摘要 綜述鐵死亡的發(fā)生機(jī)制及其與缺血性腦卒中的關(guān)系、藥物干預(yù)的研究進(jìn)展,以期為探討藥物作用的新靶點提供參考。
關(guān)鍵詞 缺血性腦卒中;鐵死亡;細(xì)胞死亡;綜述
doi:10.12102/j.issn.1672-1349.2023.24.015
基金項目 國家重點研發(fā)計劃項目(No.2018YFC1705002);國家自然科學(xué)基金項目(No.81760902);柳州市科技計劃項目(No.2020PAAA0610,2021CBC0133,2021CBB0112);廣西壯族自治區(qū)中醫(yī)藥管理局科研課題項目(No.GXZYZ20210267)
作者單位 1.廣西中醫(yī)藥大學(xué)(南寧" 510120);2.柳州市中醫(yī)醫(yī)院,柳州市壯醫(yī)醫(yī)院(廣西柳州" 545002)
通訊作者 盧昌均,E-mail:lchj477@tom.com
引用信息 覃文暉,周哲屹,盧昌均.鐵死亡的機(jī)制及其干預(yù)缺血性腦卒中的研究進(jìn)展[J].中西醫(yī)結(jié)合心腦血管病雜志,2023,21(24):4558-4564.
腦卒中是全球致殘和致死的重要原因之一,其中以缺血性腦卒中為主,缺血性腦卒中給醫(yī)療系統(tǒng)和病人家庭帶來沉重的負(fù)擔(dān)。然而,缺血性腦卒中的機(jī)制尚未明確,現(xiàn)有的治療方法僅對少數(shù)病人有效,因此有必要研發(fā)新藥緩解這一局面。隨著對細(xì)胞死亡的研究深入,鐵死亡是一種新型的細(xì)胞死亡方式,引起研究者的關(guān)注,其在形態(tài)學(xué)、分子機(jī)制、免疫特征方面與其他類型的細(xì)胞死亡有所區(qū)別。鐵死亡是腦卒中等急性腦損傷病人病理性細(xì)胞死亡的重要機(jī)制,且受多種作用機(jī)制的調(diào)控。綜述鐵死亡的發(fā)生機(jī)制及其與缺血性腦卒中的關(guān)系、藥物干預(yù)的研究進(jìn)展,以期為探討藥物作用機(jī)制的新靶點提供參考。
1 鐵死亡概述
鐵死亡是由大量脂質(zhì)過氧化介導(dǎo)的膜損傷引起的鐵依賴性調(diào)節(jié)性壞死,是一種非凋亡性細(xì)胞死亡形式?!拌F死亡”一詞最早由Dixon等在2012年提出,且與凋亡、壞死和自噬在形態(tài)、生化和遺傳方面不同[1]。電子顯微鏡下,在鐵死亡細(xì)胞中觀察到萎縮的線粒體,但線粒體一般在其他細(xì)胞死亡類型中是腫脹的[1]。生化方面,鐵死亡的特征是產(chǎn)生致死水平的鐵依賴性脂質(zhì)過氧化作用[2-3],較少觀察到凋亡的經(jīng)典特征,如染色質(zhì)斷裂、半胱天冬酶活化和線粒體細(xì)胞色素C(cytochrome C,Cyt-C)釋放[1]。
2 鐵死亡的產(chǎn)生機(jī)制
相關(guān)研究表明,鐵死亡主要與鐵代謝、氨基酸代謝、脂質(zhì)代謝異常有關(guān)[2]。鐵死亡受到細(xì)胞內(nèi)通路信號的調(diào)控,如核因子E2相關(guān)因子2(nuclear factor E2-related factor 2,NRF-2)信號通路和Hippo通路,其直接或間接影響了谷胱甘肽過氧化酶4(glutathione peroxidase 4,GPX4)活性[4-5]。相關(guān)研究表明,鐵死亡可能是干預(yù)中風(fēng)的有效靶點[6],了解鐵死亡的機(jī)制和研究進(jìn)展可能為腦卒中的治療提供新途徑。
2.1 鐵代謝
鐵是正常細(xì)胞功能必需的金屬,參與較多生理過程,如氧氣運輸、細(xì)胞呼吸、DNA合成和神經(jīng)系統(tǒng)中的神經(jīng)遞質(zhì)生物合成[7]。然而,細(xì)胞內(nèi)鐵的攝取、運輸、儲存和利用的失效導(dǎo)致細(xì)胞內(nèi)過量游離鐵沉積,并啟動Fenton反應(yīng)產(chǎn)生活性氧(reactive oxygen species,ROS)[8]。ROS可干擾蛋白質(zhì)、脂類和DNA,從而引發(fā)細(xì)胞死亡[9]。
2.1.1 鐵攝取
轉(zhuǎn)鐵蛋白(transferrin,TF)與循環(huán)中的多數(shù)鐵結(jié)合,是一種與鐵緊密結(jié)合但可逆的血漿糖蛋白。每個TF分子均有2個特定的三價鐵(Fe3+)結(jié)合位點。含鐵的TF與轉(zhuǎn)鐵蛋白受體(transferrin receptor,TFRC)進(jìn)一步結(jié)合,從而導(dǎo)致膜內(nèi)陷和形成特化內(nèi)體[10]。TF被輸送到內(nèi)體后周圍pH迅速下降,導(dǎo)致Fe3+被釋放出來,之后Fe3+被內(nèi)體鐵還原酶還原為Fe2+,F(xiàn)e2+可穿過內(nèi)體膜通過溶質(zhì)載體家族11成員2(solute carrier family 11 member 2,SLC11A2/DMT1)進(jìn)入細(xì)胞質(zhì)。不含鐵的TF返回細(xì)胞表面并與TFRC解離,進(jìn)一步吸收鐵。TF敲低降低了MDA-MB-231和SKBR3癌細(xì)胞系中西拉美新和拉帕替尼誘導(dǎo)的鐵死亡[11]。TFRC過表達(dá)提高了間皮瘤組織細(xì)胞對鐵死亡誘導(dǎo)的敏感性[12]。提示TF和TFRC在細(xì)胞鐵死亡的過程中發(fā)揮了關(guān)鍵作用。
2.1.2 鐵利用
細(xì)胞中的鐵被送到細(xì)胞質(zhì)的不穩(wěn)定鐵池(labile iron pool,LIP),多數(shù)LIP處于還原狀態(tài)(Fe2+)。LIP中的多數(shù)鐵被轉(zhuǎn)移到線粒體,在此合成血紅素或鐵硫簇(Fe-S)。NFS1半胱氨酸脫硫酶(NFS1 cysteine desulfurase)作為一種Fe-S簇生物合成酶發(fā)揮作用,通過依賴鐵調(diào)節(jié)蛋白(iron regulatory protein,IRP)的翻譯機(jī)制保護(hù)癌細(xì)胞免于鐵死亡[13]。鐵、血紅素和Fe-S簇可結(jié)合到產(chǎn)生ROS的酶中,如花生四烯酸酯氧合酶(arachidonic acid lipoxygenase,ALOX)、還原型輔酶Ⅱ氧化酶(NADPH oxidase,NOX)、黃嘌呤脫氫酶(xanthine dehydrogenase,XDH),這些酶通過環(huán)境依賴性方式參與脂質(zhì)過氧化依賴性鐵死亡的調(diào)節(jié)。
2.1.3 鐵儲存與釋放
鐵蛋白是主要的儲鐵蛋白,儲存了進(jìn)入細(xì)胞的多數(shù)鐵。盡管鐵通過鐵蛋白外殼上的孔隙排出,但鐵釋放的重要機(jī)制涉及鐵蛋白通過核受體共激活因子4(nuclear receptor coactivator 4,NCOA4)介導(dǎo)的自噬降解[14],這一過程通過增加LIP促進(jìn)了鐵死亡[15]。鐵蛋白被泛素-蛋白酶體系統(tǒng)(ubiquitin-proteasome system,UPS)的激活降解[16]。因此,UPS和自噬是維持細(xì)胞內(nèi)鐵蛋白水平的兩條互補(bǔ)蛋白水解途徑。鐵蛋白及其儲存的鐵通過外泌體從細(xì)胞中釋放出來,這個過程是由prominin 2(PROM2)介導(dǎo)的,其抑制了鐵死亡[17]??傊?xì)胞內(nèi)的鐵水平不僅通過降解途徑進(jìn)行調(diào)節(jié),還通過分泌進(jìn)行調(diào)節(jié),控制LIP變化。
2.2 脂質(zhì)代謝
脂質(zhì)過氧化認(rèn)為是鐵死亡的標(biāo)志性事件之一,多不飽和脂肪酸(polyunsaturated fatty acids,PUFAs)是脂質(zhì)過氧化的主要目標(biāo)之一。最終,脂質(zhì)氫過氧化物的積累是引發(fā)鐵死亡的關(guān)鍵因素[1,3]。含有氧化花生四烯酸(arachidonic acid,AA)的磷脂酰乙醇胺 (phosphatidylethanolamine,PE)(AA-PE)是鐵死亡的細(xì)胞死亡信號,AA是一種PUFA,通過延長為延長成腎上腺酸(adrenicacid,AdA)[18]。一項研究表明,AA-OOH-PE導(dǎo)致鐵死亡[18]。該過程為?;o酶A合成酶長鏈家族4(acyl-CoA synthetase long-chain family 4,ACSL4)將AA催化成AA-CoA[19],再經(jīng)過溶血磷脂酰膽堿?;D(zhuǎn)移酶3(lysophosphatidylcholine acyltransferase 3,LPCAT3)將其酯化為AA-PE[20],AA-PE再經(jīng)過脂氧合酶(lipoxygenases,LOXs)和活性氧自由基氧化為AA-OOH-PE[21-22]。
多項研究顯示,ACSL4為鐵死亡敏感的關(guān)鍵決定因素[18-19,23]。ACSL4催化CoA添加到AA上,從而促進(jìn)PUFA酯化為磷脂,在ACSL4激活后,LPCAT3將?;迦肴苎字?,特別對磷脂酰膽堿和PE,其參與了鐵死亡脂質(zhì)信號的傳導(dǎo)[18]。有研究顯示,乳腺癌MBA-MD-231細(xì)胞對鐵死亡誘導(dǎo)劑的敏感性受到ACSL4表達(dá)的影響[24],進(jìn)一步佐證了上述觀點。
LOX是誘導(dǎo)鐵死亡的關(guān)鍵酶[25]。ALOXs通過氧化PUFA-PE引發(fā)鐵死亡[18],這個過程進(jìn)一步受到磷脂酰乙醇胺結(jié)合蛋白1(phosphatidylethanolamine binding protein 1,PEBP1)的調(diào)節(jié),因為其與ALOX相互作用并使其催化PUFA-PE,從而促進(jìn)鐵死亡[26]。
2.3 氨基酸代謝
2.3.1 GPX4
GPX4是一種依賴硒的酶,具有內(nèi)源性抗氧化作用[27]。GPX4的化學(xué)性質(zhì)使其可作為抗脂質(zhì)過氧化和抗鐵死亡的中心調(diào)節(jié)因子。谷胱甘肽(glutathione,GSH)和硒是維持GPX4功能和活性必需的物質(zhì)[3,28],當(dāng)GPX4的合成和功能受到影響時,引起鐵死亡。Zou等[29]腎透明細(xì)胞癌研究顯示,缺氧誘導(dǎo)因子-2α(hypoxia inducible factor-2 alpha,HIF-2α)可激活脂滴相關(guān)蛋白表達(dá),下調(diào)GPX4基因表達(dá),導(dǎo)致GPX4蛋白合成減少,促進(jìn)多不飽和脂質(zhì)聚集,從而增加透明細(xì)胞癌對鐵死亡的敏感性。利用GPX4條件性或誘導(dǎo)性敲除小鼠證實了體內(nèi)鐵死亡的功能,腎臟GPX4誘導(dǎo)性敲除引起急性腎衰竭,通過鐵抑素-1(ferrostatin-1,F(xiàn)er-1)進(jìn)行挽救[30]。調(diào)控鐵死亡敏感相關(guān)基GPX4,可能通過靶向作用調(diào)控鐵死亡,為靶向抗腫瘤或保護(hù)細(xì)胞的藥物研發(fā)提供了新途徑。
2.3.2 胱氨酸/谷氨酸轉(zhuǎn)運系統(tǒng)(System Xc-)
System Xc-促進(jìn)了跨質(zhì)膜的谷氨酸和胱氨酸交換,該系統(tǒng)是由兩個亞基構(gòu)成的二硫鍵合并的異二聚體,第1個亞基是溶質(zhì)載體家族3成員2(solute carrier family 3 member 2,SLC3A2),第2個亞基是溶質(zhì)載體家族7成員11(solute carrier family 7 member 11,SLC7A11),又稱為xCT[31],可不依賴三磷酸腺苷(ATP)轉(zhuǎn)運胞內(nèi)谷氨酸和胞外胱氨酸。胱氨酸進(jìn)入細(xì)胞內(nèi)被分解為半胱氨酸,用于合成GSH。當(dāng)System Xc-轉(zhuǎn)運功能受到影響,可降低GSH水平,從而影響GPX4功能。Erastin是一種鐵死亡誘導(dǎo)劑,可抑制System Xc-,限制胱氨酸的攝入,誘導(dǎo)GSH耗竭[1],通過啟動內(nèi)質(zhì)網(wǎng)應(yīng)激促進(jìn)鐵死亡進(jìn)程中ROS積累[32]。
3 鐵死亡在缺血性腦卒中的作用
中風(fēng)是全世界致殘和致死的主要原因之一[33]。有研究顯示,腦血管病已成為導(dǎo)致我國居民死亡的第3位因素,2019年導(dǎo)致了219萬例病人死亡,其中缺血性腦卒中占腦卒中的82.6%[34]。大腦某些部位的血液供應(yīng)受到限制,繼發(fā)于大腦中動脈、椎/基底動脈或頸內(nèi)動脈阻塞時,發(fā)生缺血性腦卒中[35]。由此產(chǎn)生的氧氣和營養(yǎng)成分的損耗可能激活一系列缺血級聯(lián)反應(yīng),造成氧化應(yīng)激和線粒體損傷,最后導(dǎo)致死亡[36]。鐵死亡是腦卒中病人細(xì)胞死亡的重要機(jī)制之一,通過相關(guān)機(jī)制引起腦內(nèi)細(xì)胞發(fā)生鐵死亡,進(jìn)而導(dǎo)致腦組織損傷。有研究表明,在大腦中動脈閉塞(MCAO)模型中,小鼠通過抑制鐵死亡防止缺血再灌注損傷,說明鐵死亡促進(jìn)缺血性腦卒中后的神經(jīng)細(xì)胞死亡;同時發(fā)現(xiàn),Tau基因敲除小鼠在缺血再灌注損傷后免受鐵死亡的細(xì)胞死亡,以“Tau-鐵相互作用”形式作為鐵死亡和缺血性腦卒中的多效調(diào)節(jié)劑[25]。目前認(rèn)為缺血性腦卒中的鐵死亡機(jī)制是由細(xì)胞內(nèi)鐵積累、脂氧合酶失活、GSH耗竭、GPX4失活、System Xc-阻斷等引起的。
3.1 鐵代謝在缺血性腦卒中的作用
鐵死亡確定之前,相關(guān)研究顯示,臨床和缺血性腦卒中相關(guān)動物模型中鐵積累導(dǎo)致再灌注過程,加劇神經(jīng)細(xì)胞損傷[37-38]。多項研究顯示,鐵超載具有加重線粒體氧化損傷和擴(kuò)大腦梗死面積的作用[19,39]。嚴(yán)重缺血缺氧損傷后,兒童基底節(jié)、丘腦、腦室周圍白質(zhì)中鐵沉積增加[25]。因此,腦鐵紊亂認(rèn)為是缺血性腦卒中病人發(fā)生鐵死亡的重要原因。有研究顯示,引起缺血腦組織鐵超載的原因:一是缺血導(dǎo)致白細(xì)胞介素-6(interleukin-6,IL-6)增加,IL-6經(jīng)Janus激酶(JAK)/信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(STAT3)信號通路可促進(jìn)鐵調(diào)素表達(dá),引起膜鐵轉(zhuǎn)運蛋白1(ferroportin 1,F(xiàn)PN1)表達(dá)下調(diào)和鐵釋放降低,最終導(dǎo)致鐵超載[40]。目前關(guān)于缺血時IL-6表達(dá)增加的具體機(jī)制尚未明確。二是缺血增加了HIF-1α表達(dá),引起TFR1表達(dá)增加,由于神經(jīng)細(xì)胞攝取鐵的主要途徑是經(jīng)過TF-TFR1通路,因此缺血后引起大量鐵離子進(jìn)入細(xì)胞內(nèi),導(dǎo)致細(xì)胞內(nèi)鐵超載[41]。
3.2 脂質(zhì)代謝在缺血性腦卒中的作用
有研究顯示,大腦缺血后ACSL4過度表達(dá),參與了再灌注損傷,ACSL4的過表達(dá)可能是受miR-347控制的,缺血性腦卒中病人miR-347表達(dá)增加,并上調(diào)了ACSL4表達(dá)水平[42]。另一項研究顯示,在MCAO大鼠再灌注后海馬ACSL4水平下降,同時凝血酶升高,實驗進(jìn)一步證實了ACSL4下調(diào)是腦缺血再灌注期間的早期事件,且獨立于神經(jīng)元死亡,發(fā)生機(jī)制可能是凝血酶通過促進(jìn)ACSL4依賴性鐵死亡,導(dǎo)致神經(jīng)元細(xì)胞死亡,且ACSL4降低有利于對抗凝血酶誘導(dǎo)的鐵死亡損傷[43]。相似的缺血早期ACSL4表達(dá)下調(diào)在其他研究中也得到了證實,認(rèn)為缺血腦組織ACSL4水平變化是時間依賴性的,且其早期被抑制是由于HIF-1α表達(dá)增加,并結(jié)合ACSL4啟動子導(dǎo)致的[44]。LOX同時發(fā)揮了一定的作用,尤其是12/15-LOX,不僅發(fā)現(xiàn)其對中風(fēng)后的神經(jīng)元有害,并通過細(xì)胞內(nèi)攻擊線粒體和凋亡誘導(dǎo)因子(apoptosis-inducing factor,AIF)易位到細(xì)胞核[45-46]的機(jī)制對腦卒中后腦血管造成損傷,12/15-LOX抑制劑可改善神經(jīng)和血管損傷[47]。有研究顯示,5-LOX過表達(dá)可促進(jìn)炎性細(xì)胞因子產(chǎn)生,導(dǎo)致腦缺血再灌注(ischemia/reperfusion,I/R)后嚴(yán)重的神經(jīng)元損傷[48]。miR-193b-3p通過抑制5-LOX表達(dá)對腦I/R損傷具有潛在的神經(jīng)保護(hù)作用[49],可能成為治療腦卒中后損傷的新靶點。
3.3 氨基酸代謝在缺血性腦卒中的作用
相關(guān)研究顯示,缺血性腦卒中病人和MCAO動物模型腦組織GSH水平降低[50],可增強(qiáng)腦內(nèi)組織對鐵死亡損傷的敏感性。有研究顯示,轉(zhuǎn)錄因子Sp1和TFAP2c可被硒激活,上調(diào)GPX4表達(dá),從而抑制鐵死亡,保護(hù)神經(jīng)元[51]。相關(guān)研究顯示,上調(diào)GPX4表達(dá)可緩解大鼠腦卒中后腦損傷,敲除GPX4基因可加重腦損傷程度[41]。System Xc-作為谷氨酸/半胱氨酸轉(zhuǎn)運蛋白,可協(xié)助生成GSH和GPX4,因此其有助于抑制鐵死亡,谷氨酸和半胱氨酸的交換是依賴細(xì)胞內(nèi)谷氨酸濃度驅(qū)動而不是消耗ATP。中風(fēng)發(fā)生時,細(xì)胞外谷氨酸濃度升高導(dǎo)致谷氨酸中毒[52],從而阻斷了交換[53],導(dǎo)致GPX4的生成被抑制,最終引發(fā)鐵死亡[54]。System Xc-的轉(zhuǎn)運功能受損可能是由于其亞單位xCT失活引起的[55],xCT上調(diào)在大鼠缺血性腦卒中模型中可長期維持谷氨酸興奮性毒性作用[56]。System Xc-到達(dá)一定濃度時,可能加劇谷氨酸興奮性毒性和鐵死亡。目前,System Xc-在缺血性腦卒中病人鐵死亡中的具體作用機(jī)制尚未明確,仍需更多相關(guān)的研究進(jìn)一步證實。
4 鐵死亡干預(yù)缺血性腦卒中的相關(guān)研究進(jìn)展
治療缺血性腦卒中的首要目標(biāo)是快速恢復(fù)血流,這也是神經(jīng)保護(hù)療法的先決條件。目前,組織纖溶酶原激活物(tissue plasminogen activator,tPA)是經(jīng)食品藥品監(jiān)督管理局(FDA)批準(zhǔn)用于治療缺血性腦卒中的藥物,因此研發(fā)新型神經(jīng)保護(hù)劑可用于治療。以神經(jīng)保護(hù)為主要結(jié)局的研究中,多數(shù)抑制劑未達(dá)到理想的效果,表明對缺血性腦卒中導(dǎo)致神經(jīng)元死亡的具體機(jī)制尚未明確。因此,需要回顧目前的藥物應(yīng)用情況,彌補(bǔ)與臨床發(fā)現(xiàn)的差距,指導(dǎo)今后中風(fēng)的治療。
4.1 基于鐵死亡發(fā)生機(jī)制的干預(yù)研究
缺血性腦卒中導(dǎo)致鐵穩(wěn)態(tài)的破壞,進(jìn)而引起鐵死亡,鐵螯合劑可與游離的鐵結(jié)合,緩解鐵超載。去鐵胺(deferoxamine,DFO)是FDA批準(zhǔn)的一種鐵螯合劑,通過螯合非血紅素鐵可有效減少羥自由基的生成,減輕腦損傷[57]。大鼠模型中,DFO的治療減少了短暫性局灶性缺血后的腦損傷,促進(jìn)了功能的恢復(fù)[58]。目前,鐵螯合劑較少有腦卒中相關(guān)的臨床研究,因此需要更多的研究評估鐵螯合劑應(yīng)用于腦卒中病人的安全性和有效性。多項研究顯示,F(xiàn)er-1和脂抑素-1(liproxstatin-1,Lip-1)可抑制由System Xc-藥理學(xué)抑制或由GPX4缺失誘導(dǎo)的鐵死亡,作為高效的鐵死亡抑制劑[1,30]。Lip-1和Fer-1的治療潛力,延遲Lip-1治療(再灌注后6 h)可有效預(yù)防持續(xù)的神經(jīng)元損傷[25]。鼻內(nèi)Fer-1治療可減輕小鼠MCAO模型再灌注后24 h神經(jīng)功能缺損,縮小梗死體積[25]。鑒于Fer-1和Lip-1對過氧化自由基的內(nèi)在反應(yīng)與常見的抗氧化劑相似,具有自由基捕獲能力的抗氧化劑衍生物的新結(jié)構(gòu)已被開發(fā)出來。一項研究成功開發(fā)了吩噻嗪衍生物作為一類新的鐵死亡抑制劑,并報道了其在缺血性腦卒中模型中具有良好的效果[59]。
病理條件下,上調(diào)GPX4可能是治療缺血性腦卒中鐵死亡的有效策略。胱胺(cystamine)已被證實在體外可提高皮質(zhì)神經(jīng)元中GSH水平,從而抑制鐵死亡[60]。在缺血性腦卒中動物模型中顯示出良好的效果[61]。硒可驅(qū)動保護(hù)性轉(zhuǎn)錄反應(yīng),上調(diào)GPX4和抑制鐵死亡,且在硒存在條件下上調(diào)的基因可抵抗興奮性毒性和內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的神經(jīng)元死亡[62]。缺血性腦卒中小鼠模型中,通過轉(zhuǎn)錄調(diào)節(jié)可抑制鐵死亡,發(fā)揮硒對神經(jīng)元的保護(hù)作用[51]。有研究顯示,半胱氨酸前體(OTC)可保護(hù)神經(jīng)細(xì)胞免受氧糖剝奪(OGD)誘導(dǎo)的死亡,同時OTC通過增加缺血再灌注后小鼠半暗帶皮層GSH水平,減輕腦梗死損傷[63]。
鑒于脂質(zhì)過氧化對鐵死亡至關(guān)重要,脂質(zhì)ROS傳感器(如Liperfluo)是鐵死亡的有效生物標(biāo)志物,這些傳感器可提供快速的方法測量脂質(zhì)過氧化水平,反之可反映鐵死亡的程度[64],有助于進(jìn)行缺血性腦卒中脂質(zhì)代謝相關(guān)治療的研究。有報道發(fā)現(xiàn),選擇性5-LOX抑制劑(Zileuton)可抑制5-LOX,減少再灌注過程中白三烯產(chǎn)生,從而抑制炎癥反應(yīng)[65]。在短暫性全腦缺血小鼠模型中,Zileuton治療可降低炎性細(xì)胞因子和趨化因子的水平[66]。與對照組相比,Zileuton治療的MCAO大鼠改善了神經(jīng)功能缺損評分,減小了梗死體積[67]。Zileuton在動物實驗中已表現(xiàn)出相當(dāng)?shù)闹委熜Ч?,但目前無直接證據(jù)表明,其是通過抑制鐵死亡發(fā)揮作用的。已有研究顯示,使用siRNA敲低12/15-LOX時,細(xì)胞對鐵死亡有抵抗力[22]。缺血小鼠大腦12/15-LOX表達(dá)和活性增加[68],12/15-LOX敲除小鼠神經(jīng)元可免受腦缺血損傷[69]。較多12/15-LOX抑制劑,如ML351、LOXBlock-1、BW-B 70C已證實可明顯減小梗死體積,減輕缺血性腦卒中后腦損傷[69-71]。上述研究結(jié)果表明,12/15-LOX是缺血性腦卒中所致神經(jīng)元損傷中鐵死亡的關(guān)鍵因子,是開發(fā)治療缺血性腦卒中藥物的有潛力靶點。
4.2 基于中醫(yī)藥的鐵死亡干預(yù)研究
傳統(tǒng)中醫(yī)學(xué)將缺血性腦卒中歸屬于“中風(fēng)”范疇,中醫(yī)藥治療缺血性腦卒中有獨特的優(yōu)勢。目前,針灸、中藥提取物及復(fù)方等中醫(yī)療法已普遍用于治療腦卒中,對缺血性腦卒中的鐵死亡研究也有一定的進(jìn)展。
電針是在傳統(tǒng)針灸基礎(chǔ)上加入了電刺激,已普遍用于臨床治療。體外實驗顯示,電針可抑制OGD/R誘導(dǎo)的海馬神經(jīng)元鐵死亡,和模型組相比,電針組下調(diào)了ACSL4、TF和糖原合成酶激酶-3β(GSK-3β)表達(dá),上調(diào)了GPX4、Wnt1和β-catenin表達(dá),推測可能與Wnt/β-catenin通路激活有關(guān)[72]。已有研究顯示,在腦缺血再灌注大鼠模型中,電針可減少鐵超載和氧化應(yīng)激損傷,發(fā)揮神經(jīng)保護(hù)作用[73]。相較于對照組,電針組刺激足三里、曲池等特定穴位,可減小梗死灶,顯著改善局灶性腦缺血大鼠神經(jīng)細(xì)胞線粒體損傷的鐵死亡[74]??傊?,電針通過調(diào)節(jié)鐵相關(guān)蛋白和氧化應(yīng)激,緩解缺血性腦卒中的鐵死亡[75]。
越來越多的研究顯示,中藥提取物及中藥復(fù)方通過多種途徑抑制鐵死亡、保護(hù)腦細(xì)胞。基于網(wǎng)絡(luò)藥理學(xué),歐海亞等[76]研究了中藥在調(diào)控鐵死亡方面的用藥規(guī)律,結(jié)果顯示,作用于鐵死亡多個靶點的6種化合物,以及15個潛在的鐵死亡靶點中的7個靶點對中藥高度敏感。針對鐵死亡機(jī)制發(fā)掘中藥及其有效成分治療缺血性腦卒中是有潛在價值的研究思路。地黃苷A可提高記憶力,恢復(fù)神經(jīng)損傷,與模型組相比,地黃苷A組MCAO大鼠認(rèn)知功能障礙和神經(jīng)功能缺損改善,進(jìn)一步研究顯示,其通過抑制細(xì)胞鐵死亡、激活磷脂酰肌醇3-激酶(phosphatidylinositide 3-kinases,PI3K)/蛋白激酶B(protein kinase B,AKT)/NRF2和SCL7A11/GPX4信號通路改善腦缺血后認(rèn)知障礙[77]。有研究顯示,黃芩素降低了瞬時大腦中動脈閉塞(tMCAO)小鼠腦組織鐵死亡的鐵水平、脂質(zhì)過氧化產(chǎn)物和形態(tài)特征,進(jìn)一步證實黃芩素抑制了RSL3(一種GXP4抑制劑)刺激的HT22細(xì)胞中鐵死亡的活性,黃芩素可能通過調(diào)節(jié)GPX4/ACSL4/ACSL3軸逆轉(zhuǎn)腦組織的缺血再灌注損傷[78]和PINK1-Parkin介導(dǎo)的線粒體自噬調(diào)節(jié)作用抑制鐵死亡[79]。對高良姜素的研究也得出了相似的結(jié)果,Guan等[80]研究顯示,高良姜素可激活SCL7A1/GPX4軸,抑制缺血再灌注后沙鼠海馬神經(jīng)元的鐵死亡。Chen等[81]研究顯示,黃芪作為傳統(tǒng)中藥,給予MCAO模型組大鼠模型治療后,與對照組比較,減小了大鼠腦梗死面積,改善了神經(jīng)元損傷,可能通過調(diào)節(jié)跨膜鐵轉(zhuǎn)運和鐵死亡實現(xiàn)的。但黃芪中發(fā)揮作用的具體成分尚未明確,仍需進(jìn)一步的研究發(fā)掘。丹紅注射液(Danhong Injection,DHI)是由丹參和紅花提取物制備成的標(biāo)準(zhǔn)化注射液,已廣泛用于治療心腦血管?。?2]。動物實驗發(fā)現(xiàn),DHI治療的MCAO小鼠大腦梗死面積明顯減小,且線粒體壞死和鐵積累也受到調(diào)控,具有緩解缺血性腦卒中后神經(jīng)元鐵死亡的作用[83]。目前,中藥復(fù)方的研究逐漸增加,復(fù)方通絡(luò)湯(Compound Tongluo Decoction,CTLD)研究顯示,CTLD可緩解腦梗死,減輕內(nèi)質(zhì)網(wǎng)應(yīng)激和鐵死亡,促進(jìn)腦血管生成,證實CTLD可能通過激活腦梗死大鼠的Sonic Hedgehog通路抑制內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的鐵死亡[84]。腦泰方是防治腦卒中的復(fù)方,已在臨床上得到應(yīng)用[85]。相關(guān)研究顯示,腦泰方可上調(diào)熱休克轉(zhuǎn)錄因子1(heat shock factor 1,HSF1)/熱休克蛋白B1(heat shock proteins B1,HSPB1)通路,抑制神經(jīng)細(xì)胞鐵的吸收,調(diào)控腦鐵穩(wěn)態(tài),并通過TFR1/二價金屬轉(zhuǎn)運蛋白1(divalent metal transporter 1,DMT-1)和SCL7A11/GPX4通路抑制MCAO大鼠鐵死亡[86-87]?,F(xiàn)階段中醫(yī)藥干預(yù)缺血性腦卒中后鐵死亡的研究有了一定的成果,但因中醫(yī)藥多成分、多靶點的特性,仍需要更多的相關(guān)研究進(jìn)行深入發(fā)掘,以期發(fā)揮中醫(yī)藥治療的獨特優(yōu)勢。
5 小結(jié)及展望
鐵死亡多機(jī)制的特點揭示其在缺血性腦卒中發(fā)揮著重要作用,是具有研究價值的治療策略。目前的藥物研究是基于已發(fā)現(xiàn)的機(jī)制以達(dá)到治療目的,但關(guān)于缺血性腦卒中鐵死亡的研究較少,有諸多問題亟待解決:首先,鐵死亡的產(chǎn)生機(jī)制尚未明確。雖然較多研究表明鐵水平、GPX4、ROS表達(dá)和細(xì)胞活力可評估鐵死亡,但未發(fā)現(xiàn)鐵死亡的特異性標(biāo)志物,其他程序性細(xì)胞死亡已有明確的標(biāo)志物。其次,目前的數(shù)據(jù)多數(shù)來自細(xì)胞和動物模型,缺乏大規(guī)模、長期的臨床研究。再次,中醫(yī)藥治療腦卒中具有多方法、多靶點的優(yōu)勢,但具體作用機(jī)制和信號通路的研究仍有欠缺。因此有必要對缺血性腦卒中病人進(jìn)行臨床研究,為改善大腦神經(jīng)保護(hù)提供分子靶點。今后應(yīng)梳理和總結(jié)與鐵死亡相關(guān)的信號通路,探討缺血性腦卒中病理過程中與鐵死亡相關(guān)的信號機(jī)制,進(jìn)一步發(fā)掘中藥及復(fù)方活性成分抑制鐵死亡的關(guān)鍵靶點,為治療缺血性腦卒中的提供新思路和有效策略。
參考文獻(xiàn):
[1] DIXON S J,LEMBERG K M,LAMPRECHT M R,et al.Ferroptosis:an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.
[2] XIE Y,HOU W,SONG X,et al.Ferroptosis:process and function[J].Cell Death amp; Differentiation,2016,23(3):369-379.
[3] STOCKWELL B R,F(xiàn)RIEDMANN ANGELI J P,BAYIR H,et al.Ferroptosis:a regulated cell death nexus linking metabolism,redox biology,and disease[J].Cell,2017,171(2):273-285.
[4] WU J,MINIKES A M,GAO M H,et al.Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J].Nature,2019,572(7769):402-406.
[5] DODSON M,CASTRO-PORTUGUEZ R,ZHANG D D.NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J].Redox Biology,2019,23:101107.
[6] RATAN R R.The chemical biology of ferroptosis in the central nervous system[J].Cell Chemical Biology,2020,27(5):479-498.
[7] DEGREGORIO-ROCASOLANO N,MART-SISTAC O,GASULL T.Deciphering the iron side of stroke:neurodegeneration at the crossroads between iron dyshomeostasis,excitotoxicity,and ferroptosis[J].Frontiers in Neuroscience,2019,13:85.
[8] XU Y Y,WAN W P,ZHAO S,et al.L-type calcium channels are involved in iron-induced neurotoxicity in primary cultured ventral mesencephalon neurons of rats[J].Neuroscience Bulletin,2020,36(2):165-173.
[9] SINGH N,HALDAR S,TRIPATHI A K,et al.Brain iron homeostasis:from molecular mechanisms to clinical significance and therapeutic opportunities[J].Antioxidants amp; Redox Signaling,2014,20(8):1324-1363.
[10] CHEN X,LI J B,KANG R,et al.Ferroptosis:machinery and regulation[J].Autophagy,2021,17(9):2054-2081.
[11] MA S,HENSON E S,CHEN Y,et al.Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J].Cell Death amp; Disease,2016,7(7):e2307.
[12] 張?zhí)熨n,郭婷,孫秀璇,等.鐵死亡相關(guān)基因ACSL4、TFRC及Hippo通路關(guān)鍵分子YAP在間皮瘤組織中的表達(dá)及意義[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2021,21(9):1617-1622;1606.
[13] ALVAREZ S W,SVIDERSKIY V O,TERZI E M,et al.NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis[J].Nature,2017,551(7682):639-643.
[14] MANCIAS J D,WANG X X,GYGI S P,et al.Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J].Nature,2014,509(7498):105-109.
[15] HOU W,XIE Y C,SONG X X,et al.Autophagy promotes ferroptosis by degradation of ferritin[J].Autophagy,2016,12(8):1425-1428.
[16] DOMENICO I D,VAUGHN M B,LI L T,et al.Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome[J].The EMBO Journal,2006,25(22):5396-5404.
[17] BROWN C W,AMANTE J J,CHHOY P,et al.Prominin2 drives ferroptosis resistance by stimulating iron export[J].Developmental Cell,2019,51(5):575-586.
[18] KAGAN V E,MAO G W,QU F,et al.Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J].Nature Chemical Biology,2017,13(1):81-90.
[19] DOLL S,PRONETH B,TYURINA Y Y,et al.ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J].Nature Chemical Biology,2017,13(1):91-98.
[20] DIXON S J,WINTER G E,MUSAVI L S,et al.Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J].ACS Chemical Biology,2015,10(7):1604-1609.
[21] FORCINA G C,DIXON S J.GPX4 at the crossroads of lipid homeostasis and ferroptosis[J].Proteomics,2019,19(18):e1800311.
[22] YANG W S,KIM K J,GASCHLER M M,et al.Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(34):E4966-E4975.
[23] YUAN H,LI X M,ZHANG X Y,et al.Identification of ACSL4 as a biomarker and contributor of ferroptosis[J].Biochemical and Biophysical Research Communications,2016,478(3):1338-1343.
[24] 徐碩,李華.酰基輔酶A合成酶長鏈家族成員4介導(dǎo)的脂質(zhì)過氧化導(dǎo)致乳腺癌細(xì)胞發(fā)生鐵死亡[J].成都醫(yī)學(xué)院學(xué)報,2020,15(5):545-551;566.
[25] TUO Q Z,LEI P,JACKMAN K A,et al.Tau-mediated iron export prevents ferroptotic damage after ischemic stroke[J].Molecular Psychiatry,2017,22(11):1520-1530.
[26] WENZEL S E,TYURINA Y Y,ZHAO J M,et al.PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J].Cell,2017,171(3):628-641.e26.
[27] CARDOSO B R,HARE D J,BUSH A I,et al.Glutathione peroxidase 4:a new player in neurodegeneration?[J].Molecular Psychiatry,2017,22(3):328-335.
[28] INGOLD I,BERNDT C,SCHMITT S,et al.Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J].Cell,2018,172(3):409-422.
[29] ZOU Y L,PALTE M J,DEIK A A,et al.A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis[J].Nature Communications,2019,10(1):1617.
[30] FRIEDMANN ANGELI J P,SCHNEIDER M,PRONETH B,et al.Inactivation of the ferroptosis regulator GPX4 triggers acute renal failure in mice[J].Nature Cell Biology,2014,16(12):1180-1191.
[31] LIANG C,ZHANG X L,YANG M S,et al.Recent progress in ferroptosis inducers for cancer therapy[J].Advanced Materials,2019,31(51):e1904197.
[32] DIXON S J,PATEL D N,WELSCH M,et al.Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J].eLife,2014,3:e02523.
[33] BENJAMIN E J,MUNTNER P,ALONSO A,et al.Heart disease and stroke statistics-2019 update:a report from the American Heart Association[J].Circulation,2019,139(10):e56-e528.
[34] 王擁軍,李子孝,谷鴻秋,等.中國卒中報告2020(中文版)[J].中國卒中雜志,2022,17(5):433-447.
[35] AU A,GRIFFITHS L R,IRENE L,et al.The impact of APOA5,APOB,APOC3 and ABCA1 gene polymorphisms on ischemic stroke:evidence from a meta-analysis[J].Atherosclerosis,2017,265:60-70.
[36] BROUNS R,DE DEYN P P.The complexity of neurobiological processes in acute ischemic stroke[J].Clinical Neurology and Neurosurgery,2009,111(6):483-495.
[37] PRASS K,RUSCHER K,KARSCH M,et al.Desferrioxamine induces delayed tolerance against cerebral ischemia in vivoandin vitro[J].Journal of Cerebral Blood Flow amp; Metabolism,2002,22(5):520-525.
[38] HANSON L R,ROEYTENBERG A,MARTINEZ P M,et al.Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke[J].The Journal of Pharmacology and Experimental Therapeutics,2009,330(3):679-686.
[39] CHI S I,WANG C K,CHEN J J,et al.Differential regulation of H- and L-ferritin messenger RNA subunits,ferritin protein and iron following focal cerebral ischemia-reperfusion[J].Neuroscience,2000,100(3):475-484.
[40] DING H,YAN C Z,SHI H L,et al.Hepcidin is involved in iron regulation in the ischemic brain[J].PLoS One,2011,6(9):e25324.
[41] TANG W H,WU S,WONG T M,et al.Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart[J].Free Radical Biology amp; Medicine,2008,45(5):602-610.
[42] GUBERN C,CAMS S,BALLESTEROS I,et al.miRNA expression is modulated over time after focal ischaemia:up-regulation of miR-347 promotes neuronal apoptosis[J].The FEBS Journal,2013,280(23):6233-6246.
[43] TUO Q Z,LIU Y,XIANG Z,et al.Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion[J].Signal Transduction and Targeted Therapy,2022,7(1):59.
[44] CUI Y,ZHANG Y,ZHAO X L,et al.ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[J].Brain,Behavior,and Immunity,2021,93:312-321.
[45] PALLAST S,ARAI K,WANG X Y,et al.12/15-Lipoxygenase targets neuronal mitochondria under oxidative stress[J].Journal of Neurochemistry,2009,111(3):882-889.
[46] SEILER A,SCHNEIDER M,F(xiàn)RSTER H,et al.Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death[J].Cell Metabolism,2008,8(3):237-248.
[47] JIN G,ARAI K,MURATA Y,et al.Protecting against cerebrovascular injury:contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia[J].Stroke,2008,39(9):2538-2543.
[48] LIANG G J,SHI B,LUO W N,et al.The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats[J].Behavioral and Brain Functions,2015,11:18.
[49] CHEN Z H,YANG J Q,ZHONG J J,et al.microRNA-193b-3p alleviates focal cerebral ischemia and reperfusion-induced injury in rats by inhibiting 5-lipoxygenase expression[J].Experimental Neurology,2020,327:113223.
[50] LIU J H,WANG T W,LIN Y Y,et al.Acrolein is involved in ischemic stroke-induced neurotoxicity through spermidine/spermine-N1-acetyltransferase activation[J].Experimental Neurology,2020,323:113066.
[51] ALIM I,CAULFIELD J T,CHEN Y X,et al.Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke[J].Cell,2019,177(5):1262-1279.
[52] MOU Y H,WANG J,WU J C,et al.Ferroptosis,a new form of cell death:opportunities and challenges in cancer[J].Journal of Hematology amp; Oncology,2019,12(1):34.
[53] IGNOWSKI E,WINTER A N,DUVAL N,et al.The cysteine-rich whey protein supplement,immunocal,preserves brain glutathione and improves cognitive,motor,and histopathological indices of traumatic brain injury in a mouse model of controlled cortical impact[J].Free Radical Biology amp; Medicine,2018,124:328-341.
[54] MASSIE A,BOILLE S,HEWETT S,et al.Main path and byways:non-vesicular glutamate release by system xc(-) as an important modifier of glutamatergic neurotransmission[J].Journal of Neurochemistry,2015,135(6):1062-1079.
[55] ZHANG Y F,LU X Y,TAI B,et al.Ferroptosis and its multifaceted roles in cerebral stroke[J].Frontiers in Cellular Neuroscience,2021,15:615372.
[56] HSIEH C H,LIN Y J,CHEN W L,et al.HIF-1α triggers long-lasting glutamate excitotoxicity via system xc- in cerebral ischaemia-reperfusion[J].The Journal of Pathology,2017,241(3):337-349.
[57] LEE J Y,KEEP R F,HE Y D,et al.Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury[J].Journal of Cerebral Blood Flow amp; Metabolism,2010,30(11):1793-1803.
[58] FRERET T,VALABLE S,CHAZALVIEL L,et al.Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat[J].The European Journal of Neuroscience,2006,23(7):1757-1765.
[59] YANG W,LIU X L,SONG C L,et al.Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model[J].European Journal of Medicinal Chemistry,2021,209:112842.
[60] KARUPPAGOUNDER S SALIM I,KHIM S J,et al.Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models[J].Science Translational Medicine,2016,8(328):328ra29.
[61] LI P C,JIAO Y,DING J,et al.Cystamine improves functional recovery via axon remodeling and neuroprotection after stroke in mice[J].CNS Neuroscience amp; Therapeutics,2015,21(3):231-240.
[62] JIN Y Z,ZHUANG Y X,LIU M,et al.Inhibiting ferroptosis:a novel approach for stroke therapeutics[J].Drug Discovery Today,2021,26(4):916-930.
[63] LIU Y Y,MIN J W,F(xiàn)ENG S,et al.Therapeutic role of a cysteine precursor,OTC,in ischemic stroke is mediated by improved proteostasis in mice[J].Translational Stroke Research,2020,11(1):147-160.
[64] YUAN H S,PRATTE J,GIARDINA C.Ferroptosis and its potential as a therapeutic target[J].Biochemical Pharmacology,2021,186:114486.
[65] DRAZEN J M,ISRAEL E,O′BYRNE P M.Treatment of asthma with drugs modifying the leukotriene pathway[J].New England Journal of Medicine,1999,340(3):197-206.
[66] SILVA B C,DE MIRANDA A S,RODRIGUES F G,et al.The 5-lipoxygenase(5-LOX) inhibitor zileuton reduces inflammation and infarct size with improvement in neurological outcome following cerebral ischemia[J].Current Neurovascular Research,2015,12(4):398-403.
[67] TU X K,ZHANG H B,SHI S S,et al.5-LOX inhibitor zileuton reduces inflammatory reaction and ischemic brain damage through the activation of PI3K/AKT signaling pathway[J].Neurochemical Research,2016,41(10):2779-2787.
[68] YIGITKANLI K,PEKCEC A,KARATAS H,et al.Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke[J].Annals of Neurology,2013,73(1):129-135.
[69] YIGITKANLI K,ZHENG Y,PEKCEC A,et al.Increased 12/15-lipoxygenase leads to widespread brain injury following global cerebral ischemia[J].Translational Stroke Research,2017,8(2):194-202.
[70] LIU Y,ZHENG Y,KARATAS H,et al.12/15-lipoxygenase inhibition or knockout reduces warfarin-associated hemorrhagic transformation after experimental stroke[J].Stroke,2017,48(2):445-451.
[71] MANU J,SHAILENDRA G,ANSARI MUBEEN A,et al.Inhibition of NF-kappaB activation by 5-lipoxygenase inhibitors protects brain against injury in a rat model of focal cerebral ischemia[J].Journal of Neuroinflammation,2006,3:12.
[72] 李笑笑,李姝潔,董健健,等.電針大鼠血清對氧糖剝奪誘導(dǎo)的海馬神經(jīng)元鐵死亡的影響[J].中國中醫(yī)藥信息雜志,2023,30(4):77-81.
[73] 梁潤昱.電針調(diào)節(jié)腦鐵代謝減少腦缺血再灌注后氧化損傷的機(jī)制研究[D].哈爾濱:黑龍江中醫(yī)藥大學(xué),2022.
[74] 上官豪,徐維,陳劍豪,等.電針對局灶性腦缺血大鼠皮質(zhì)神經(jīng)細(xì)胞鐵死亡的影響[J].現(xiàn)代中西醫(yī)結(jié)合雜志,2022,31(17):2365-2368;2454.
[75] LI G D,LI X X,DONG J J,et al.Electroacupuncture ameliorates cerebral ischemic injury by inhibiting ferroptosis[J].Frontiers in Neurology,2021,12:619043.
[76] 歐海亞,葉小鵬,李舒,等.基于網(wǎng)絡(luò)藥理學(xué)及數(shù)據(jù)挖掘探討中藥調(diào)節(jié)鐵死亡的用藥規(guī)律研究[J].中國現(xiàn)代應(yīng)用藥學(xué),2019,36(18):2317-2324.
[77] FU C,WU Y F,LIU S J,et al.Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia[J].Journal of Ethnopharmacology,2022,289:115021.
[78] LI M,MENG Z L,YU S C,et al.Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis[J].Chemico-Biological Interactions,2022,366:110137.
[79] 李鳴.抑制鐵死亡介導(dǎo)的黃芩素對腦缺血再灌注損傷的保護(hù)作用機(jī)制研究[D].長春:吉林大學(xué),2022.
[80] GUAN X,LI Z H,ZHU S,et al.Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils[J].Life Sciences,2021,264:118660.
[81] CHEN J,MA D L,BAO J,et al.Roots of Astragalus propinquus schischkin regulate transmembrane iron transport and ferroptosis to improve cerebral ischemia-reperfusion injury[J].Evidence-Based Complementary and Alternative Medicine,2022,2022:7410865.
[82] ZENG M L,ZHOU H F,HE Y,et al.Danhong injection enhances the therapeutic effect of mannitol on hemispheric ischemic stroke by ameliorating blood-brain barrier disruption[J].Biomedecine amp; Pharmacotherapie,2021,142:112048.
[83] ZHAN S K,LIANG J Y,LIN H T,et al.SATB1/SLC7A11/HO-1 axis ameliorates ferroptosis in neuron cells after ischemic stroke by Danhong injection[J].Molecular Neurobiology,2023,60(1):413-427.
[84] HUI Z,WANG S L,LI J X,et al.Compound Tongluo Decoction inhibits endoplasmic reticulum stress-induced ferroptosis and promoted angiogenesis by activating the Sonic Hedgehog pathway in cerebral infarction[J].Journal of Ethnopharmacology,2022,283:114634.
[85] 賀旭,宋禎彥,王珊珊,等.腦泰方治療腦卒中的研究進(jìn)展[J].中國組織化學(xué)與細(xì)胞化學(xué)雜志,2021,30(4):387-391;400.
[86] 饒政清,梅志剛,葛金文,等.腦泰方調(diào)控細(xì)胞鐵轉(zhuǎn)運抑制鐵死亡保護(hù)腦卒中缺血損傷的機(jī)制研究[J].中草藥,2021,52(21):6552-6560.
[87] LAN B,GE J W,CHENG S W,et al.Extract of Naotaifang,a compound Chinese herbal medicine,protects neuron ferroptosis induced by acute cerebral ischemia in rats[J].Journal of Integrative Medicine,2020,18(4):344-350.
(收稿日期:2023-01-16)
(本文編輯薛妮)