• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A partition of unity level set method with moving knot CS-RBFs for optimizing variable stiffness composites

    2023-05-19 03:41:56GenLIYeTIANKangYANGTielinSHIQiXIA
    CHINESE JOURNAL OF AERONAUTICS 2023年4期

    Gen LI, Ye TIAN, Kang YANG, Tielin SHI, Qi XIA

    State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology,Wuhan 430074, China

    KEYWORDSComposite structures;Moving knots;Partition of unity;Radial basis functions;Structural optimization

    AbstractA partition of unity level set method with moving knot Compactly Supported Radial Basis Functions (CS-RBFs) is proposed for optimizing variable stiffness composite structures.The iso-contours of a level set function are utilized to represent the curved fiber paths,and the tangent vector of the iso-contour defines the orientation of fiber.The level set function of the full design domain is constructed according to the Partition of Unity (POU)method by a set of local level set functions defined on an array of overlapping subdomains, and they are constructed by using the CS-RBFs.The positions of knots are iteratively changed during the optimization to improve the performance of composite structures.Several examples of compliance minimization are presented.?2023 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    By using advanced manufacturing techniques, fiber-reinforced composite structures can be produced with curvilinear fiber tows,1,2which yields the so-called variable stiffness composite structures.Such structures have larger potential for improving the mechanical performance as compared to the ones with unidirectional fibers.3–5To fully explore the potential,many optimization methods were proposed, including the method based on fiber angles defined at element centers or design points,6–10the method based on fiber paths defined by analytical functions,11–13the method based on lamination parameters.14,15Although these methods are successful in some design optimization problems, there still exist several difficulties about the enforcement of manufacturing constraints,the dependence of priori knowledge about type of analytical function,the feasible domain of lamination parameters, or requirement of postprocessing to extract fiber paths.

    Another successful method for optimizing composite structures with curvilinear fibers is to use the iso-contours of the level set function to describe the curved fibers.16–19The tangent vector of the iso-contour defines the orientation of fiber.Similar parameterization using the streamline function was also adopted in stiffener optimization.20–22The level set method naturally avoids the crossing of fibers and does not need post-processing to extract fiber paths.However, sensitivity analysis is often complicated.16,20–22

    In our previous study,23a parametric level set method was proposed for optimizing composite structure with curved fibers.In this method, the level set function is constructed as the sum of a set of Compactly Supported Radial Basis Functions (CS-RBFs), and the coefficients of CS-RBFs are taken as the design variables.Besides the merits inherited from the previous level set method, the parametric level set method has additional benefit,i.e.,the sensitivity analysis for optimization is easy.

    In the present study,we observed that when the positions of knots of CS-RBFs are changed, the iso-contours of level set function, i.e., the fiber paths, change accordingly.Therefore,the positions of knots of CS-RBFs are taken as the design variables in the design optimization,i.e.,the positions of knots are changed iteratively to improve the performance of composite structures.The idea of moving knot RBF was first proposed in Ref.24 where the evolution of structure boundary is linked to the time-dependent dynamic knots of RBFs,which is different from the present study.

    In addition, in order to enhance the computational efficiency of the level set function, the Partition of Unity (POU)method is combined with the CS-RBF level set.The level set function of the full design domain is constructed according to POU by using a set of local level set functions defined on an array of overlapping subdomains,and they are constructed by using the CS-RBFs.24–29Generally,the techniques used for fitting and evaluation have important effects on the computational efficiency of the level set function, especially when the number of RBFs is large.Among many approaches for the enhancement of computational efficiency,30–36the POU method is attractive, since it is effective and easy to implement.24–29

    2.Fiber angle and parametric level set function based on CSRBFs

    where n is the quantity of CS-RBFs;αiis the expansion coefficient related to the i-th CS-RBF; φiis the i-th CS-RBF.The CS-RBF with C2continuity is used and given by37–40

    where dsis a parameter that determines the support size of the CS-RBFs,ds>0;piis the knot related to the i-th CS-RBF;τ is a minimal normal number employed for avoiding division by zero, τ = 0.0001.

    Now,the fiber angle can be computed according to Eq.(2),and we have

    The positions of knots piof the CS-RBFs are also considered as the design variables and changed to optimized the composite structure.Therefore, we call it moving knot CS-RBF.The expansion coefficients αiremain unchanged throughout the optimization, and they are obtained before the optimization by solving an interpolation problem to enforce an initial fiber angle arrangement specified by the designer.

    3.Level set function with POU

    The parameterized level set method has many advantages.However, with the increase of the number of RBF knots, the size of the coefficient matrix of RBFs interpolation will increase and result in an increase in the computation time.The POU method has been proved to be an effective method to reduce the computation time, and is now widely used.41,42Therefore, in order to enhance the efficiency of computation,the POU method is applied to compute the level set function.Now, on the whole design domain D, the level set function Φ~consists of a group of local level set functions Φ~i(i=1,2,...,m)defined on an array of overlapping subdomains Di(i=1,2,...,m),24–29i.e.,

    where niis the quantity of CS-RBFs in the i-th subdomain;φijis the j-th CS-RBF in Di.By combining Eqs.(10)and(9),Φ~is rewritten as

    where Srand Trare the coordinates of the two corners S and T.In addition, the decay functions V with C2continuity is used:24–28

    where d is the independent variable of the function.In the calculation, d will be replaced by P given in Eq.(14).

    Now, we can compute the fiber angle by using Eq.(2).According to Eq.(11), we have24

    According to Eq.(13), ?Wi/?x and ?Wi/?y are obtained by chain rule as

    4.Finite element analysis of composite structures

    The composite structure is discretized into rectangle finite elements.It is assumed that each element has a constant fiber angle, denoted as θe, and the angle is evaluated at the center of the element according to Eq.(2).The four corners of the rectangle element are also used as the knots of CS-RBFs.In the finite element analysis, Eq.(20) is solved.

    where u is the global displacement vector to be solved; f is the external load;K is the global stiffness matrix,which can be calculated by assembling the element stiffness matrix Kewritten as

    where Ωeis the area covered by the e-th element; B is the displacement–strain matrix;dΩ is the differential element of area;D(θe) is the elastic matrix related to the e-th element, which is rewritten as

    where D0is the elastic matrix; T(θe) is the rotation matrix related to the e-th element, which is defined as

    5.Design optimization problem

    The compliance of composite structure is minimized by changing the positions of knots of the CS-RBFs.In other words,the compliance is taken as the objective function of a minimization problem,and the positions of knots of the CS-RBFs are taken as the design variables.The optimization problem can be represented by

    where c is the compliance of composite structure;dpnis a constraint aboutζ is the upper bound of the constraint;N is the admissible region of moving knots piof CS-RBFs,which is a rectangle.In the design optimization problem, the positions of knots piof CS-RBFs are adopted as the design variables,i.e., the positions of knots are changed iteratively to minimize the compliance of composite structures.

    The gradient reflects the change rate of the level set function value at a point on the surface.When the gradient norm at an arbitrary point is equal to 1, the iso-contours of the level set function are parallel and equally spaced.A simple example of such a level set function with=1 is shown in Fig.1.

    In our previous study,23an aggregated constraint about the norm of gradient vector of the level set function was formulated to avoid overlaps and gaps between neighboring fiber tows.Such a constraint, i.e., dpn≤ζ, is also used in the optimization, and dpnis defined as23

    where p is a positive parameter;E is the total quantity of finite elements in the global design domain; deis defined as18,23,39

    where xeis the coordinates of the e-th element center; ?Φ~is defined as

    Fig.1 An example of level set function whose norm of gradient vectors is equal to 1 almost everywhere.

    6.Sensitivity analysis

    The derivative of c with respect to the x-coordinate xijrelated to the CS-RBF knot pijis given by (the derivative of c with respect to the y-coordinate yijof pijcan be obtained similarly)

    where texand teyare the components of the tangent vector at the center of the e-th element in the x and y directions.

    When the POU is used, we have

    7.Numerical examples

    In all the numerical examples,mechanical properties related to composites are set as Ex= 1, Ey= 0.05, Gxy= 0.03,νxy= 0.3, νyx= 0.015, where Exis the tensile modulus along the fiber direction (i.e., x-direction) of the assumed composite material; Eyis the tensile modulus along the y-direction perpendicular to the x-direction; Gxyis the in-plane shear modulus; νxyand νyxare the Poisson’s ratios.The rest of the conditions and parameters are as follows:the plane stress state is assumed;the thickness of the structure is set to the constant of 1;self-weight of structure is not considered.The appropriate value of the parameter dsshould be chosen to ensure the nonsingularity of the CS-RBF interpolation and the computational efficiency.38Generally, a too small value of dswill lead to the numerical instability, and a too large value of dswill increase the computation efforts.43,44In our previous work,we found that it was appropriate for the value of dsto be set as 1.23The rectangular admissible regions N(pij) around the knots pijof CS-RBFs are all specified by a rectangle with lower-left corner and upper-right corner whose coordinates are respectively (–50, –50) and (50, 50).The knots of CSRBFs are evenly distributed in the overall design domain.In Method of Moving Asymptotes (MMA) algorithm,45,46the‘‘move”parameter is defined as 1 × 10–7.The optimization problem is considered as having been converged if the condition of Eq.(42) is meet.

    where cerris the error of the compliance;c is the compliance;δcis the upper bound set as 0.1%.Furthermore,the optimization solution process will stop when the number of the iterations reaches 1000.

    The optimization steps and processes are described as follows:

    Step 1 Define the global design domain, and divide it into an array of overlapping patches.Set the load and boundary conditions.

    Step 2 Specify the initial fiber angles; compute the expansion coefficients of RBFs by solving an interpolation problem that enforces the specified initial fiber angles.

    Step 3 Perform the finite element calculations; compute the compliance and the partial derivative of compliance and constraint about the design variables.

    Step 4 Update the positions of the RBF knots by using the MMA optimization algorithm.

    Step 5 Check the converge of the optimization process.If it does not convergence,repeat Steps 3–5 until the convergence are met.If yes, stop the optimization and output the fiber paths.

    7.1.Example 1

    The first numerical example about optimization problem is illustrated in Fig.2.The size of global design domain is a 2 × 1 rectangle.An in-plane concentrated load F=1 is imposed vertically and downwards at the midpoint on the right side.A mesh with 24 × 28 square elements is applied in the Finite Element Analyses (FEA), and the number of knots of CS-RBFs is 25 × 49.The initial fiber paths are vertical in Fig.3(a).The upper bound ζ is set to 0.01.

    Fig.2 Design problem of the first example.

    Fig.3 Initial and optimized fiber paths.

    In Example 1,several optimizations are conducted with different number of knots in the overlapping region of neighboring patches, and the quantity of patches in the vertical and horizontal directions are respectively set to 2 and 4.By this means, the influences of the quantity of overlapping knots on the optimization are investigated.The results of optimizations are displayed in Fig.3.As shown in Figs.3(b)–(d), the compliances of structures optimized with POU are smaller,and the fiber paths of structures optimized with POU are more curved.Fig.4 shows the convergence histories with different numbers of overlapping knots.

    Table 1 shows the comparison of the results of optimizations.As one can see in Table 1, the compliance of the optimized structure decreases, i.e., the structure is stiffer, as the number of overlapping knots increases.Such a result shows that the POU is effective for obtaining a better result.In addition,when the number of overlapping knots is 5 ×5,the time cost by each iteration is smaller than a half of that without POU;the number of iterations and the compliance of the optimized structure are nearly the same as those optimized without POU.However, with the increase of overlapping knots, the computation time of every iteration also increases.The reason is explained as follows.Due to the increase of the number of nodes in each local domain, the size of coefficient matrix for RBF interpolation increases.Therefore, the matrix–vector multiplication required to compute the local level set functions needs more time, and also the sensitivity analysis needs more time.In addition, when the number of overlapping knots increases, the quantity of iterations becomes bigger than that without POU, and the total time cost by the optimization increases.We think that the increased computation time is the price that needs to be paid to obtain a better result of optimization (recall that the optimized structure is stiffer as the number of overlapping knots increases).

    Fig.4 Convergence conditions with different number of overlapping knots.

    7.2.Example 2

    The second numerical example about optimization problem is illustrated in Fig.5.The size of global design domain is a 3×1 rectangle.A mesh with 24 × 72 square elements is applied in the FEA, and the number of knots of CS-RBFs is 25 × 73.The upper bound ζ is set to 0.05.The initial fiber paths are horizontal in Fig.6(a).

    In Example 2,several optimizations are conducted with different number of patches,and the quantity patches in the horizontal and vertical directions are set to 2 and 4, respectively.By this means,the effects of the number of patches on the optimization are investigated.The optimized fiber paths are displayed in Figs.6(c)and(d).Convergence histories of the optimizations are given in Fig.7.

    Fig.5 Design problem of the second example.

    Fig.6 Initial and optimized fiber paths.

    Fig.7 Convergence histories with different number of patches.

    Table 1 Results of optimizations conducted with different numbers of knots in the overlapping regions of neighbouring sub-domains.

    Table 2 Results of optimizations conducted with different numbers of patches.

    Table 2 shows the comparison of the results of optimizations.As one can see in Table 2,the time required of every iteration decreases when the quantity of patches increases, which implies that the amount of the patches has an important effect on the computational time.However, with the increase of the number of patches, the compliance of the optimized structure increases gradually.

    8.Conclusions

    This paper proposed a partition of unity level set method with moving knot CS-RBFs for optimizing composite structures.The iso-contours of a level set function are utilized to describe the curvilinear fiber paths.The orientations of fibers are defined by using the orientations of the tangent vectors of the iso-contours.The level set function is constructed by using POU and CS-RBFs.The positions of knots of the CS-RBFs are taken as the design variables.Several examples verified the effectiveness of the proposed method.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This research work was supported by the National Natural Science Foundation of China (No.51975227).The authors also gratefully thank Krister Svanberg for providing the MMA codes.

    黑人巨大精品欧美一区二区蜜桃| 亚洲精品在线观看二区| 黄网站色视频无遮挡免费观看| 五月天丁香电影| 欧美日韩av久久| 两性午夜刺激爽爽歪歪视频在线观看 | 日本av免费视频播放| 日韩有码中文字幕| 首页视频小说图片口味搜索| 老司机福利观看| 国产精品亚洲av一区麻豆| 免费av中文字幕在线| 成人影院久久| √禁漫天堂资源中文www| 可以免费在线观看a视频的电影网站| 中文字幕人妻熟女乱码| 久久久精品国产亚洲av高清涩受| 国产国语露脸激情在线看| 少妇的丰满在线观看| av网站在线播放免费| 久久午夜综合久久蜜桃| 国产aⅴ精品一区二区三区波| 国产成人av激情在线播放| 日本av手机在线免费观看| 啦啦啦视频在线资源免费观看| 咕卡用的链子| 亚洲欧美精品综合一区二区三区| 黄色 视频免费看| 亚洲欧美色中文字幕在线| 丁香欧美五月| 亚洲av欧美aⅴ国产| 成年女人毛片免费观看观看9 | a级毛片黄视频| 国产精品久久久av美女十八| 人成视频在线观看免费观看| 美女扒开内裤让男人捅视频| 精品少妇一区二区三区视频日本电影| 国产精品国产av在线观看| 亚洲精品中文字幕一二三四区 | 热99久久久久精品小说推荐| 久久精品亚洲av国产电影网| 国产精品电影一区二区三区 | 亚洲熟妇熟女久久| 久9热在线精品视频| 国产成人av激情在线播放| 超碰97精品在线观看| 欧美黄色片欧美黄色片| 国产极品粉嫩免费观看在线| 黄色毛片三级朝国网站| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 久久精品国产99精品国产亚洲性色 | 亚洲 国产 在线| 欧美激情极品国产一区二区三区| e午夜精品久久久久久久| 美国免费a级毛片| 色94色欧美一区二区| 欧美日韩一级在线毛片| 国产在视频线精品| 色在线成人网| 视频在线观看一区二区三区| www.熟女人妻精品国产| 超碰97精品在线观看| 91精品三级在线观看| 国产av又大| 天堂8中文在线网| 久久久精品区二区三区| 国产欧美亚洲国产| 性少妇av在线| 激情在线观看视频在线高清 | 1024视频免费在线观看| 一级毛片女人18水好多| 亚洲 国产 在线| 人人妻人人澡人人爽人人夜夜| 久久这里只有精品19| 黑人操中国人逼视频| 日本五十路高清| 日韩视频一区二区在线观看| 欧美另类亚洲清纯唯美| 婷婷成人精品国产| 老司机影院毛片| 两人在一起打扑克的视频| 99九九在线精品视频| 色在线成人网| 久久久久久久精品吃奶| 国产片内射在线| 亚洲五月色婷婷综合| 亚洲av美国av| 三级毛片av免费| 欧美乱码精品一区二区三区| 久久精品aⅴ一区二区三区四区| 最近最新免费中文字幕在线| 国产成人欧美| 中文字幕人妻丝袜制服| 久久久久精品国产欧美久久久| 一级黄色大片毛片| 大香蕉久久网| 色综合欧美亚洲国产小说| a级毛片黄视频| 午夜福利一区二区在线看| 最新的欧美精品一区二区| 精品第一国产精品| 国产精品影院久久| 天天操日日干夜夜撸| 成人18禁在线播放| 免费在线观看影片大全网站| 黑丝袜美女国产一区| 在线av久久热| 亚洲成人免费电影在线观看| 大香蕉久久网| 久久久国产一区二区| 侵犯人妻中文字幕一二三四区| 亚洲成人国产一区在线观看| 日本wwww免费看| 精品久久久精品久久久| 国产真人三级小视频在线观看| 老鸭窝网址在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲精品在线美女| 国产三级黄色录像| 免费不卡黄色视频| 99国产精品一区二区三区| 一区二区日韩欧美中文字幕| 最新的欧美精品一区二区| 人人妻人人添人人爽欧美一区卜| 狠狠精品人妻久久久久久综合| 免费高清在线观看日韩| 亚洲第一欧美日韩一区二区三区 | 91av网站免费观看| 国产精品免费大片| 国产亚洲av高清不卡| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 女人爽到高潮嗷嗷叫在线视频| 搡老岳熟女国产| 午夜福利在线观看吧| 黄色a级毛片大全视频| 91字幕亚洲| 中文字幕另类日韩欧美亚洲嫩草| 国产精品免费大片| 亚洲三区欧美一区| 在线天堂中文资源库| 日本vs欧美在线观看视频| 超碰成人久久| 精品视频人人做人人爽| 久久性视频一级片| 国产精品一区二区免费欧美| 亚洲欧美一区二区三区久久| 亚洲自偷自拍图片 自拍| 久久国产精品影院| tube8黄色片| 捣出白浆h1v1| 狠狠狠狠99中文字幕| 如日韩欧美国产精品一区二区三区| 午夜久久久在线观看| 欧美 亚洲 国产 日韩一| 久久精品国产a三级三级三级| 亚洲男人天堂网一区| 久久免费观看电影| 欧美一级毛片孕妇| 亚洲成人手机| 婷婷成人精品国产| 欧美激情 高清一区二区三区| 国产福利在线免费观看视频| 成人国产av品久久久| 久久精品熟女亚洲av麻豆精品| 香蕉丝袜av| aaaaa片日本免费| 一区二区三区国产精品乱码| 美女视频免费永久观看网站| 日韩视频一区二区在线观看| 亚洲国产av影院在线观看| 免费在线观看日本一区| 一区二区三区激情视频| 精品乱码久久久久久99久播| 最黄视频免费看| 又黄又粗又硬又大视频| 国产不卡av网站在线观看| 黄色片一级片一级黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品98久久久久久宅男小说| 老汉色av国产亚洲站长工具| 成人国语在线视频| 国产日韩欧美视频二区| 女人久久www免费人成看片| 精品午夜福利视频在线观看一区 | 国产精品 国内视频| 欧美精品高潮呻吟av久久| 国产精品 国内视频| 丁香六月欧美| 精品国产一区二区三区四区第35| 中文欧美无线码| 黑人操中国人逼视频| 午夜福利一区二区在线看| 香蕉国产在线看| 制服人妻中文乱码| 午夜两性在线视频| 国产精品九九99| 欧美日韩视频精品一区| 高清在线国产一区| 美国免费a级毛片| 日本五十路高清| 人人妻人人澡人人爽人人夜夜| 国产精品美女特级片免费视频播放器 | 久久精品成人免费网站| 免费av中文字幕在线| 一边摸一边做爽爽视频免费| 精品人妻在线不人妻| 久久久久久久久久久久大奶| 欧美另类亚洲清纯唯美| 9热在线视频观看99| 亚洲精品久久成人aⅴ小说| 99国产精品一区二区蜜桃av | 悠悠久久av| 国产免费福利视频在线观看| 在线播放国产精品三级| 好男人电影高清在线观看| 欧美精品人与动牲交sv欧美| 真人做人爱边吃奶动态| 亚洲精品久久成人aⅴ小说| 国产欧美日韩综合在线一区二区| 老熟妇乱子伦视频在线观看| 美女高潮到喷水免费观看| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 男女边摸边吃奶| 亚洲成人手机| 18禁国产床啪视频网站| 99热网站在线观看| 日韩一区二区三区影片| 国产精品av久久久久免费| 制服人妻中文乱码| 国产一区有黄有色的免费视频| 久久精品亚洲av国产电影网| 欧美 亚洲 国产 日韩一| 久久久久精品人妻al黑| 成人三级做爰电影| 成人av一区二区三区在线看| 精品福利永久在线观看| 亚洲av片天天在线观看| 欧美黑人精品巨大| aaaaa片日本免费| 亚洲精品在线美女| 亚洲国产精品一区二区三区在线| 丁香六月欧美| 国产不卡av网站在线观看| 最新在线观看一区二区三区| 蜜桃国产av成人99| 亚洲av欧美aⅴ国产| 9191精品国产免费久久| 国产伦理片在线播放av一区| 少妇的丰满在线观看| 午夜视频精品福利| 久久免费观看电影| 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 熟女少妇亚洲综合色aaa.| 男人舔女人的私密视频| 99riav亚洲国产免费| 超碰成人久久| 国产亚洲欧美在线一区二区| 欧美精品av麻豆av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟女精品中文字幕| 九色亚洲精品在线播放| 国产精品自产拍在线观看55亚洲 | 老司机靠b影院| av超薄肉色丝袜交足视频| 9191精品国产免费久久| 一二三四社区在线视频社区8| 一级片'在线观看视频| 乱人伦中国视频| 制服诱惑二区| 国产精品1区2区在线观看. | 久久久久国内视频| 欧美性长视频在线观看| 五月开心婷婷网| 国产日韩一区二区三区精品不卡| 啦啦啦免费观看视频1| 久久这里只有精品19| 欧美日韩黄片免| a级毛片在线看网站| 香蕉久久夜色| 国产三级黄色录像| 精品第一国产精品| 精品一品国产午夜福利视频| 欧美黄色淫秽网站| 在线亚洲精品国产二区图片欧美| 高清毛片免费观看视频网站 | 高清av免费在线| 久久精品国产a三级三级三级| 久久午夜亚洲精品久久| 久久久久网色| 极品教师在线免费播放| 亚洲色图综合在线观看| 久久久欧美国产精品| 大码成人一级视频| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边做爽爽视频免费| 交换朋友夫妻互换小说| 又黄又粗又硬又大视频| 人人妻人人澡人人爽人人夜夜| 亚洲欧美日韩高清在线视频 | 美女福利国产在线| 99re6热这里在线精品视频| svipshipincom国产片| 丁香欧美五月| 夜夜夜夜夜久久久久| 飞空精品影院首页| 久久精品亚洲av国产电影网| 国产精品免费视频内射| 满18在线观看网站| 天天躁日日躁夜夜躁夜夜| 国产在线免费精品| 亚洲情色 制服丝袜| 一区二区日韩欧美中文字幕| 精品欧美一区二区三区在线| 精品亚洲成国产av| 国产成人av教育| 婷婷成人精品国产| 桃红色精品国产亚洲av| 久久国产精品影院| av网站免费在线观看视频| 欧美人与性动交α欧美软件| 天天添夜夜摸| 成人精品一区二区免费| 久久久久精品人妻al黑| 青青草视频在线视频观看| 在线永久观看黄色视频| 久久久国产一区二区| 亚洲欧美色中文字幕在线| 国产成人免费观看mmmm| 乱人伦中国视频| 黄色片一级片一级黄色片| 欧美日韩亚洲高清精品| 成人黄色视频免费在线看| 一区二区三区激情视频| 这个男人来自地球电影免费观看| 国产精品一区二区精品视频观看| 欧美在线一区亚洲| 美国免费a级毛片| 久久av网站| 成年人免费黄色播放视频| 三级毛片av免费| 欧美日韩精品网址| 一本一本久久a久久精品综合妖精| 国产av又大| 国产精品国产高清国产av | 欧美日本中文国产一区发布| 性少妇av在线| 午夜两性在线视频| 大香蕉久久网| 婷婷丁香在线五月| 飞空精品影院首页| 69av精品久久久久久 | 欧美黑人欧美精品刺激| 最新在线观看一区二区三区| 一边摸一边做爽爽视频免费| 人人妻人人澡人人爽人人夜夜| 亚洲国产中文字幕在线视频| 少妇粗大呻吟视频| 夜夜爽天天搞| 男男h啪啪无遮挡| 久久精品国产亚洲av香蕉五月 | 亚洲综合色网址| 999久久久国产精品视频| 亚洲av欧美aⅴ国产| 一级毛片精品| 免费在线观看完整版高清| 最新美女视频免费是黄的| 国产av一区二区精品久久| 午夜成年电影在线免费观看| 久久精品aⅴ一区二区三区四区| 国产激情久久老熟女| 精品一区二区三卡| 亚洲综合色网址| 精品国产一区二区三区四区第35| 一级片'在线观看视频| 国产淫语在线视频| 精品一区二区三区四区五区乱码| 亚洲精品成人av观看孕妇| 精品国产一区二区三区久久久樱花| 亚洲欧洲日产国产| 亚洲伊人色综图| 俄罗斯特黄特色一大片| 欧美久久黑人一区二区| 欧美 日韩 精品 国产| 香蕉丝袜av| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 欧美日韩一级在线毛片| 水蜜桃什么品种好| 亚洲人成77777在线视频| www.熟女人妻精品国产| 久久精品国产a三级三级三级| 久久精品成人免费网站| 搡老熟女国产l中国老女人| 午夜福利,免费看| 亚洲综合色网址| 黑人巨大精品欧美一区二区蜜桃| 一边摸一边抽搐一进一小说 | 9热在线视频观看99| 99国产综合亚洲精品| 中文字幕av电影在线播放| 五月开心婷婷网| 午夜91福利影院| 91av网站免费观看| 免费日韩欧美在线观看| 电影成人av| 国产日韩欧美视频二区| 亚洲色图 男人天堂 中文字幕| 亚洲精品中文字幕在线视频| 99热国产这里只有精品6| 乱人伦中国视频| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美色中文字幕在线| 国产男女内射视频| 国产不卡av网站在线观看| 天堂8中文在线网| 亚洲精品国产精品久久久不卡| 久久 成人 亚洲| 亚洲人成77777在线视频| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 国产精品亚洲一级av第二区| 成人黄色视频免费在线看| 男人舔女人的私密视频| 十分钟在线观看高清视频www| 啦啦啦免费观看视频1| 国产精品 欧美亚洲| 国产一卡二卡三卡精品| 精品国产乱子伦一区二区三区| 国产精品.久久久| 国产亚洲精品一区二区www | 欧美国产精品一级二级三级| 国产伦理片在线播放av一区| 中文字幕av电影在线播放| 极品教师在线免费播放| 色老头精品视频在线观看| 久久久久国内视频| 老司机靠b影院| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频在线观看免费| 国产亚洲欧美精品永久| 国产91精品成人一区二区三区 | 免费女性裸体啪啪无遮挡网站| 老熟妇乱子伦视频在线观看| 亚洲五月婷婷丁香| 三上悠亚av全集在线观看| 女人精品久久久久毛片| 午夜福利乱码中文字幕| 精品一区二区三区av网在线观看 | 色视频在线一区二区三区| 女人久久www免费人成看片| 成人永久免费在线观看视频 | 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 亚洲av成人不卡在线观看播放网| 欧美日韩亚洲国产一区二区在线观看 | 日韩免费av在线播放| 亚洲免费av在线视频| 亚洲精品久久成人aⅴ小说| 黄片播放在线免费| 国产av精品麻豆| a级毛片黄视频| 国产色视频综合| av线在线观看网站| 夫妻午夜视频| 岛国毛片在线播放| 色婷婷久久久亚洲欧美| 中文欧美无线码| 亚洲伊人色综图| 国产精品久久电影中文字幕 | 免费观看人在逋| 在线观看66精品国产| 国产熟女午夜一区二区三区| 精品亚洲成国产av| 国产精品一区二区在线不卡| videosex国产| 激情在线观看视频在线高清 | 国精品久久久久久国模美| 欧美激情高清一区二区三区| 在线观看66精品国产| 欧美日韩一级在线毛片| 欧美在线黄色| 天堂8中文在线网| 国产精品自产拍在线观看55亚洲 | 国产欧美日韩一区二区三| xxxhd国产人妻xxx| 日本a在线网址| 亚洲欧美激情在线| 亚洲国产av新网站| 亚洲精品久久成人aⅴ小说| 精品国产乱子伦一区二区三区| 叶爱在线成人免费视频播放| 女同久久另类99精品国产91| 日本wwww免费看| 一区福利在线观看| 丁香六月欧美| 日韩视频一区二区在线观看| 欧美精品亚洲一区二区| 国产欧美日韩综合在线一区二区| 午夜福利欧美成人| xxxhd国产人妻xxx| 亚洲av日韩在线播放| 妹子高潮喷水视频| 可以免费在线观看a视频的电影网站| 亚洲精品一二三| 王馨瑶露胸无遮挡在线观看| 最近最新免费中文字幕在线| www.自偷自拍.com| 一级毛片电影观看| 久久久国产精品麻豆| 欧美日韩av久久| 精品熟女少妇八av免费久了| 精品一区二区三卡| 久久国产精品人妻蜜桃| 精品久久久久久久毛片微露脸| 国产精品99久久99久久久不卡| 精品国产乱码久久久久久小说| 巨乳人妻的诱惑在线观看| 天堂8中文在线网| 肉色欧美久久久久久久蜜桃| 一区二区三区激情视频| 亚洲成国产人片在线观看| 午夜福利,免费看| 国产在视频线精品| 中文欧美无线码| 欧美av亚洲av综合av国产av| 色视频在线一区二区三区| 肉色欧美久久久久久久蜜桃| 999久久久精品免费观看国产| 亚洲免费av在线视频| 精品乱码久久久久久99久播| 又黄又粗又硬又大视频| 如日韩欧美国产精品一区二区三区| 欧美av亚洲av综合av国产av| 黄色怎么调成土黄色| 亚洲av第一区精品v没综合| 老汉色∧v一级毛片| 色综合欧美亚洲国产小说| 亚洲熟妇熟女久久| 曰老女人黄片| 国产成人av教育| 国产精品久久久人人做人人爽| 少妇猛男粗大的猛烈进出视频| 精品福利永久在线观看| 好男人电影高清在线观看| 男女高潮啪啪啪动态图| 黄色视频,在线免费观看| 亚洲欧美精品综合一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲视频免费观看视频| 日韩免费高清中文字幕av| 成人手机av| 波多野结衣av一区二区av| 午夜免费鲁丝| 天天操日日干夜夜撸| 成人国产一区最新在线观看| 丰满人妻熟妇乱又伦精品不卡| 老司机影院毛片| 亚洲成人免费电影在线观看| 狂野欧美激情性xxxx| 天堂动漫精品| 美女国产高潮福利片在线看| 人人妻人人澡人人看| 亚洲视频免费观看视频| 高清欧美精品videossex| 麻豆国产av国片精品| h视频一区二区三区| 亚洲成人手机| 在线观看免费日韩欧美大片| 丁香欧美五月| 久久国产亚洲av麻豆专区| 久久精品成人免费网站| 一个人免费看片子| 亚洲色图综合在线观看| 一级,二级,三级黄色视频| 新久久久久国产一级毛片| 黄片播放在线免费| 欧美在线一区亚洲| 99国产极品粉嫩在线观看| 国产aⅴ精品一区二区三区波| 国产亚洲精品久久久久5区| 女人被躁到高潮嗷嗷叫费观| 丰满人妻熟妇乱又伦精品不卡| 俄罗斯特黄特色一大片| 老汉色∧v一级毛片| 午夜成年电影在线免费观看| 极品教师在线免费播放| 老司机靠b影院| 成人18禁在线播放| 肉色欧美久久久久久久蜜桃| 亚洲国产成人一精品久久久| 久久久久精品国产欧美久久久| 少妇裸体淫交视频免费看高清 | 亚洲国产欧美网| 欧美精品一区二区免费开放| av欧美777| 女人爽到高潮嗷嗷叫在线视频| 免费观看a级毛片全部| 国产免费av片在线观看野外av| 亚洲专区字幕在线| 日本一区二区免费在线视频| 久久中文看片网| 亚洲一区中文字幕在线| 日本vs欧美在线观看视频| 精品少妇黑人巨大在线播放| 我要看黄色一级片免费的| 高清毛片免费观看视频网站 | 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| 久久久久网色| 欧美成狂野欧美在线观看|