆偷拍与自拍| 久久久精品国产亚洲av高清涩受| 91大片在线观看| 免费日韩欧美在线观看| 亚洲国产欧美日韩在线播放| 久久久精品免费免费高清| 亚洲av电影在线进入| 欧美乱妇无乱码| 亚洲欧洲日产国产| 超碰成人久久| 国产成人系列免费观看| 国产一区二区三区在线臀色熟女 | 欧美精品啪啪一区二区三区| 亚洲 国产 在线| 捣出白浆h1v1| 在线观看免费日韩欧美大片| 国产单亲对白刺激| 啦啦啦视频在线资源免费观看| 欧美成人午夜精品| 精品人妻在线不人妻| 欧美日韩亚洲综合一区二区三区_| tocl精华| 正在播放国产对白刺激| 9191精品国产免费久久| 亚洲国产欧美日韩在线播放| 国产三级黄色录像| 国产成人精品久久二区二区91| 热99re8久久精品国产| 黄色怎么调成土黄色| av国产精品久久久久影院| 成年女人毛片免费观看观看9 | 精品国产一区二区三区四区第35| 欧美日本中文国产一区发布| 中亚洲国语对白在线视频| 免费在线观看日本一区| 日本黄色视频三级网站网址 | 亚洲美女黄片视频| 成人免费观看视频高清| 久9热在线精品视频| 亚洲欧美日韩高清在线视频 | av国产精品久久久久影院| 热re99久久精品国产66热6| a级片在线免费高清观看视频| 亚洲欧美一区二区三区黑人| 777米奇影视久久| 国产精品亚洲一级av第二区| 蜜桃在线观看..| 国产黄色免费在线视频| 成人18禁高潮啪啪吃奶动态图| 黄网站色视频无遮挡免费观看| 十八禁网站免费在线| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 精品人妻1区二区| 91成年电影在线观看| 最新在线观看一区二区三区| 午夜91福利影院| 日本五十路高清| 久久人妻福利社区极品人妻图片| 三级毛片av免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产毛片av蜜桃av| 国产免费福利视频在线观看| 欧美成人免费av一区二区三区 | 视频区欧美日本亚洲| 18禁黄网站禁片午夜丰满| 久久精品国产综合久久久| av线在线观看网站| 肉色欧美久久久久久久蜜桃| 日韩大片免费观看网站| 曰老女人黄片| 丁香欧美五月| 亚洲av日韩精品久久久久久密| 国产极品粉嫩免费观看在线| 欧美日韩国产mv在线观看视频| 男女午夜视频在线观看| 成人免费观看视频高清| 黄色片一级片一级黄色片| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 日韩欧美三级三区| 欧美日韩成人在线一区二区| 免费女性裸体啪啪无遮挡网站| 国产成人免费观看mmmm| 欧美乱码精品一区二区三区| 丝瓜视频免费看黄片| 亚洲精品国产精品久久久不卡| 欧美乱妇无乱码| 国产日韩一区二区三区精品不卡| 激情视频va一区二区三区| 久久久久精品人妻al黑| 成人手机av| 精品一区二区三区av网在线观看 | 免费日韩欧美在线观看| 国产又色又爽无遮挡免费看| 久久精品国产亚洲av香蕉五月 | 国产av精品麻豆| 人妻久久中文字幕网| 色老头精品视频在线观看| 午夜福利乱码中文字幕| 老鸭窝网址在线观看| 熟女少妇亚洲综合色aaa.| 国产日韩欧美视频二区| 国产欧美日韩精品亚洲av| 国产精品偷伦视频观看了| 久久久久精品人妻al黑| 波多野结衣一区麻豆| 脱女人内裤的视频| 国产欧美日韩一区二区三区在线| 一个人免费在线观看的高清视频| 欧美黄色淫秽网站| 亚洲av片天天在线观看| 国产在线视频一区二区| 欧美日韩亚洲国产一区二区在线观看 | 丝袜人妻中文字幕| 在线观看免费高清a一片| 99re在线观看精品视频| 精品一区二区三区四区五区乱码| 每晚都被弄得嗷嗷叫到高潮| 久久久久国内视频| 老司机在亚洲福利影院| 中文字幕另类日韩欧美亚洲嫩草| 大片免费播放器 马上看| a级片在线免费高清观看视频| 亚洲成国产人片在线观看| 少妇粗大呻吟视频| av超薄肉色丝袜交足视频| 色综合婷婷激情| 男人舔女人的私密视频| 久久亚洲真实| 丰满少妇做爰视频| 久久精品aⅴ一区二区三区四区| 又大又爽又粗| 咕卡用的链子| 国产91精品成人一区二区三区 | 777久久人妻少妇嫩草av网站| 国产欧美日韩一区二区三区在线| 久久久水蜜桃国产精品网| 免费不卡黄色视频| 国产精品国产高清国产av | 热99国产精品久久久久久7| 大型黄色视频在线免费观看| 美女高潮喷水抽搐中文字幕| 精品一区二区三区四区五区乱码| 色婷婷久久久亚洲欧美| 国产不卡av网站在线观看| 如日韩欧美国产精品一区二区三区| 成人精品一区二区免费| 男女无遮挡免费网站观看| 欧美成狂野欧美在线观看| 免费一级毛片在线播放高清视频 | 久久久久久久国产电影| 老司机影院毛片| 一级毛片电影观看| 国产日韩欧美视频二区| 亚洲人成77777在线视频| 欧美中文综合在线视频| 美女视频免费永久观看网站| 国产一区二区三区在线臀色熟女 | 亚洲伊人色综图| 母亲3免费完整高清在线观看| 多毛熟女@视频| 黑人巨大精品欧美一区二区mp4| 国产精品久久久人人做人人爽| 欧美精品一区二区免费开放| 9191精品国产免费久久| 久久狼人影院| 两性夫妻黄色片| netflix在线观看网站| 久久精品国产亚洲av香蕉五月 | 国产黄频视频在线观看| 在线观看舔阴道视频| 少妇被粗大的猛进出69影院| 大香蕉久久成人网| 国产在视频线精品| 免费少妇av软件| 久久精品成人免费网站| www.精华液| 国产欧美日韩一区二区三区在线| 精品福利永久在线观看| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| 1024视频免费在线观看| 少妇猛男粗大的猛烈进出视频| h视频一区二区三区| 99热国产这里只有精品6| 99国产精品一区二区三区| 欧美老熟妇乱子伦牲交| 精品国产乱码久久久久久小说| 下体分泌物呈黄色| 91成年电影在线观看| 91大片在线观看| 一个人免费看片子| 国产欧美日韩一区二区精品| 国产成+人综合+亚洲专区| 日韩欧美一区二区三区在线观看 | 国产在线观看jvid| 久久香蕉激情| 一本大道久久a久久精品| 十八禁网站网址无遮挡| 亚洲国产中文字幕在线视频| av线在线观看网站| 免费人妻精品一区二区三区视频| 老司机深夜福利视频在线观看| 国产欧美日韩精品亚洲av| 久久人妻av系列| 亚洲精品粉嫩美女一区| 咕卡用的链子| 满18在线观看网站| 超碰成人久久| 国产精品久久久久久人妻精品电影 | 91字幕亚洲| 日本av免费视频播放| 国产av又大| netflix在线观看网站| 亚洲第一青青草原| 一级毛片女人18水好多| 亚洲av日韩精品久久久久久密| 99国产精品99久久久久| 宅男免费午夜| 天堂8中文在线网| 精品视频人人做人人爽| 国产区一区二久久| 亚洲国产成人一精品久久久| 欧美日韩视频精品一区| 黄网站色视频无遮挡免费观看| 久久久久久久精品吃奶| 丰满少妇做爰视频| 欧美日本中文国产一区发布| 国产片内射在线| 免费少妇av软件| 欧美人与性动交α欧美精品济南到| a级毛片黄视频| 99精国产麻豆久久婷婷| 日日爽夜夜爽网站| 另类亚洲欧美激情| 色综合欧美亚洲国产小说| 精品国产亚洲在线| 麻豆av在线久日| 免费日韩欧美在线观看| 亚洲性夜色夜夜综合| 精品国内亚洲2022精品成人 | 一本综合久久免费| 90打野战视频偷拍视频| 国产99久久九九免费精品| 久久毛片免费看一区二区三区| 婷婷丁香在线五月| 97在线人人人人妻| 在线观看免费午夜福利视频| 动漫黄色视频在线观看| 久久精品成人免费网站| 美女国产高潮福利片在线看| 亚洲精品美女久久久久99蜜臀| 夫妻午夜视频| 巨乳人妻的诱惑在线观看| 免费不卡黄色视频| 韩国精品一区二区三区| 日韩有码中文字幕| 婷婷成人精品国产| 亚洲一区二区三区欧美精品| 欧美日韩av久久| 国产成人精品无人区| av不卡在线播放| 黄频高清免费视频| 午夜福利影视在线免费观看| 成人免费观看视频高清| 窝窝影院91人妻| 天堂动漫精品| 午夜免费鲁丝| 久久久欧美国产精品| 国产激情久久老熟女| 女人高潮潮喷娇喘18禁视频| 国产成人一区二区三区免费视频网站| 久久久久久免费高清国产稀缺| 1024视频免费在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av欧美aⅴ国产| 9热在线视频观看99| 亚洲av欧美aⅴ国产| 曰老女人黄片| 久久久久久久久久久久大奶| 下体分泌物呈黄色| av网站免费在线观看视频| 国产精品久久久久久精品电影小说| 国产亚洲精品久久久久5区| 美国免费a级毛片| 香蕉丝袜av| 欧美乱码精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 少妇猛男粗大的猛烈进出视频| 国产三级黄色录像|