摘 要:利用導(dǎo)子和自同構(gòu)的定義,對Kim Hyuk提出的一類4維冪零左對稱代數(shù)L0進行了討論。通過分析該類代數(shù)的結(jié)構(gòu)特點,討論導(dǎo)子和自同構(gòu)在一組生成元上的作用,得到了冪零左對稱代數(shù)L0及其相鄰李代數(shù)的導(dǎo)子和自同構(gòu)的結(jié)構(gòu),發(fā)現(xiàn)了L0的導(dǎo)子代數(shù)是可解李代數(shù),找到了L0相鄰李代數(shù)的內(nèi)自同構(gòu)的結(jié)構(gòu)。
關(guān)鍵詞:左對稱代數(shù);相鄰李代數(shù);導(dǎo)子;自同構(gòu);可解
中圖分類號:O152"" 文獻標(biāo)志碼:A""" 文章編號:1673-5072(2023)02-0141-05
導(dǎo)子與自同構(gòu)是代數(shù)結(jié)構(gòu)理論中最重要的研究內(nèi)容之一,它們反映了代數(shù)最本質(zhì)的結(jié)構(gòu)和性質(zhì)。近年來,許多學(xué)者對代數(shù)的導(dǎo)子和自同構(gòu)進行了研究[1-3]。 左對稱代數(shù)結(jié)構(gòu)是一類重要的代數(shù)結(jié)構(gòu),它與李代數(shù)有著密切的聯(lián)系,對左對稱代數(shù)及其相鄰李代數(shù)的研究備受關(guān)注[4-9]。與冪零李代數(shù)不同,冪零左對稱代數(shù)[9]是這樣定義的:L是一個左對稱代數(shù),稱L為可遞的,若x∈L,y→y+λxy=y+xy是L的線性同構(gòu);稱L是冪零的,若x∈L,λx是冪零線性變換。目前,對冪零左對稱代數(shù)的研究較少。
參考文獻:
[1] 范素軍,周檬,崔麗娟.冪零李代數(shù)的導(dǎo)子代數(shù)的結(jié)構(gòu)[J].河北師范大學(xué)學(xué)報(自然科學(xué)版),2009,33(5):567-569.
[2] 陳翠,連海峰.4維冪零李代數(shù)的導(dǎo)子與triple導(dǎo)子[J].數(shù)學(xué)的實踐與認識,2014,44(5):232-235.
[3] BAI C M,MENG D J.The automorphisms of Novikov algebras in low dimensions[J].Journal of Physics A:Mathematical and General,2003,36(28) :7715-7731.
[4] 白承銘,孟道驥.左對稱代數(shù)的若干性質(zhì)[J].南開大學(xué)學(xué)報(自然科學(xué)版),1997,30(2):1-8.
[5] PEREA A M.Flat left-invariant connections adapted to the automorphism structure of a Lie group[J].Journal of Differential Geometry,1981,16(3):445-474.
[6] BURDE D.Left-invariant affine structures on reductive Lie groups[J].Journal of Algebra,1996,181(3):884-902.
[7] BAI C M.Left-symmetric bialgebras and an analogue of the classical Yang-Baxter equation [J].Communications in Contemporary Mathematics,2008,10(2):221-260.
[8] KIM H.Complete left-invariant affine structures on nilpotent Lie groups[J].Journal of Differential Geometry,1986,24 (3):373-394.
[9] 朱開曉,吳明忠.一個特殊的4維冪零左對稱代數(shù)的導(dǎo)子和自同構(gòu)[J].西華師范大學(xué)學(xué)報(自然科學(xué)版),2019,40(3):271-276.
[10]HUMPHREYS J E.Introduction to Lie algebras and representation theory [M].New York:Springers-Verlag,1972.
The Derivation and Automorphismof" 4-dimensional Nilpotent Left Symmetric Algebra L0
YANG Tian-hui,WU Ming-zhong
(School of Mathematics amp; Information,China West Normal University,Nanchong Sichuan 637009,China)
Abstract:A class of 4-dimensional nilpotent left symmetric algebra L0proposed by Kim Hyuk is discussed by employing the definitions of derivation and automorphism.The structures of derivations and automorphisms of L0 and its sub-adjacent Lie algebras are obtained by analyzing the structural characteristics of L0 and exploring the functions of derivations and automorphisms on a set of generators.It is found that the derivation algebra of L0 is a solvable Lie algebra and the structure of inner automorphism of L0 sub-adjacent Lie algebras is obtained.
Keywords:left symmetric algebra;sub-adjacent Lie algebra;derivation;automorphism;solvable