• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Abel數(shù)域的導(dǎo)子計(jì)算公式

    2023-04-29 14:54:30鄧先濤彭國華
    關(guān)鍵詞:數(shù)域導(dǎo)子國華

    鄧先濤 彭國華

    基于Kronecker-Weber定理本文利用素?cái)?shù)在Abel 數(shù)域中的分歧指數(shù)明確給出Abel 數(shù)域的導(dǎo)子計(jì)算公式. 特別地,二次數(shù)域的導(dǎo)子公式可以容易地從該公式推導(dǎo)出來.

    導(dǎo)子; Kronecker-Weber定理; 慣性群; 分歧指數(shù)

    O156.2A2023.031003

    收稿日期: 2022-02-22

    基金項(xiàng)目: 國家自然科學(xué)基金(12171331)

    作者簡介: 鄧先濤(1996-), 男, 湖南懷化人, 博士研究生, 主要從事數(shù)論及其應(yīng)用方向研究. E-mail:xiantaodeng@126.com

    通訊作者: 彭國華. E-mail:peng@scu.edu.cn

    A conductor formula for Abelian number fields

    DENG Xian-Tao, PENG Guo-Hua

    (School of Mathematics, Sichuan University, Chengdu 610064, China)

    In this article, based on Kronecker-Weber theorem we explicitly give a conductor formula for the Abelian number fields based on the ramification indices. Particularly, the conductor of a quadratic number field can be easily deduced from this formula.

    Conductor; Kronecker-Weber theorem; Inertia group; Ramification index

    (2010 MSC 11D41)

    1 Introduction

    An Abelian number field is a finite Galois extension over the rational number field whose Galois group is commutative.By Kronecker-Weber theorem, there exists a cyclotomic field? Q(ζm), such that KQ(ζm) for an Abelian number filed K. The conductor of K, denoted by f(K), is the smallest positive integer m satisfying the above property. If m is odd, then we have Q(ζm)=Q(ζ2m). Hence?? f(K)2(mod 4).

    The conductor is an important arithmetic invariant of an Abelian number field. It is closely related to the class number, the genus field, and the discriminant of a number field and so on. For example, Mki[1] published some results on the conductor density of Abelian number fields, Johnston[2] gave the trace map between absolutely Abelian fields with the same conductor.

    There are also some results on calculating class numbers of Abelian number fields of special conductor. For example,Schoof[3] calculated class numbers of Abelian number fields of prime conductor, Agathocleous[4] calculated class numbers of real cyclotomic fields of conductor pq.

    For a quadraticfield Q( d), where d is a square-free integer, we know that

    f(Q d)=d, if d≡1mod 4,

    4d, if d1mod 4.

    Generally, it is not easy to calculate the conductor. In 1952, Hasse[5] proved the conductor-discriminant formula, which is very useful for computing the discriminant of an Abelian number field. In 1985, Zhang[6] gave a result on the genus field which is the maximal absolute Abelian number field containing the Abelian number field. The aim of this article is to give an explicit formula on conductor by some methods different from Zhang.

    鄧先濤, 等: Abel數(shù)域的導(dǎo)子計(jì)算公式

    Let p be a prime number, and we fix a prime ideal p of K lying above p. Define

    Ip(K)={σ∈Gal(K/Q)|σ(x)≡xmod p,

    x∈OK}.

    Since Gal(K/Q) is Abelian, Ip(K) is independent of the choice of p and hence well-defined. We call Ip(K) the inertia group of p in K, whose order is called the ramification index of p in K, denoted by ep(K). If ep(K)=1, p is said to be unramified in K, otherwise we say p is ramified. The fixed subfield of Ip(K) in K, denote by KIp, is the inertial field of p. A basic fact is that p is unramified in KIp.

    Theorem 1.1 Let K be an Abelian number field of degree n. Write

    n=2t0qt11qt22…qtmm,

    where q1,q2,…,qm are distinct odd primes, and t0≥0,ti≥1 for 1≤i≤m. Let p1, p2,…,ps be all ramified primes in K. For a prime p and an integer k, denote the standard p-adic order of k by vp(k). Then we have

    (i) If 2 is unramified in K, then

    f(K)=p1p2…ps∏mi=1qvqi(eqi(K))i,

    (ii) If 2 is ramified in K, then

    f(K)=Ws,m, ife2K -1=e2(K),2Ws,m, otherwise,

    where

    Ws,m=2v2(e2(K))p1p2…ps∏mi=1qvqi(eqi(K))i.

    Remark 1 Zhang[6] gave a similar result for an Abelian number field K of degree pr, where p is a prime number. But if p is ramified in K, Zhang's result did not give the explicit power of p in the conductor formula. In Ref. [7], Zhao and Sun gave the conductor formula for an Abelian number field of degree p, where p is a prime number. This article generalizes the above two conclusions. In our formula (Theorem 1.1), we give the explicit power of all primes which are wildly ramified in K, where K is any Abelian number field.

    Let K, L and F be Abelian number fields such that FL, then we define

    resLK:Gal(L/Q)→Gal(F/Q)σ→σ|F(1)

    where σ|F(α)=σ(α)(α∈F). Additionally, we also define that

    ΩQ(K,L):Gal(KL/Q)→

    Gal(K/Q)Gal(L/Q),σ→σ|K,σ|L(2)

    Our proof depends on the explicit analysis of the ramification index, and the key idea in our proof is to determine the structure of the inertia groups of an Abelian number field (Proposition 2.1 and Corollary 2.2) by using Kronecker-Weber theorem. In Section 2, we first deal with the case of a cyclic number field of prime power degree (Proposition 2.6), which is the main part of our discussion. The general case is established in Section 3 by viewing an Abelian field as a compositum of cyclic subfields of prime power degree.

    2 Cyclicnumber fields of prime power degree

    We start with a general result on the inertia group. The following result shows that the inertia group of a number field is determined by the inertia group of its Galois extension.

    Proposition 2.1 Let K and L be Abelian number fields with KL. Then resLKIp(L)=Ip(K) holds for every prime number p, where resLK is defined in Eq.(1).

    Proof Let p be a prime ideal in OK lying above p. By the definition of inertia group, we have resLKIp(L)Ip(K).

    Let P be a prime ideal in OL lying above p, and Ip(L) be the inertia group of p in L, then Ip(L)={σ∈Gal(L/K)|σ(x)≡xmod P,x∈OL}. Thus

    Ip(L)∩Gal(L/K)=Ip(L).

    Noticing that the restriction map resLK is surjective with ker resLK=Gal(L/K), we have

    Ip(L)Ip(L)∩Gal(L/K)resLKIp(L).

    By the transitivity of ramification indices,

    ep(K)=ep(L)ep(L)=|Ip(L)/(Ip(L)∩Gal(L/K))|

    =|resLK(Ip(L))|.

    Therefore resLK(Ip(L))=Ip(L). The proof is end.

    By using Proposition 2.1 and Kronecker-Weber theorem, we can show that the inertia group of an Abelian number field is determined by the inertia group of a cyclotomic field.

    Corollary 2.2 Let K be an Abelian number field, and p be a prime number. Then the inertia group Ip(K) is isomorphic to a subgroup of (Z/prZ)× for some r≥0. In particular, e2(K) is a power of 2, and Ip(K) is cyclic if p is odd.

    Proof Let f(K)=m, then KQ(ζm). For a prime number p, write m=prs with gcdp,s=1, then Qζm=Q(ζpr)Qζs, and p is unramified in Q(ζs). Notice that ΩQK,L defined in Eq.(2) is a canonical embedding, thus Gal(KL/Q) can be regarded as a subgroup of Gal(K/Q)Gal(L/Q). By Proposition 2.1, we have

    IpQζmresQ(ζm)Q(ζpr)IpQ(ζm)

    resQ(ζm)Q(ζs)IpQ(ζm)IpQ(ζpr)=

    GalQ(ζpr)/QZ/prZ×.

    That is,Ip(K)=resQ(ζm)KIpQ(ζm) is isomorphic to a subgroup of Z/prZ×.

    If p is an odd prime, then Z/prZ× is cyclic, and consequently Ip(K) is a cyclic group. If p=2, Z/prZ× is of order 2r-1. The proof is end.

    The main approach in this article is to usecompositum of Abelian number fields to explore the correlation between the conductor and the ramification index. The following result shows that the conductor of an Abelian field is determined by those of its subfields.

    Lemma 2.3 Let K1 and K2 be two Abelian number fields. Then

    fK1K2=lcmfK1,fK2.

    In general,

    fK1…Kr=lcmfK1,…,fKr.

    Proof Let fK1=m1,fK2=m2 and fK1K2=n. Then m1∣n and m2∣n, thus lcmm1,m2∣n. On the other hand, we have

    K1K2Qζm1Qζm2=Qζlcm(m1,m2),

    hence n≤lcmm1,m2. This implies n=lcmm1,m2, the first result is proved. On the other hand, we also have that f(K1…Kr)=lcm(f(K1),…,f(Kr)) by induction. The proof is end.

    In the following, we concentrate on Abelian number fields with prime power degree.

    Lemma 2.4 Let p be a prime number, and K be a cyclic number field of degree pr. Assume that q is a prime number and q≠p. Then we have

    (i) The ramification index eq(K)∣q-1;

    (ii) Let L be the unique subfield of Qζq with L:Q=eq(K). Then there is K′KL in which q is unramified such that KL=K′L, and every prime number that is different from p and unramified in K is also unramified in K′.

    Proof Notice that eq(K) is relatively prime to q. The first part follows directly from Corollary 2.2 that eq(K) is a divisor of qr-1q-1 for some r. Consequently, there is a unique subfield LQζq such that L:Q=eq(K).

    If q=2 or q is unramified in K, then eq(K)=1, and the second part is clear by taking K′=K. So, we may assume q is odd and ramifies in K. Then Iq(K) and IqKL are cyclic by Corollary 2.2, and IqKL is isomorphic to a cyclic subgroup of Iq(K)Gal(L/Q) via ΩQK,L defined in Eq. (2). Thus IqKL is a divisor of eq(K). On the other hand,

    IqKL≥Iq(K)=eq(K)

    by Proposition 2.1. Therefore IqKL=eq(K).

    Now, takingK′=KLIq, we have [KL:K′]=eq(K) and L∩K′=Q. Thus q is totally ramified in L and unramified in K′ and

    K′L:Q=L:QK′:Q=

    KL:K′K′:Q=KL:Q.

    It follows that K′L=KL. If p′≠p is a prime number that is unramified in K, then p′≠q and p′ is unramified in L. Hence p′ is unramified in KL. In particular, p′ is unramified in K′. The proof is end.

    The following result can be proved in the same way as the above lemma.

    Lemma 2.5 Let p be a prime number, and K be a cyclic number field of degree pr. Ifep(K)≠1, and L is an Abelian number field such that

    ep(L)=epKL=L:Q,

    then KLIpL=KL.

    Proposition 2.6 Let p be a prime number, and K be a cyclic number field of degree pr. Let q be a prime number that is ramified in K. Then

    vqf(K)=

    1, if q≠p;vpep(K)+1,if q=p is odd,

    2, if q=p=2 , e2K -1=2,

    vpep(K)+1, if q=p=2,

    e2K -1=2.

    Proof Let n=vqf(K). Then f(K)=qnh such that gcdq,h=1.

    Case 1? If q≠p, let L and K1 be two Abelian number fileds satisfying the properties in Lemma 2.4. Then we have

    K1L=KL, f(L)=q, q∣f(K)

    and qfK1. By Lemma 2.3, we have

    fKL=lcmf(K),f(L)=qnh,

    and fK1L=lcmfK1,f(L)=qfK1.

    It follows that n=1.

    Case 2?? If q=p, we assume that p is ramified in K with ramification index ep(K)=puu≥1. Since ep(K)∣epQζf(K) and epQζf(K)=pn-1p-1, we have that n≥u+1. Let L1 be a subfield of Qζpu+1 such that L1:Q=pu. Then we obtain that

    fL1=pu+1, fKL1=f(K).

    Subcase 2.1? If p is odd, IpKL1 is cyclic by Corollary 2.2. Notice that IpKL1 can be embedded as a subgroup of Ip(K)GalL1|Q via ΩQK,L1 defined in Eq. (2). But both Ip(K) and GalL1|Q are cyclic group of order pu, and epKL1≥ep(K)=pu. It follows ep(KL1)=pu.

    Let K2=KL1Ip. Since p is totally ramified in L1 and L1:Q=epKL1, we have K2L1=KL1 by Lemma 2.5. Since p is unramified in K2, we have pfK2. Thus

    fK2L1=pu+1fK2,? fK2L1=f(K).

    Consequently n=vpf(K)=u+1.

    Subcase 2.2? If q=p=2, then L1=Qζ2u+1, thus we know that GalL1|QZ/2u+1Z×. Since fKL1=2nh, and the inertia group I2Qζ2nh is isomorphic to (Z/2nZ)×, I2KL1 is isomorphic to a subgroup ofZ/2nZ×. Then I2KL1 is cyclic or isomorphic to Z/2mZ× for some 3≤m≤n.

    (i) If I2KL1 is cyclic, then Gal(L1|Q) must be cyclic by Proposition 2.1. Consequently u=1, and e2L1=2. By Lemma 2.5, we have K2L1=KL1 for K2=KL1Ip. Notice

    fKL1=f(K), fK2L1=4fK2.

    Thus n=2.

    (ii) If I2KL1 is isomorphic to Z/2mZ× for some 3≤m≤n, then we obtain that

    I2KL1Z/2ZZ/2m-2Z.

    Notice that resKL1KI2KL1=I2(K) is cyclic of order 2u, we have e2KL1=2u+1 , m=u+2. Let L2=Qζ2u+2, then eKL2=2u+1 by Corollary 2.2. Setting K3=KL2I2, we have K3L2=KL2 by Lemma 2.5. Since fK3L2=2u+2fK3, we have fKL2=2nh. Thus n=u+2.

    The above discussion shows thatI2KL1 is cyclic if and only if e2K -1=2. The proof is end.

    Let K be same as Proposition 2.6, and we assume that p1,p2,…,ps are all prime numbers that are ramified in K. If pi≠p, then vpi(f(K))=1, by Proposition 2.6. If p is ramified or equivalently pi=p for some i, then we have

    vpf(K)=

    vpep(K)+1, if p is odd,

    2, if p=2 , e2K -1=2,

    vpep(K)+2, if p=2

    e2K -1≠2.

    Thus

    f(K)=ep(K)p1p2…ps, if allpi≠2,

    2p1p2…ps, if p1=2 , e2K -1=2,

    2e2(K)p1p2…ps, ifp1=2,

    e2K -1≠2.

    We summarize the result in the following theorem.

    Theorem 2.7 Let p be a prime number, and K be a cyclic number field of degree pr. Let p1,p2,…,ps be all primes which are ramified in K. We have

    (i) If 2 is unramified in K, then

    f(K)=ep(K)p1p2…ps;

    (ii) If 2 is ramified in K, then

    f(K)=2p1…ps, if e2K -1=2,

    2p1…p2e2(K), otherwise.

    Based on the conductor formula in Theorem 2.7, we can easily compute the conductor of a quadratic field.

    Corollary 2.8 Let d be a square-free integer, and K=Q d. Then

    fQ d=d, if d≡1mod 4,

    4d, if d1mod 4.

    Proof Let d=±p1p2…pm be the prime decomposition of d, and d(K) be the discriminant of K. Then

    d(K)=d, if d≡1mod 4,

    4d, if d1mod 4.

    Notice that a prime numberp is ramified in K if and only if p|d(K).

    If d≡1mod 4, then 2 is unramified in K, and p1,p2,…,pm are all primes which are ramified in K. By Theorem 2.7, we have

    f(K)=p1p2…pm=d.

    If d≡2mod 4, then p1,p2,…,pm are all primes which are ramified in K. Since K -1 has exactly three quadratic subfields: Q -1, Q d and Q -d, in which 2 is ramified, then e2K -1=4. By Theorem 2.7, we have. f(K)=4d.

    If d≡3mod 4, then 2,p1,p2,…,pm are all primes which are ramified in K. Since Q -dK -1 and 2 is unramified in Q -d, then e2K -1=2. Again f(K)=4d.

    3 The conductor of general Abelian number fields

    In this section, we prove the main result for general Abelian number fields.

    Proof of Theorem 1.1 Let K be an Abelian number field with Galois group G. By the structure theorem for finite Abelian groups, G is a direct product of cyclic subgroups of prime power order. For each such direct summand H of G, there exists a subgroup H′ such that G=HH′. Let M be the fixed field of H′ in K. We know that M is Galois over Q and GalM/Q is isomorphic to H. Hence M is cyclic number field of prime power order. It follows that there exist cyclic subfields Ki of prime power order such that K=K1K2…Kr. In other words, K is a compositum of cyclic subfields of prime power degree.

    Let K:Q=2t0qt11qt22…qtmm, where q1,q2,…,qm are distinct odd primes, and t0≥0,tj≥1 for 1≤j≤m. Then Ki:Q is a power of 2 or qj. Let p1,p2,…,ps be all ramified primes in K. Then, for each Ki, p1,p2,…,ps are the only possible prime divisors of fKi. Notice that the transitivity of ramification index implies epKi∣ep(K) for any prime integer p.

    Case 1? If 2 is unramified in K, then e2(K)=1, and all pi are odd. By Theorem 2.7, fKi is a divisor of p1p2…pseqj(K) for some j. In virtue of Lemma 2.3, we have

    f(K)∣p1p2…ps∏mj=1qvqj(eqj(K))j.

    Herevp(K) denotes the standard p-adic valuation of k. Let L=Qζf(K), we have

    KL, eqj(K)∣eqj(L).

    If qj=pi for some i, due to Corollary 2.2, Iqj(K) is cyclic, hence

    vqjeqj(K)≤vqjeqj(L)=vqjf(K)-1.

    If qj≠pi for all i, then eqj(K)=0. It follows

    p1p2…ps∏mj=1qvqj(eqj(K))j∣f(K).

    Therefore,

    f(K)=p1p2…ps∏mj=1qvqj(eqj(K))j.

    Case 2? If 2 is ramified in K, by Lemma 24, K:Q must be even. Similarly, based on Corollary 2.2 and Lemma 2.4, we have

    2v2(e2(K))p1…ps∏mj=1qvqj(eqj(K))j∣f(K)

    In particular, v2f(K)≥v2e2(K)+1. By Theorem 2.7, we can assume that

    f(K)=2tp1p2…ps∏mj=1qvqj(eqj(K))j,

    where t=v2e2(K) or v2e2(K)+1. We know from Proposition 2.1 that I2Ki=resKKiI2(K) is always cyclic.

    Subcase 2.1? If the inertia group I2(K) is not cyclic, then 2e2Ki∣e2(K) holds for all i. On the other hand, Theorem 2.7 implies

    v2fKi≤v2e2Ki+2.

    Therefore, v2f(K)≤v2e2(K)+1, which forces t=v2e2(K). Now

    e2K -1≤e2Qζf(K)=

    e2(K)≤e2K -1.

    Hence e2K -1=e2(K) and t=v2e2(K).

    Subcase 2.2 If I2(K) is cyclic, we set L=Qζn, where n=2e2(K). Notice that I2KL can be embedded as a subgroup of I2(K)GalL/Q via the canonical map ΩQ(K,L).

    (i) If I2(KL) is cyclic, then I2(K) is cyclic by Proposition 2.1. Thus e2(K)=2 and L=Q -1. Eventually e2KL=2. Let K′=KLI2, then K′L=KL and

    f(K)=fKL=fK′L=4fK′.

    Hence t=v2e2(K)=1.

    (ii) If I2KL is not cyclic, then e2KL=2e2(K) by Corollary 2.2. Thus

    v2fKL≥v2e2(K)+2.

    Therefore v2f(K)≥v2e2(K)+2.

    Then we have t=v2e2(K)+1.

    (iii) We next have a close analysis on the condition that I2KL is not cyclic. If

    v2e2(K)=1, one must has

    e2K -1>e2(K).

    If v2e2(K)>1, then we know that

    K -1=KR -1,

    and I2KR is a cyclic group, where KR denotes the maximal real subfield of K -1. Thus ΩQKR,Q -1 is an isomorphism, which induces an isomorphism:

    I2K -1I2KRGalQ -1Q/

    is not a cyclic group. It follows that

    I2K -1 is not cyclic and

    e2(K)≠e2K -1.

    This shows that I2KL is not cyclic if and only if e2K -1≠e2(K).

    In summary, if 2 is ramified in K, then

    f(K)=Ws,m, ife2K -1=e2(K),

    2Ws,m, otherwise,

    where

    Ws,m=2v2(e2(K))p1p2…ps∏mj=1qvqj(eqj(K))j.

    The proof is end.

    References:

    [1] Mki S. The conductor density of Abelian number fields [J]. J London Math Soc, 1993, 47: 18.

    [2] Johnston H. On the trace map between absolutely Abelian number fields of equal conductor [J]. Acta Arith, 2006, 122: 63.

    [3] Schoof R. Class numbers of real cyclotomic fields of prime conductor [J]. Math Comp, 2003, 72: 913.

    [4] Agathocleous E. On the class numbers of real cyclotomic fields of conductor pq [J]. Acta Arith, 2014, 165: 257.

    [5] Hasse H. ber die klassenzahl abelscher zahlkrper [M]. Berlin: Springer-Verlag, 1985.

    [6] Zhang X K. A simple construction of genus fields of Abelian number fields [J]. Proc Amer Math Soc, 1985, 94: 393.

    [7] Zhao Z J, Sun G R. A note on the conductor of cyclic number fields [J]. Acta Math Sin, 2016, 59: 761.

    引用本文格式:

    中 文:? 鄧先濤, 彭國華. Abel數(shù)域的導(dǎo)子計(jì)算公式[J]. 四川大學(xué)學(xué)報(bào):? 自然科學(xué)版, 2023, 60:? 031003.

    英 文:? Deng X T, Peng G H. A conductor formula for Abelian number fields [J]. J Sichuan Univ:? Nat Sci Ed, 2023, 60:? 031003.

    猜你喜歡
    數(shù)域導(dǎo)子國華
    認(rèn)知體驗(yàn)后建構(gòu) 拓展數(shù)域新天地
    *-代數(shù)上ξ-*-Jordan-型非線性導(dǎo)子
    Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
    Order Allocation in Industrial Internet Platform for Textile and Clothing
    甘為藝術(shù)付平生
    世相
    金秋(2020年12期)2020-10-21 01:56:06
    擴(kuò)張的圈Schr?dinger-Virasoro代數(shù)的導(dǎo)子
    交換環(huán)上反對稱矩陣?yán)畲鷶?shù)的局部導(dǎo)子和2 - 局部導(dǎo)子
    淺談實(shí)數(shù)集的完備性
    論無窮小量與極限的關(guān)系
    西部論叢(2017年11期)2017-01-15 11:27:52
    五月开心婷婷网| 老司机影院成人| 18禁在线播放成人免费| 中文字幕最新亚洲高清| 丰满乱子伦码专区| 免费av中文字幕在线| 中国国产av一级| 久久久久精品久久久久真实原创| 亚洲精品亚洲一区二区| 亚洲av中文av极速乱| 欧美日韩视频精品一区| 国产欧美日韩综合在线一区二区| 午夜视频国产福利| 国产成人午夜福利电影在线观看| 久久久久久久久久成人| 久久毛片免费看一区二区三区| 赤兔流量卡办理| 国产成人午夜福利电影在线观看| 国产探花极品一区二区| 人体艺术视频欧美日本| 最新的欧美精品一区二区| 欧美人与性动交α欧美精品济南到 | av免费观看日本| 免费高清在线观看日韩| 精品国产一区二区三区久久久樱花| 欧美xxⅹ黑人| 亚洲激情五月婷婷啪啪| 观看av在线不卡| 久久久久久伊人网av| 精品一区二区免费观看| 中文精品一卡2卡3卡4更新| 午夜久久久在线观看| 中国国产av一级| 一本久久精品| 在线免费观看不下载黄p国产| 免费看av在线观看网站| 熟妇人妻不卡中文字幕| 黄色欧美视频在线观看| 久久久久久久久久成人| 国产免费福利视频在线观看| 欧美日韩在线观看h| freevideosex欧美| 亚洲av成人精品一二三区| 如日韩欧美国产精品一区二区三区 | 国产黄色免费在线视频| 日韩伦理黄色片| 亚洲一级一片aⅴ在线观看| 精品少妇久久久久久888优播| 中文乱码字字幕精品一区二区三区| 另类精品久久| 精品一区二区三卡| 亚洲精品一二三| 人人妻人人澡人人爽人人夜夜| 精品国产露脸久久av麻豆| 久久热精品热| 成人黄色视频免费在线看| 18禁裸乳无遮挡动漫免费视频| 国产高清国产精品国产三级| 啦啦啦视频在线资源免费观看| 亚洲av免费高清在线观看| a级毛色黄片| 亚洲av在线观看美女高潮| h视频一区二区三区| 欧美人与善性xxx| 两个人的视频大全免费| 哪个播放器可以免费观看大片| 国产精品国产三级国产av玫瑰| 99九九线精品视频在线观看视频| 一区二区三区乱码不卡18| 97精品久久久久久久久久精品| 自线自在国产av| 久热这里只有精品99| av有码第一页| 22中文网久久字幕| www.色视频.com| 18禁在线播放成人免费| 国产精品一区www在线观看| 国产精品久久久久久精品古装| 久久久久久久亚洲中文字幕| 18+在线观看网站| 99精国产麻豆久久婷婷| 汤姆久久久久久久影院中文字幕| 九九久久精品国产亚洲av麻豆| av一本久久久久| 男男h啪啪无遮挡| 51国产日韩欧美| 中文字幕亚洲精品专区| 久久久精品免费免费高清| 美女脱内裤让男人舔精品视频| 亚洲精品亚洲一区二区| 国产成人免费观看mmmm| 一级二级三级毛片免费看| 丰满少妇做爰视频| 一级黄片播放器| 自线自在国产av| 考比视频在线观看| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| xxxhd国产人妻xxx| 欧美一级a爱片免费观看看| 国产成人精品久久久久久| av在线播放精品| 亚洲精品乱久久久久久| 国产伦精品一区二区三区视频9| 一级a做视频免费观看| 一区二区三区免费毛片| 久热久热在线精品观看| 久久婷婷青草| 亚洲成人av在线免费| 大香蕉久久成人网| 久久久久久伊人网av| 精品少妇久久久久久888优播| 97在线视频观看| 91在线精品国自产拍蜜月| 五月天丁香电影| 黑人巨大精品欧美一区二区蜜桃 | 色5月婷婷丁香| 99视频精品全部免费 在线| 久久久午夜欧美精品| 久久久久久伊人网av| 日本爱情动作片www.在线观看| 免费日韩欧美在线观看| 亚洲av综合色区一区| 天天影视国产精品| 亚洲精品美女久久av网站| 久久久午夜欧美精品| 777米奇影视久久| 男男h啪啪无遮挡| 久久精品久久久久久久性| 成人综合一区亚洲| 国产成人一区二区在线| 制服丝袜香蕉在线| 成人国产麻豆网| 国产日韩一区二区三区精品不卡 | 99热这里只有精品一区| 午夜免费男女啪啪视频观看| 欧美日韩一区二区视频在线观看视频在线| 哪个播放器可以免费观看大片| 桃花免费在线播放| 少妇猛男粗大的猛烈进出视频| 欧美精品高潮呻吟av久久| 免费少妇av软件| 大香蕉久久网| 欧美日韩在线观看h| 黑人猛操日本美女一级片| 日韩免费高清中文字幕av| 狠狠精品人妻久久久久久综合| 少妇的逼水好多| 欧美xxⅹ黑人| 日韩制服骚丝袜av| 美女xxoo啪啪120秒动态图| 欧美日韩av久久| 精品亚洲成国产av| 91精品三级在线观看| 日韩av在线免费看完整版不卡| 亚洲精品色激情综合| 天堂8中文在线网| 国产精品熟女久久久久浪| 久久久久久人妻| 久久av网站| 亚洲精品亚洲一区二区| 亚洲内射少妇av| 美女国产高潮福利片在线看| 精品久久久噜噜| 精品酒店卫生间| 国产午夜精品久久久久久一区二区三区| 国产黄频视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 一边亲一边摸免费视频| 亚洲av电影在线观看一区二区三区| 国产老妇伦熟女老妇高清| 国产色婷婷99| 中文字幕人妻丝袜制服| 精品国产一区二区久久| 亚洲精品久久午夜乱码| 在线免费观看不下载黄p国产| 亚洲三级黄色毛片| 日本免费在线观看一区| 亚洲国产av影院在线观看| 日日爽夜夜爽网站| 三上悠亚av全集在线观看| 女人久久www免费人成看片| 国产极品天堂在线| 欧美国产精品一级二级三级| 午夜激情福利司机影院| 精品视频人人做人人爽| 亚洲第一区二区三区不卡| 精品午夜福利在线看| 国产在视频线精品| 热re99久久精品国产66热6| 国产精品不卡视频一区二区| 母亲3免费完整高清在线观看 | 纯流量卡能插随身wifi吗| 国产成人一区二区在线| freevideosex欧美| 多毛熟女@视频| 国产精品一区www在线观看| 亚洲av成人精品一区久久| 国产成人精品无人区| 国产男女内射视频| 丝袜脚勾引网站| 欧美一级a爱片免费观看看| 国产免费福利视频在线观看| 一边亲一边摸免费视频| 亚洲欧美清纯卡通| 免费黄频网站在线观看国产| 人体艺术视频欧美日本| 日韩大片免费观看网站| 国产亚洲精品久久久com| 成年av动漫网址| 少妇高潮的动态图| 国产欧美日韩综合在线一区二区| 91在线精品国自产拍蜜月| 女的被弄到高潮叫床怎么办| 大香蕉久久网| 少妇被粗大猛烈的视频| 中文字幕av电影在线播放| 如何舔出高潮| 看十八女毛片水多多多| 日韩伦理黄色片| 久久久久久久精品精品| 婷婷色av中文字幕| 国产伦理片在线播放av一区| 成人手机av| 黄片播放在线免费| 国产精品久久久久久精品古装| 欧美+日韩+精品| 丝瓜视频免费看黄片| 国产在线免费精品| 最新中文字幕久久久久| 丝袜美足系列| 亚洲人成网站在线播| 色94色欧美一区二区| 亚洲怡红院男人天堂| 亚洲精品久久午夜乱码| 国产精品一二三区在线看| 久久这里有精品视频免费| 国产探花极品一区二区| 一区在线观看完整版| 久久韩国三级中文字幕| 97在线人人人人妻| 老司机影院毛片| 久久久久视频综合| 免费日韩欧美在线观看| 精品亚洲成国产av| 午夜福利在线观看免费完整高清在| 高清av免费在线| 亚洲人与动物交配视频| 久久av网站| 国产 一区精品| 国产免费视频播放在线视频| 亚洲av在线观看美女高潮| 高清黄色对白视频在线免费看| 精品久久久久久久久av| 在线免费观看不下载黄p国产| 一个人看视频在线观看www免费| 女人精品久久久久毛片| 亚洲精品日本国产第一区| 中国美白少妇内射xxxbb| 视频区图区小说| 国产精品嫩草影院av在线观看| 男人添女人高潮全过程视频| 欧美精品一区二区大全| 国产视频首页在线观看| 欧美丝袜亚洲另类| 国产成人精品福利久久| 精品一区二区免费观看| 2021少妇久久久久久久久久久| 夜夜爽夜夜爽视频| 伊人亚洲综合成人网| 综合色丁香网| 三上悠亚av全集在线观看| 狠狠婷婷综合久久久久久88av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美中文字幕日韩二区| 考比视频在线观看| 国产 一区精品| 午夜福利影视在线免费观看| 一区二区日韩欧美中文字幕 | 亚洲经典国产精华液单| 久久久久久久久大av| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 哪个播放器可以免费观看大片| 成人无遮挡网站| 成年女人在线观看亚洲视频| 汤姆久久久久久久影院中文字幕| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 亚洲欧美一区二区三区黑人 | 纵有疾风起免费观看全集完整版| 91久久精品国产一区二区三区| 欧美丝袜亚洲另类| 免费大片黄手机在线观看| 亚洲av.av天堂| 国产在视频线精品| 欧美 日韩 精品 国产| 精品熟女少妇av免费看| 少妇丰满av| 精品国产国语对白av| 91精品一卡2卡3卡4卡| 亚洲美女黄色视频免费看| 午夜福利视频精品| 精品亚洲乱码少妇综合久久| 亚洲国产精品一区二区三区在线| 99九九线精品视频在线观看视频| 久久精品国产a三级三级三级| 永久网站在线| av国产精品久久久久影院| 一个人免费看片子| 亚洲av国产av综合av卡| 黄色怎么调成土黄色| av线在线观看网站| 男女免费视频国产| av天堂久久9| 中文字幕免费在线视频6| 满18在线观看网站| 国产片内射在线| 国产乱人偷精品视频| 亚洲av欧美aⅴ国产| 免费大片18禁| 18禁观看日本| 夜夜看夜夜爽夜夜摸| av一本久久久久| 在线亚洲精品国产二区图片欧美 | 日韩欧美精品免费久久| 久久精品熟女亚洲av麻豆精品| 这个男人来自地球电影免费观看 | 秋霞在线观看毛片| 亚洲人成网站在线观看播放| 91aial.com中文字幕在线观看| 日韩免费高清中文字幕av| a级片在线免费高清观看视频| 国产伦精品一区二区三区视频9| 色婷婷久久久亚洲欧美| 18+在线观看网站| 又大又黄又爽视频免费| 国产精品熟女久久久久浪| 尾随美女入室| 亚洲美女视频黄频| 欧美日韩av久久| 成人免费观看视频高清| 五月玫瑰六月丁香| 在线观看www视频免费| 黑丝袜美女国产一区| 夫妻午夜视频| 久久久久久人妻| 久久久亚洲精品成人影院| 91在线精品国自产拍蜜月| 国产精品麻豆人妻色哟哟久久| 最新的欧美精品一区二区| 亚洲婷婷狠狠爱综合网| 两个人免费观看高清视频| 国产一区二区在线观看av| 少妇熟女欧美另类| 99国产综合亚洲精品| 久久ye,这里只有精品| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品,欧美精品| 99九九在线精品视频| 国产成人午夜福利电影在线观看| 日韩不卡一区二区三区视频在线| 国产精品嫩草影院av在线观看| 欧美日韩综合久久久久久| 看十八女毛片水多多多| 亚洲av福利一区| 热re99久久精品国产66热6| 国产在线一区二区三区精| av网站免费在线观看视频| 中文字幕av电影在线播放| 国产免费又黄又爽又色| 国产 一区精品| 国内精品宾馆在线| 99re6热这里在线精品视频| 一本—道久久a久久精品蜜桃钙片| 国产一级毛片在线| 成年美女黄网站色视频大全免费 | 成年女人在线观看亚洲视频| 看非洲黑人一级黄片| 国产精品国产三级国产专区5o| 国产高清不卡午夜福利| 国产亚洲午夜精品一区二区久久| 99久久人妻综合| av在线观看视频网站免费| 国产精品熟女久久久久浪| 国产精品.久久久| 国产精品三级大全| 精品99又大又爽又粗少妇毛片| 伊人亚洲综合成人网| 丰满少妇做爰视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久精品电影小说| 亚洲在久久综合| 一级a做视频免费观看| 丁香六月天网| 成人手机av| 老司机亚洲免费影院| 少妇高潮的动态图| 91久久精品国产一区二区三区| 伊人久久国产一区二区| 国产极品天堂在线| 大香蕉97超碰在线| 在线精品无人区一区二区三| 国产成人91sexporn| 飞空精品影院首页| 日韩人妻高清精品专区| 午夜福利影视在线免费观看| 麻豆成人av视频| 午夜激情久久久久久久| 久久久久久人妻| 国产精品国产三级专区第一集| 国产亚洲精品久久久com| www.av在线官网国产| 黑人猛操日本美女一级片| 涩涩av久久男人的天堂| 日韩精品有码人妻一区| 韩国高清视频一区二区三区| 国产免费一级a男人的天堂| 午夜福利影视在线免费观看| 成人免费观看视频高清| 久久ye,这里只有精品| 精品视频人人做人人爽| 极品人妻少妇av视频| 天堂俺去俺来也www色官网| 午夜福利网站1000一区二区三区| 热re99久久国产66热| 国产一区二区三区综合在线观看 | 黄片播放在线免费| 80岁老熟妇乱子伦牲交| 免费不卡的大黄色大毛片视频在线观看| 亚洲人成网站在线播| 日本色播在线视频| 一级黄片播放器| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 亚洲久久久国产精品| 老女人水多毛片| 少妇丰满av| 国产乱来视频区| 国产一区二区三区综合在线观看 | 午夜免费鲁丝| 少妇的逼水好多| 国产国拍精品亚洲av在线观看| 高清在线视频一区二区三区| 久热久热在线精品观看| 一级二级三级毛片免费看| 男人添女人高潮全过程视频| 亚洲国产精品专区欧美| 蜜桃国产av成人99| 18在线观看网站| 老司机亚洲免费影院| 夫妻性生交免费视频一级片| 啦啦啦中文免费视频观看日本| 在线播放无遮挡| 一级毛片电影观看| 欧美一级a爱片免费观看看| 亚洲精品色激情综合| av在线app专区| 看非洲黑人一级黄片| 婷婷成人精品国产| 日韩一本色道免费dvd| 国内精品宾馆在线| .国产精品久久| 国产高清有码在线观看视频| 国产精品不卡视频一区二区| 国产亚洲欧美精品永久| 亚洲国产毛片av蜜桃av| 少妇人妻 视频| 亚洲精品456在线播放app| 免费高清在线观看视频在线观看| 简卡轻食公司| 寂寞人妻少妇视频99o| 中文字幕av电影在线播放| 久久久久久久久久成人| 国产视频首页在线观看| 久久久精品免费免费高清| 自拍欧美九色日韩亚洲蝌蚪91| 久久久a久久爽久久v久久| 精品一区二区免费观看| 免费黄网站久久成人精品| 精品久久久久久久久亚洲| 妹子高潮喷水视频| 国产精品成人在线| 亚洲精品成人av观看孕妇| 男女边摸边吃奶| 最近的中文字幕免费完整| 午夜日本视频在线| 久久久久久伊人网av| 一本久久精品| 黑丝袜美女国产一区| 男男h啪啪无遮挡| 大香蕉久久网| 国产黄片视频在线免费观看| 亚洲欧美色中文字幕在线| 亚洲美女黄色视频免费看| 久久久久国产精品人妻一区二区| 亚洲精品aⅴ在线观看| 男人爽女人下面视频在线观看| 久久久欧美国产精品| 久久久久精品久久久久真实原创| 在线亚洲精品国产二区图片欧美 | 18禁裸乳无遮挡动漫免费视频| av在线app专区| 国产伦精品一区二区三区视频9| 亚洲av不卡在线观看| 亚洲精品日韩av片在线观看| 嘟嘟电影网在线观看| 91aial.com中文字幕在线观看| 韩国高清视频一区二区三区| 久久99精品国语久久久| 国产乱来视频区| 久久99精品国语久久久| 免费黄色在线免费观看| 欧美精品一区二区大全| 成年人午夜在线观看视频| 成年美女黄网站色视频大全免费 | av有码第一页| 毛片一级片免费看久久久久| 欧美最新免费一区二区三区| 亚洲综合精品二区| 中文字幕人妻丝袜制服| 丝袜美足系列| 在线天堂最新版资源| 亚洲精品日本国产第一区| 伊人亚洲综合成人网| 在线免费观看不下载黄p国产| 国产女主播在线喷水免费视频网站| av女优亚洲男人天堂| 欧美日韩综合久久久久久| 一本久久精品| 欧美最新免费一区二区三区| 王馨瑶露胸无遮挡在线观看| 精品国产露脸久久av麻豆| 精品久久久精品久久久| 精品国产露脸久久av麻豆| 午夜福利影视在线免费观看| 欧美三级亚洲精品| 欧美 亚洲 国产 日韩一| 永久网站在线| 一区二区三区乱码不卡18| 狠狠婷婷综合久久久久久88av| av不卡在线播放| 国产免费福利视频在线观看| 亚洲综合精品二区| 国产成人精品久久久久久| 亚洲国产色片| 亚洲精品乱码久久久久久按摩| 久久人人爽人人片av| 成人手机av| 国产精品蜜桃在线观看| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 桃花免费在线播放| 少妇精品久久久久久久| 久久久久视频综合| 久久国产精品男人的天堂亚洲 | 九九久久精品国产亚洲av麻豆| 老熟女久久久| 日本vs欧美在线观看视频| 午夜福利视频在线观看免费| 我的女老师完整版在线观看| 久久国产精品男人的天堂亚洲 | 搡老乐熟女国产| kizo精华| 日本爱情动作片www.在线观看| 看免费成人av毛片| 亚洲婷婷狠狠爱综合网| 免费观看av网站的网址| 曰老女人黄片| 国产极品天堂在线| 国产欧美日韩一区二区三区在线 | 国产69精品久久久久777片| 美女主播在线视频| av在线app专区| 又粗又硬又长又爽又黄的视频| 精品人妻在线不人妻| 成人漫画全彩无遮挡| 亚洲精品美女久久av网站| 99九九在线精品视频| 亚洲国产精品一区二区三区在线| 王馨瑶露胸无遮挡在线观看| 国产成人精品久久久久久| 亚洲欧美一区二区三区国产| 日产精品乱码卡一卡2卡三| 国产一级毛片在线| 国产国语露脸激情在线看| 乱码一卡2卡4卡精品| 亚洲av福利一区| 午夜视频国产福利| 久久青草综合色| 国产白丝娇喘喷水9色精品| 国产精品久久久久成人av| 男女啪啪激烈高潮av片| 久久精品久久久久久久性| 国产国语露脸激情在线看| tube8黄色片| 国产精品免费大片| 日韩成人伦理影院| 美女福利国产在线| 亚洲第一区二区三区不卡| 狂野欧美白嫩少妇大欣赏| 欧美日韩视频精品一区| 亚洲国产精品国产精品| 我的女老师完整版在线观看| 夜夜爽夜夜爽视频| 男女国产视频网站| 九草在线视频观看| 国产在视频线精品| 视频在线观看一区二区三区| 国产亚洲一区二区精品| 九九久久精品国产亚洲av麻豆| 日韩视频在线欧美| 中国国产av一级| 久久久久久久久久成人| 能在线免费看毛片的网站|