摘要:利用動力系統(tǒng)定性理論和分支方法研究廣義Camassa-Holm方程的行波.通過關(guān)鍵的分支值得到相應平面系統(tǒng)的相圖,從而給出孤立波和扭波存在的充分條件;并且發(fā)現(xiàn)得到的孤立波和扭結(jié)波是不對稱的,這與傳統(tǒng)的對稱孤立波和對稱扭波是不一樣的.
關(guān)鍵詞:廣義Camassa-Holm方程; 不對稱孤立波; 不對稱扭波; 存在性
中圖分類號: O 175.29文獻標志碼: A 文章編號: 1000-5013(2023)02-0277-04
Existence of Asymmetric Solitary Waves and Asymmetric Kink Waves of Generalized Camassa-Holm Equation
WEN Zhenshu, HUANG Zihong
(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)
Abstract: Traveling waves of the generalized Camassa-Holm equation are studied by exploiting qualitative theory and bifurcation method of dynamical systems, the phase portraits of corresponding planar system are obtained by the key bifurcation values, and sufficient conditions guaranteeing the existence of solitary waves and kink waves are derived. It is found that the derived solitary waves and kink waves are asymmetric, which are different from the traditional symmetric solitary waves and kink waves.
Keywords: generalized Camassa-Holm equation; asymmetric solitary waves; asymmetric kink waves; existence
近幾十年來,學者們提出了許多重要的非線性演化方程來模擬不同的非線性現(xiàn)象,例如流體動力學中的淺水波運動,等離子體中的離子聲波等,其中,Camassa-Holm(CH)方程及其變體得到了廣泛的關(guān)注.著名的經(jīng)典CH方程[1]
模擬了淺水波在平底的單向傳播.u(x,t)代表t時刻在空間方向x上的流體速度,k是與臨界淺水波速有關(guān)的常數(shù).方程(1)具有雙哈密頓結(jié)構(gòu)和無窮多個守恒定律,并且是完全可積的[1-3].許多學者對CH方程(1)的解及動力學性質(zhì)進行了研究.CH方程的1個顯著特征是具有尖孤子,即當k=0時,有尖孤立波u(x,t)=ce-|x-ct| .事實上,當k≠0時,CH方程也有尖孤立波u(x,t)=3k2e-x-k2t-k[4].除了非光滑孤立波外,方程(1)也有光滑孤立波[4].所有這些解都具有某種對稱性,即它們是關(guān)于直線對稱或點
對稱的.然而,還沒有發(fā)現(xiàn)CH型方程有不對稱解.文中將證明廣義CH方程[5-6]
具有非對稱孤立波和非對稱扭波,其定義如下.
定義1 對稱孤立波u=φ(ξ)是關(guān)于直線ξ=c0對稱的孤立波,其中,c0是常數(shù);否則,它是不對稱孤立波.
定義2 對稱扭波u=φ(ξ)是關(guān)于點(ξ0,u0)對稱的扭結(jié)波,其中,ξ0和u0是常數(shù);否則,它是不對稱扭波.
方程(2)首先由Novikov提出[5].通過得到其擬局部高次對稱性的無窮維族,Novikov證明了方程(2)是可積的[5],并且它屬于以下類
這引起了人們的極大興趣,特別是式(3)的可能的可積成員.Tu等[6]通過建立局部適定性并給出爆破準則,研究了方程(2)的Cauchy問題.Mi等[7]進一步研究了方程(2)的非一致依賴性和適定性.本文從動力系統(tǒng)的角度[8-18]研究方程(2)的行波,通過關(guān)鍵的分支值得到孤立波和扭波存在的充分條件;首次觀測到CH型方程(2)的非對稱孤立波和非對稱扭波,拓展了以前的工作.
由式(9)和式(10),根據(jù)動力系統(tǒng)理論,將系統(tǒng)(8)的奇點個數(shù)及其在相應的參數(shù)條件下的動力學行為總結(jié)在引理1中.
引理1
1) 當glt;-c2/4時,系統(tǒng)(8)有3個奇點A1,A2和B.而且A1和A2是鞍點,B是中心.
2) 當g=-c2/4時,系統(tǒng)(8)有2個奇點A1(與A2重合)和B.而且A1是退化的,A2是鞍點.
3) 當-c2/4lt;glt;c2/32時,系統(tǒng)(8)有3個奇點A1,A2和B.而且A2和B是鞍點,A1是中心.
4) 當g=c2/32時,系統(tǒng)(8)有2個奇點A1(與A2重合)和B.而且A1是退化的,B是鞍點.
此外,對引理1中的子情形3),當H(φ2,0)=H{(2g-c2/6c),(c2+4g/6c)},可得到1個關(guān)鍵分支值g=0,使系統(tǒng)(8)有2條連接2個鞍點A2和B的異宿軌.
基于上述分析,得到了系統(tǒng)(6)在對應的參數(shù)條件下的相圖,如圖1所示.
2 主要結(jié)果
動力系統(tǒng)的同宿軌對應于孤立波,動力系統(tǒng)的異宿軌對應于扭波.因此,對應于圖1相圖的不對稱同宿軌和不對稱異宿軌,有定理1.
定理1
1) 當glt;-c2/4時,廣義CH方程(2)有1個不對稱孤立波.
2) 當-c2/4lt;glt;0時,廣義CH方程(2)有1個不對稱孤立波.
3) 當0lt;glt;c2/32時,廣義CH方程(2)有1個不對稱孤立波.
4) 當g=0時,廣義CH方程(2)具有1對不對稱扭波和反扭波.
注1 由于哈密頓函數(shù)(7)的復雜性,無法得到不對稱孤立波和不對稱扭波的精確表達式.然而,當0lt;glt;c2/32時,非對稱孤立波的波形圖,如圖2(a)所示;當g=0時,非對稱扭波的波形圖,如圖2(b)所示.
3 結(jié)束語
通過分析廣義CH方程(2)對應的平面系統(tǒng)(6),給出孤立波和扭波存在的充分條件,并首次發(fā)現(xiàn)CH型方程(2)的非對稱孤立波和非對稱扭波.非對稱非線性波的發(fā)現(xiàn)將極大地豐富以往的研究成果.
參考文獻:
[1]CAMASSA R,HOLM D.An integrable shallow water equation with peaked solitons[J].Physical Review Letters,1993,71(11):1661-1664.DOI:10.1103/PhysRevLett.71.1661.
[2]FUCHSSTEINER B,F(xiàn)OKAS A.Symplectic structures, their bcklund transformations and hereditary symmetries[J].Physica D:Nonlinear Phenomena,1981,4(1):47-66.DOI:10.1016/0167-2789(81)90004-X.
[3]CONSTANTIN A.On the scattering problem for the Camassa-Holm equation[J].Proceedings of the Royal Society of London A,2001,457(2008):953-970.DOI:10.1098/rspa.2000.0701.
[4]LIU Zhengrong,QIAN Tifei.Peakons of the Camassa-Holm equation[J].Applied Mathematical Modelling,2002,26(3):473-480.DOI:10.1016/S0307-904X(01)00086-5.
[5]NOVIKOV V.Generalizations of the Camassa-Holm equation[J].Journal of Physics A:Mathematical and Theoretical,2009,42(34):342002.DOI:10.1088/1751-8113/42/34/342002.
[6]TU Xi,YIN Zhaoyang.Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space[J].Nonlinear Analysis,2015,128:1-19.DOI:10.1016/j.na.2015.07.017.
[7]MI Yongsheng,LIU Yue,GUO Boling,et al.The Cauchy problem for a generalized Camassa-Holm equation[J].Journal of Differential Equations,2019,266(10):6739-6770.DOI:10.1016/j.jde.2018.11.019.
[8]溫振庶.(N+1)維廣義的Boussinesq方程的精確顯式非線性波解[J].華僑大學學報(自然科學版),2016,37(3):380-385.DOI:10.11830/ISSN.1000-5013.2016.03.0380.
[9]CHEN Aiyong,WEN Shuangquan,TANG Shengqiang,et al.Effects of quadratic singular curves in integrable equations[J].Studies in Applied Mathematics,2015,134(1):24-61.DOI:10.1111/sapm.12060.
[10]CHEN Yiren,SONG Ming,LIU Zhengrong.Soliton and Riemann theta function quasi-periodic wave solutions for a (2+1)-dimensional generalized shallow water wave equation[J].Nonlinear Dynamics,2015,82(1/2):333-347.DOI:10.1007/s11071-015-2161-7.
[11]SONG Ming.Nonlinear wave solutions and their relations for the modified Benjamin-Bona-Mahony equation[J].Nonlinear Dynamics,2015,80(1/2):431-446.DOI:10.1007/s11071-014-1880-5.
[12]PAN Chaohong,YI Yating.Some extensions on the soliton solutions for the Novikov equation with cubic nonlinearity[J].Journal of Nonlinear Mathematical Physics,2015,22(2):308-320.DOI:10.1080/14029251.2015.1033243.
[13]WEN Zhenshu.Bifurcations and exact traveling wave solutions of a new two-component system[J].Nonlinear Dynamics,2017,87(3):1917-1922.DOI:10.1007/s11071-016-3162-x.
[14]WEN Zhenshu.Bifurcations and exact traveling wave solutions of the celebrated Green-Naghdi equations[J].International Journal of Bifurcation and Chaos,2017,27(7):1750114.DOI:10.1142/S0218127417501140.
[15]LETA T D,LI Jibin.Dynamical behavior and exact solutions of thirteenth order derivative nonlinear Schrdinger equation[J].Journal of Applied Analysis and Computation,2018,8(1):250-271.DOI:10.11948/2018.250.
[16]HAN Maoan,ZHANG Lijun,WANG Yue,et al.The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations[J].Nonlinear Analysis:Real World Applications,2019,47:236-250.DOI:10.1016/j.nonrwa.2018.10.012.
[17]WEN Zhenshu.Several new types of bounded wave solutions for the generalized two-component Camassa-Holm equation[J].Nonlinear Dynamics,2014,77(3):849-857.DOI:10.1007/s11071-014-1346-9.
[18]WEN Zhenshu.Bifurcations and nonlinear wave solutions for the generalized two-component integrable Dullin-Gottwald-Holm system[J].Nonlinear Dynamics,2015,82(1/2):767-781.DOI:10.1007/s11071-015-2195-x.
(責任編輯:" 黃曉楠 英文審校: 黃心中)
收稿日期: 2021-11-16
通信作者: 溫振庶(1984-),男,教授,博士,主要從事微分方程與動力系統(tǒng)的研究.E-mail:wenzhenshu@hqu.edu.cn.
基金項目: 國家自然科學基金資助項目(12071162); 福建省自然科學基金資助項目(2021J01302); 中央高?;究蒲袠I(yè)務費專項資金資助(ZQN-802)