摘要:建立單位圓盤D到單位球BN上調(diào)和映射的同向兩點Schwarz引理,給出高維單位球之間的多重調(diào)和映射的同向兩點Schwarz引理,并將單位圓盤調(diào)和映射的Pavlovic的結(jié)果推廣到高維多重調(diào)和映射.作為應(yīng)用,得到單位球上多重調(diào)和函數(shù)的邊界Schwarz引理.
關(guān)鍵詞:調(diào)和映射; 多重調(diào)和映射; Schwarz引理; 邊界Schwarz引理
中圖分類號: O 174.5文獻標志碼: A 文章編號: 1000-5013(2023)02-0264-05
Same Direction Two-Point Schwarz Lemma for Pluriharmonic Mappings and Application
LI Jun, CHEN Mingxin, WANG Jianfei
(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)
Abstract: Establish the same direction two-point Schwarz lemma for harmonic mappings from unit disk D to the unit ball BN, the same direction two-point Schwarz lemma for pluriharmonic mappings between high-dimensional unit balls is given, and Pavlovic′s result of harmonic mappings on the unit disk is extended to high-dimensional pluriharmonic mappings. As an application, the boundary Schwarz lemma of pluriharmonic functions on the unit ball is obtained.
Keywords: harmonic mappings; pluriharmonic mappings; Schwarz lemma; boundary Schwarz lemma
參考文獻:
[1]HEINZ E.On one-to-one harmonic mappings[J].Pacific Journal of Mathematics,1959,9(1):101-105.DOI:10.2140/pjm.1959.9.101.
[2]PAVLOVIC M.Introduction to function spaces on the disk[M].Belgrade:Matematicki Institut SANU,2004.DOI:10.13140/RG.2.1.3215.5687.
[3]LIU Yang,DAI Shaoyu,PAN Yifei.Boundary Schwarz lemma for pluriharmonic mappings between unit balls[J].Journal of Mathematical Analysis and Applications,2016,433(1):487-495.DOI:10.1016/j.jmaa.2015.08.008.
[4]DAI Shaoyu,CHEN Huaihui,PAN Yifei.The high order Schwarz-Pick lemma on complex Hilbert balls[J].Science China Mathematics,2010,53(10):2649-2656.DOI:10.1007/s11425-010-3119-3.
[5]CHEN Huaihui.The Schwarz-Pick lemma for planar harmonic mappings[J].Science China Mathematics,2011,54(6):1101-1118.DOI:10.1007/s11425-011-4193-x.
[6]LIU Taishun,WANG Jianfei,TANG Xiaomin.Schwarz lemma at the boundary of the unit ball in Cn and its applications[J].Journal of Geometric Analysis,2015,25(3):1890-1914.DOI:10.1007/s12220-014-9497-y.
[7]TANG Xiaomin,LIU Taishun,LU Jin.Schwarz lemma at the boundary of the unit polydisk in Cn[J].Science in China Series A:Mathematics,2015,58(8):1639-1652.DOI:10.1007/s11425-015-4975-7.
[8]LIU Yang,CHEN Zhihua.Schwarz-Pick estimates for holomorphic mappings from the polydisk to the unit ball[J].Journal of Mathematical Analysis and Applications,2011,376(1):123-128.DOI:10.1016/j.jmaa.2010.10.040.
[9]KRANTZ S.The Schwarz lemma at the boundary[J].Complex Variables and Elliptic Equations,2011,56(5):455-468.DOI:10.1080/17476931003728438.
[10]XU Zhenghua.Schwarz lemma for pluriharmonic functions[J].Indagationes Mathematicae,2016,27(4):923-929.DOI:10.1016/j.indag.2016.06.002.
[11]PARTYKA D,ZAJAC J.The Schwarz type inequality for harmonic mappings of the unit disc with boundary normalization[J].Complex Analysis and Operator Theory,2015,9(1):213-228.DOI:10.1007/s11785-014-0398-7.
[12]GARNETT J.Bounded analytic functions[J].The American Mathematical Monthly,1981,89(7):1-7.DOI:10.2307/2321411.
[13]GRAUERT H.Methods of the theory of functions of several complex variables[M].Berlin:Springer,1991.DOI:10.1007/978-3-642-76709-8_8.
[14]AHLFORS L.Conformal invariants: Topics in geometric function theory[M].New York:American Mathematical Society,1973.DOI:10.1016/S0246-0203(01)01089-5.
[15]WANG Xiantao,ZHU Jianfeng.Boundary Schwarz lemma for solutions to Poisson′s equation[J].Journal of Mathematical Analysis and Applications,2018,463(2):623-633.DOI:10.1016/j.jmaa.2018.03.043.
(責任編輯:" 錢筠 英文審校: 黃心中)