• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    JONES TYPE C?-BASIC CONSTRUCTION IN NON-EQUILIBRIUM HOPF SPIN MODELS?

    2023-04-25 01:41:36魏曉敏

    (魏曉敏)

    School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China

    E-mail: wxiaomin@amss.ac.cn

    Lining JIANG (蔣立寧)?

    School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China

    E-mail: jianglining@bit.edu.cn

    Abstract Let H be a finite dimensional Hopf C?-algebra,and let K be a Hopf ?-subalgebra of H.Considering that the field algebra FK of a non-equilibrium Hopf spin model carries a D(H,K)-invariant subalgebra AK,this paper shows that the C?-basic construction for the inclusion AK ?FK can be expressed as the crossed product C?-algebra FK ?D(H,K).Here, D(H,K) is a bicrossed product of the opposite dual and K.Furthermore,the natural action of on D(H,K) gives rise to the iterated crossed product FK ?D(H,K)?,which coincides with the C?-basic construction for the inclusion FK ?FK ?D(H,K).In the end,the Jones type tower of field algebra FK is obtained,and the new field algebra emerges exactly as the iterated crossed product.

    Key words field algebra;conditional expectation;basic construction;C?-tower

    1 Introduction

    Jones’index theory for(sub)factors has visited many homes of mathematics and physics,including manifold topology,statistical mechanics,quantum field theory,and dynamical systems,etc..All of these approaches imply that subfactors could be regarded as fixed points generalizing the group-like algebraic structures,and the symmetries generalizing ordinary group actions are also exhibited on the way.The concept of Jones’ index was proposed to measure the size of a subfactor.For all possible values of index for a subfactorN ?M,Jones showed in [5]that the size is{4 cos2(π/n):n ≥3}∪[4,∞].In the process of quantizing the index,the basic construction toolkit plays an important role.Since there is always a faithful normal normalized trace,which provides a Hilbert space denoted byL2(M)through the GNS construction,one can get the extended von Neumann algebra〈M,eN〉,called the basic construction for the inclusionN ?M.Here,eNis the projection induced by the conditional expectationEN:M →N.

    The chain ofN ?M ?〈M,eN〉?〈〈M,eN〉,eM〉?··· leads to the Temperley-Lieb algebra([9,24]) for corresponding projections{ei:e1=eN,e2=eM,···}:

    Similar relations occur in objects such as Hecke algebras of type A,braid groups ([6]) and so on.

    The method concerning the geometric,combinational and discrete nature of II1factors has been developed by many mathematicians.In 1986,Pimsner and Popa ([18]) established the concept of a probability index,then Kosaki ([10]) generalized this to the situation of arbitrary factors,and pointed out that the set of values of an index coincides with the set obtained by Jones,and that a Pimsner-Popa type basis exists when the index is finite.Other attempts have also been made in this regard,e.g.Longo ([12,13]) demonstrated that the square of the index of a quasi-local C?-algebra represents the statistical dimension of the Doplicher-Haag-Roberts superselection sector.This correspondence shows that index theory creates a strong bond between mathematics and physics.Furthermore,building on the achievements of Jones and Kosaki,Watatani([27])proposed an index theory and its basic construction in the context of C?-algebras.In their algebraic approach,the Pimsner-Popa basis was generalized to the notion of a quasi-basis for a conditional expectation on a C?-algebra.Moreover,using a similar tower of Jones’ iterated basic extensions,they showed that the spectrum of their index could be included in the Jones’ index set under a certain condition.Subsequently,Kajiwara,Pinzari and Watatani ([8]) introduced Jones’ index theory for general Hilbert bimodules over pairs of C?-algebras,which provided a positive answer to what had been an open problem in the theory of conjugation in abstract tensor C?-categories that appeared in the algebraic formulation of quantum field theory ([7]).

    Quantum chains considered as models of 1+1-dimensional quantum field theory reveal many interesting features,such as braid group statistics and quantum symmetry.G-spin models of a finite groupGprovide the simplest examples of lattice field theory exhibiting quantum symmetry,and implement a Doplicher-Haag-Roberts program for exploring the internal symmetries of the model merely from observable data.This data was interpreted as the observable algebra in the models investigated by Szlachányi and Vecsernyés ([20]).Moreover,a large class of models–Hopf spin models generalizingG-spin models–was established in [17].Given a finite dimensional Hopf C?-algebraHand its dualere is a copy ofH-order on lattice sites and-disorder on links,together with non-trivial commutation relationships between neighboringHand,such that the observable algebraAof Hopf spin models was obtained,so the field algebraFwas realized by the coaction of the Drinfel’d doubleD(H) onA.Furthermore,the symmetry of the superselection sectors ofAwas revealed byD(H).

    The above spin models were carried out by setting up order-disorder operators that appear in pairs,which is related to the equilibrium situation.The non-equilibrium case of Hopf spin models is the subject of our interest.In fact,the number of disordered states is much greater than that of ordered states for a macrophysical system,which always tends to a disordered state.From now on,we denote a finite dimensional Hopf C?-algebra byH,and a Hopf?-subalgebra ofHbyK.The article [28]constructed non-equilibrium Hopf spin models,copies ofKon lattice sites andon links with non-trivial commutation relations between only on neighboring links and sites.This relationship yields the observable algebraAKwhich carries a coaction of the relative quantum doubleD(H,K).The field algebrawas obtained([29])such thatAKis exactly theD(H,K)-invariant subalgebra ofFK,and thus a conditional expectation of index-finite type fromFKontoAKwas formed.In particular,the non-equilibriumG-spin models determined by a normal group was achieved in [32].Based on these observations,this paper focuses on the Jones type C?-basic construction for the field algebraFKin non-equilibrium Hopf spin models.It is worth mentioning that a connection between C?-basic constructions and coactions was also found in[16];this established the Morita equivalences between fixed point algebras and crossed products for a special coaction of compact quantum groups.

    The rest of this paper is organized as follows: Section 2 collects some necessary conceptions and facts on non-equilibrium Hopf spin models.Section 3 shows that the C?-algebra C?〈FK,e1〉established from a C?-basic construction for the inclusionAK ?FKis characterized by the crossed product C?-algebraFK?D(H,K).Here,the field algebraFKbecomes aD(H,K)-module algebra in terms of the natural action ofD(H,K) on.Furthermore,the C?-algebraFK?D(H,K) is a-module algebra,and this guarantees that the mapEFK:FK?D(H,K)→FKdefined by the Haar integral ofis a conditional expectation,which coincides with the dual conditional expectation ofEAK:FK →AK.These results are illustrated in the first part of Section 4.Moreover,Section 4 shows that the C?-algebra C?〈FK?D(H,K),e2〉 for the inclusionFK ?FK?D(H,K) is?-isomorphic to the iterated crossed productIterated as needed,we can obtain the Jones type tower of the field algebraFKin non-equilibrium Hopf spin models,implying the emergence of the higher dimensional non-equilibrium Hopf spin models.We end this paper with a description of the new observable algebra in terms of the Takai duality theorem ([22]).

    2 Auxiliaries in Non-equilibrium Hopf Spin Models

    We will follow Sweedler’s notations regarding the comultiplication of a Hopf algebraHover a fixed complex field C:,a ∈H.For full textbook treatments see [1].We begin by reviewing the definition of Hopf C?-algebras.

    Definition 2.1([2]) A finite dimensional Hopf C?-algebra is a C?-algebraHtogether with a unital?-homomorphism ?:H →H ?Hsuch that (??id)??=(id??)??and the linear spans which are denoted by“[·]”satisfy that[?(H)(H ?1)]=[?(H)(1?H)]=H ?H.

    Note that for a finite dimensional Hopf C?-algebra,there exists a counitε:H →C and an antipodeS:H →Hobeying that (ε ?id)??=(id?ε)??=id and (m ?(S ?id)??)(a)=(m ?(id?S)??)(a)=(ι ?ε)(a),a ∈H,respectively.Here,m:H ?H →Handι: C→Hdenote the multiplication and the unit.The dualofHis also a Hopf C?-algebra of finite dimension with?-operation defined by? ∈,a ∈H.There is a unique one dimensional central projection inH,i.e.,h=h2=h?=S(h),which is called the Haar integral.For more details about Hopf C?-algebras one can refer to [15,25,26].

    Throughout the paper,Halways denotes a Hopf C?-algebra of finite dimension equipped with a counitεand an antipodeS,andKdenotes a Hopf?-subalgebra ofH.

    We now give some necessary conceptions and results which will be used throughout this paper,starting with the observable algebra in non-equilibrium Hopf spin models.We associate to each even integer 2ia copyA2iofKand to each odd integer 2i+1 a copyA2i+1of.Denote byA2i(x) andA2i+1(?) the elements ofA2iandA2i+1,respectively,and thati ∈Z.

    Definition 2.2([28]) The unital?-algebraAK,locis generated byA2i(x),A2i+1(?),x ∈K,? ∈subject to

    where〈·,·〉 means the canonical pairing betweenKand.

    Define the setJto be

    This allows us to define the local field algebra of a finite interval as the crossed product C?-algebraThe chain of finite dimensional C?-algebras is??···wheneverI ?J ?···,and their C?-inductive limit leads us to the field algebraFK([29]) inin other words,taking a unital C?-algebra generated bynon-equilibrium Hopf spin models.One can interpret its multiplication and?-operation are given by

    Notice that the field algebraFKis a leftD(H,K)-module algebra under the natural action ofD(H,K) on,formulated explicitly by

    It is obvious to see that the observable algebraAKis precisely theD(H,K)-invariant subalgebra of the field algebraFK,which is announced by the following proposition:

    Proposition 2.3([29])AK={F ∈FK:X.F=εD(H,K)(X)F,X ∈D(H,K)},whereεD(H,K)is the counit ofD(H,K).

    In particular,the Haar integralhof the relative quantum doubleD(H,K)provides an onto linear mapFK →AK,

    (3)EAKis positive.

    A linear map from a unital C?-algebra onto its C?-subalgebra with a common unit,satisfying the above relations(1)–(3),is called a conditional expectation([23]).We say thatEAKis faithful ifEAK(F?F)=0 implies thatF=0.

    Definition 2.4([27]) LetA ?Bbe a unital inclusion of unital C?-algebras.A conditional expectationE:B →Ais of index-finite type if there exists a quasi-basis forE,which is a finite family{(u1,v1),···,(un,vn)}?B×Bsatisfying that,for allb ∈B,

    The index ofEis defined as

    Remark 2.5This C?-algebra index does not depend on the choice of quasi-basis,and lies in the center ofB([27]).

    By Proposition 2.3,the symmetry ([29]) in the field algebraFKrevealed by the relative quantum doubleD(H,K) can be measured;this is shown as follows:

    Proposition 2.6([30]) The mappingEAK:FK →AKgiven by (2.1) is a faithful conditional expectation,and is of index-finite type with IndexEAK=dimD(H,K)·1FK.

    This will enable us to consider the extension of the field algebraFKthrough the C?-basic construction procedure in what follows.

    3 The C?-basic Construction for the Inclusion AK ?FK

    In this section,we will prove that the crossed product C?-algebraFK?D(H,K) arising from the action of the relative quantum doubleD(H,K) is?-isomorphic to the C?-basic construction for the inclusionAK ?FK.

    We now provide some ingredients for the basic construction.

    Definition 3.1([11,14]) LetAbe a C?-algebra.An inner-productA-module is a linear spaceMwhich is a rightA-module equipped with a sesquilinear form〈·,·〉:M×M →Awith the following properties:

    (1)〈x,x〉≥0 for anyx ∈M,and〈x,x〉=0 implies thatx=0;

    (2)〈y,x〉=〈x,y〉?for anyx,y ∈M;

    (3)〈x,ya〉=〈x,y〉a.

    The map〈·,·〉 is called anA-valued inner product.

    LetE:B →Abe a faithful conditional expectation.ThenBcould be viewed as a rightA-module via its multiplication,denoted by.The mapdefined by

    DenoteLA(BA) as the set of all rightA-module homomorphismsT:BA →BAwith an adjointA-module homomorphismT?:BA →BAsuch that

    ThenLA(BA)is a C?-algebra with the usual operator norm.On the other hand,the C?-algebraBcan be embedded as a C?-subalgebra ofLA(BA) by the injective?-homomorphism

    Definition 3.2([27]) The C?-subalgebra ofLA(BA) generated by{λ(b):b ∈B} andeAis called the C?-basic construction,and is denoted by C?〈B,eA〉.

    Remark 3.3The above statement actually gives the reduced version of a C?-basic construction.The reason that we do not distinguish between reduced and unreduced concepts is that there is a canonical?-isomorphism between them ([27]).

    Lemma 3.4([27]) Letx ∈FK.Thene1λ(x)e1=λ(EAK(x))e1.Moreover,x ∈AKif and only ife1λ(x)=λ(x)e1.

    By Lemma 3.4,the C?-algebra C?〈FK,e1〉 can be expressed as

    Recalling that the field algebraFKis a leftD(H,K)-module algebra,one can construct the?-algebraFK ?D(H,K),which is a linear space equipped with multiplication and?-operation given by

    for (A,ξ),(B,η)∈FK,X,Y ∈D(H,K).

    Given an intervalI ∈J,denote by?D(H,K) the?-subalgebra ofFK ?D(H,K).In the finite dimension situation,the crossed product for a Hopf C?-algebra acting on a C?-algebra is still a C?-algebra,implying that?D(H,K)is a finite dimensional C?-algebra.ForI ?J,?D(H,K)→?D(H,K) is a unital injective?-homomorphism,and this information allows us to complete the union of these C?-algebras via C?-inductive limit procedure to get the C?-algebra:

    The next observations will provide some materials for the characterization of the C?-basic construction C?〈FK,e1〉.

    Proposition 3.5(1)The element(1FK,h)inFK?D(H,K)is a self-adjoint idempotent element,wherehis the Haar integral inD(H,K).

    ProofIt is easy to draw the conclusion that (1FK,h)?=(1FK,h?)=(1FK,h)=(1FK,h)2from the relationshiph=h?=h2.ForF ∈FK,one has that

    The proof is finished.

    Remark 3.6Since the mapEAKfrom the field algebraFKonto itsD(H,K)-invariant subalgebraAKis a conditional expectation of index-finite type,with IndexEAK=dimD(H,K)·1FK(see Proposition 2.6),the C?-algebraFK?D(H,K) can be expressed as follows ([4,21]):

    Theorem 3.7The C?-algebraFK?D(H,K)is?-isomorphic to the C?-algebra C?〈FK,e1〉.

    ProofForI ∈J,define a linear map(H,K) given by

    First,the mapΦIis well-defined and injective.Indeed,assuming that=0,for anyF ∈,

    Therefore,

    Here,the second and fifth equalities hold in terms of the covariant relations in the C?-algebrasFK?D(H,K) (Proposition 3.5) and C?〈,e1〉 (cf.Lemma 3.4).

    Noting thatΦI(e1)=(1FK,h) is a self-adjoint element inFK?D(H,K),the mapΦIpreserves the?-operation on generators of C?〈,e1〉 with

    Remark 3.8The C?-basic construction does not depend on the choice of the conditional expectation up to an isomorphism([27,Proposition 2.10.11]).Namely,ifΓ1andΓ2:B →Aare both conditional expectations of index-finite type,letting C?〈B,e1〉 and C?〈B,e2〉 be the corresponding C?-basic constructions,respectively,then there is a?-isomorphismθ:C?〈B,e1〉→C?〈B,e2〉 such thatθ(b)=b,b ∈B.

    4 The C?-basic Construction for the Inclusion FK ?FK ?D(H,K)

    In this section,we will demonstrate that the Haar integral ofyields a faithful conditional expectationEFKfrom the crossed product C?-algebraFK?D(H,K) onto the field algebraFK,which is also of index-finite type.Furthermore,we show that the C?-basic construction forFK ?FK?D(H,K) is precisely consistent with the iterated crossed product,following from the natural-module algebra structure onFK?D(H,K).

    4.1 The Conditional Expectation from FK ?D(H,K) onto FK

    which will be verified to be a conditional expectation of index-finite type.For this purpose,we single out a system of elements in the C?-subalgebra(isomorphic to the matrix algebraMn(C))of.Such a system,which is called a matrix unit([23]),is a family{wij:i,j=1,···,n}satisfying that

    With the help of (4.3),we now arrive at

    Proposition 4.1The mapEFKgiven by (4.1) is a faithful conditional expectation.

    (2) (bimodular property) LettingF1,F2∈FK,T ∈FK?D(H,K),

    (3) (positive) Noticing that (ξ.T)?=S(ξ?).T?forξ ∈andT ∈FK?D(H,K),one has that

    Moreover,EFK(TT?)=0 implies that.T=0 for anyr,i,j,and thus one hasT=0,and the mapEFKis faithful.

    by virtue of [27],Proposition 2.3.2,wheren=dimD(H,K).Theis called the dual conditional expectation ofEAK:FK →AK.

    Here,“1” denotes the unit of the observable algebraAKand C?〈FK,e1〉.

    ProofIt suffices to prove that?T ∈C?〈FK,e1〉,

    where the third equality holds by virtue of Lemma 3.4.

    Since the index of a conditional expectation does not depend on the choice of the quasi-basis([27]),one has that

    wheren=dimD(H,K).

    Remark 4.4The conditional expectationEFK:FK?D(H,K)→FKin Proposition 4.1 coincides with the above dual conditional expectationIndeed,there is a one-to-one correspondence between the linear bases

    The argument is now completed in terms of the linearity and continuity ofThe above correspondence is equal to the commutative diagram below.

    4.2 The ?-isomorphism Between C?〈FK ?D(H,K),e2〉 and FK ?D(H,K)?

    We continue to investigate the C?-algebra C?〈FK?D(H,K),e2〉 from the conditional expectationEFK:FK?D(H,K)→FK,wheree2is the Jones’ projection ofEFK.More precisely,one has that

    Therefore,the iterated crossed product C?-algebra denoted byFK?D(H,K)?is obtained.

    Similar observations as to those of Proposition 3.5 can be found in the C?-algebraFK?

    Proposition 4.5(1)(1FK?D(H,K),ζ)=(1FK?D(H,K),ζ)?=(1FK?D(H,K),ζ)2,whereζis the Haar integral of

    (2) For anyT ∈FK?D(H,K),we have the covariant relation

    It is now time to arrive at another main conclusion regarding the description of the C?-algebra C?〈FK?D(H,K),e2〉.

    Theorem 4.6There exists a?-isomorphism between the C?-algebra C?〈FK?D(H,K),e2〉andFK?D(H,K)?

    ProofConsider the linear mapΨ:C?〈FK?D(H,K),e2〉→FK?D(H,K)?satisfying that

    and similarly to that of Theorem 3.7,the mapΨcan be extended to an isometric isomorphism between C?〈FK?D(H,K),e2〉 andFK?D(H,K)?

    Remark 4.7In particular,lettingHbe the group algebra CGof a finite groupG,K=H,the C?-basic construction in theG-spin models ([20]) is obtained.

    Since the C?-basic construction does not depend on the choice of the conditional expectation up to an isomorphism,we say the above chain of C?-algebras is a Jones type tower of the field algebraFKin non-equilibrium Hopf spin models.

    Remark 4.8The Jones type tower of the field algebraFKin non-equilibrium Hopf spin models has a periodicity of order two,and the structure it possesses is an invariant for the initial inclusion.Indeed,by the Takai duality ([22]),the C?-algebraFK?D(H,K)=is canonically?-isomorphic toAK ?Mn(C)~=Mn(AK),wheren=dimD(H,K).Moreover,the concrete construction ofMn(AK) is performed as follows:

    Considering Z as a one-dimensional lattice,each even number representing a lattice site,and odd number representing a link,set that

    The elementsA2i(x),A2i+1(?) lie inA2i,A2i+1,respectively,andx ∈K,? ∈.

    The local observable algebraMn(AK)locis a unital?-algebra generated by{A2i(x)?wkl,A2i+1(?)?wst:x ∈K,? ∈,wkl,wst ∈Mn(C)}subject to the following relations:

    ForI ∈J,letMn(AK)(I)be the?-subalgebra ofMn(AK)locwith generators,which is then a finite dimensional C?-algebra through a faithful?-representation similar to that of the equilibrium Hopf spin models.Furthermore,Mn(AK)(I)?Mn(AK)(J) is a unital inclusion for anyI ?J,and this allows us to get a C?-algebraMn(AK)via C?-inductive limit processThis C?-algebraMn(AK) is called the observable algebra in the emergent higher dimensional Hopf spin models,which will be called the dual non-equilibrium Hopf spin models.The parameters,x ∈Kand,? ∈act as order and disorder operators in the models.

    Natural questions now arise: what is the field algebra in the dual non-equilibrium Hopf spin models? Moreover,what are the corresponding lattice models? The constructions of the field algebra in non-equilibrium Hopf spin models ([29]) suggest further that the coaction of a C?-algebraMn(AK)(I) makesMn(AK)(I) a left-module algebra.Hence,the field algebra in the dual non-equilibrium Hopf spin models could be constructed asMn(FK) :=,which is exactly(see (4.4)).It would be of great interest to explore these things more in the future.

    Conflict of InterestThe authors declare no conflict of interest.

    国产在线精品亚洲第一网站| 嘟嘟电影网在线观看| 哪里可以看免费的av片| 插逼视频在线观看| 亚洲av电影不卡..在线观看| 91久久精品国产一区二区三区| 国产成人精品久久久久久| 三级毛片av免费| 国产 一区精品| 成年版毛片免费区| 精品久久久久久成人av| 成人av在线播放网站| 国产成人精品婷婷| 亚洲成人av在线免费| 亚洲精品乱码久久久v下载方式| 观看美女的网站| 国产一区二区三区av在线 | 国产精品伦人一区二区| 高清日韩中文字幕在线| 亚洲人成网站在线播放欧美日韩| 麻豆乱淫一区二区| 中文字幕熟女人妻在线| 又粗又爽又猛毛片免费看| 亚洲av中文字字幕乱码综合| 好男人在线观看高清免费视频| 少妇被粗大猛烈的视频| 中文亚洲av片在线观看爽| 色视频www国产| 亚洲自偷自拍三级| 三级国产精品欧美在线观看| 亚洲人成网站高清观看| 色综合站精品国产| 日本-黄色视频高清免费观看| 欧美变态另类bdsm刘玥| 高清在线视频一区二区三区 | 亚洲精品自拍成人| 看免费成人av毛片| 大又大粗又爽又黄少妇毛片口| 国产v大片淫在线免费观看| 日韩亚洲欧美综合| 两个人视频免费观看高清| 欧美性猛交黑人性爽| 国内揄拍国产精品人妻在线| 日韩av不卡免费在线播放| 三级经典国产精品| 中文资源天堂在线| av黄色大香蕉| 日本黄色片子视频| 乱系列少妇在线播放| 99riav亚洲国产免费| 亚洲精品粉嫩美女一区| 精品久久久久久久久亚洲| 国产亚洲精品久久久久久毛片| 看黄色毛片网站| 亚洲第一电影网av| 免费看av在线观看网站| 欧美色视频一区免费| 一区二区三区四区激情视频 | 久久午夜亚洲精品久久| 69人妻影院| 国产精品免费一区二区三区在线| 少妇的逼好多水| 国产不卡一卡二| 亚洲电影在线观看av| 国产欧美日韩精品一区二区| 如何舔出高潮| 在线观看午夜福利视频| 午夜亚洲福利在线播放| 国产男人的电影天堂91| 国产精品福利在线免费观看| 亚洲国产高清在线一区二区三| av在线亚洲专区| 久久久精品大字幕| 日本黄色片子视频| 美女cb高潮喷水在线观看| 狠狠狠狠99中文字幕| 久久精品影院6| 中文欧美无线码| 亚洲一区二区三区色噜噜| 国产免费男女视频| a级一级毛片免费在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久久色成人| av视频在线观看入口| 亚洲熟妇中文字幕五十中出| 91aial.com中文字幕在线观看| 身体一侧抽搐| 黄色一级大片看看| 少妇的逼水好多| 国产成人a区在线观看| 一本一本综合久久| 我要看日韩黄色一级片| 我的女老师完整版在线观看| 美女大奶头视频| 我的老师免费观看完整版| 变态另类成人亚洲欧美熟女| 成人综合一区亚洲| 一级黄片播放器| 亚洲精品国产av成人精品| 毛片一级片免费看久久久久| 观看美女的网站| 97在线视频观看| 长腿黑丝高跟| 国产精品免费一区二区三区在线| 亚洲欧美精品专区久久| 国内少妇人妻偷人精品xxx网站| 九九在线视频观看精品| 老熟妇乱子伦视频在线观看| 欧美日本视频| 天堂网av新在线| 国内久久婷婷六月综合欲色啪| 性欧美人与动物交配| 熟女人妻精品中文字幕| 亚洲婷婷狠狠爱综合网| 国产黄片视频在线免费观看| 日韩强制内射视频| 久久久精品94久久精品| 成人特级av手机在线观看| 国产av不卡久久| 久久这里只有精品中国| www日本黄色视频网| 久久精品人妻少妇| 一级黄色大片毛片| 婷婷亚洲欧美| 国产成人freesex在线| 午夜视频国产福利| 久久这里有精品视频免费| 亚洲在线观看片| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一二三区在线看| 一本一本综合久久| 一本久久精品| av卡一久久| 中国国产av一级| 男女边吃奶边做爰视频| 亚洲av男天堂| 亚洲欧美日韩无卡精品| 日韩av不卡免费在线播放| 免费观看在线日韩| 人人妻人人澡人人爽人人夜夜 | 美女被艹到高潮喷水动态| 亚洲精品乱码久久久v下载方式| 一进一出抽搐动态| 精品久久久久久久末码| 日日干狠狠操夜夜爽| 激情 狠狠 欧美| 久久精品综合一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲欧美成人综合另类久久久 | 波多野结衣巨乳人妻| 午夜精品一区二区三区免费看| 亚洲精华国产精华液的使用体验 | 亚洲精品亚洲一区二区| 国产老妇女一区| 国产精品乱码一区二三区的特点| 91精品一卡2卡3卡4卡| 国产午夜精品一二区理论片| 国产激情偷乱视频一区二区| 中文字幕人妻熟人妻熟丝袜美| 欧美丝袜亚洲另类| 最近2019中文字幕mv第一页| 人妻少妇偷人精品九色| 简卡轻食公司| 熟女人妻精品中文字幕| 国产老妇伦熟女老妇高清| 给我免费播放毛片高清在线观看| 男女视频在线观看网站免费| 岛国在线免费视频观看| 一个人免费在线观看电影| 搡老妇女老女人老熟妇| 久久久久久久午夜电影| 一级毛片电影观看 | 亚洲国产精品国产精品| 高清毛片免费看| 内地一区二区视频在线| 亚洲国产精品久久男人天堂| 欧美高清性xxxxhd video| 亚洲美女搞黄在线观看| 91精品国产九色| 国产精品久久久久久久久免| 日本三级黄在线观看| 一本久久精品| 国产黄片美女视频| 12—13女人毛片做爰片一| 国产伦在线观看视频一区| av天堂中文字幕网| 久久久a久久爽久久v久久| av黄色大香蕉| 精品久久久噜噜| av专区在线播放| 97超碰精品成人国产| 国产精品99久久久久久久久| 国产亚洲精品av在线| 色5月婷婷丁香| 日本熟妇午夜| 91狼人影院| 久久久久免费精品人妻一区二区| 麻豆成人av视频| 少妇熟女aⅴ在线视频| 国产精品不卡视频一区二区| 国产成人一区二区在线| 国产精品99久久久久久久久| 一个人看视频在线观看www免费| 日韩在线高清观看一区二区三区| av专区在线播放| 精品久久久久久久人妻蜜臀av| 免费一级毛片在线播放高清视频| 国产在线男女| 小蜜桃在线观看免费完整版高清| 国产精品不卡视频一区二区| 国产伦理片在线播放av一区 | 色综合色国产| 国产熟女欧美一区二区| 精品一区二区三区人妻视频| 高清午夜精品一区二区三区 | 久久久久久大精品| 成人漫画全彩无遮挡| 亚洲av一区综合| 免费观看人在逋| 国产精品久久久久久av不卡| 亚洲最大成人手机在线| 久久精品国产亚洲网站| 精品日产1卡2卡| 久久精品国产鲁丝片午夜精品| 免费观看精品视频网站| 欧美高清成人免费视频www| 两性午夜刺激爽爽歪歪视频在线观看| 日韩,欧美,国产一区二区三区 | 老司机福利观看| 老师上课跳d突然被开到最大视频| 99热这里只有是精品50| 免费av观看视频| 人妻制服诱惑在线中文字幕| 欧美最新免费一区二区三区| 国内精品美女久久久久久| 蜜臀久久99精品久久宅男| 最新中文字幕久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲高清免费不卡视频| 国产亚洲av嫩草精品影院| 能在线免费观看的黄片| 国产乱人偷精品视频| 啦啦啦观看免费观看视频高清| 特级一级黄色大片| 日本黄色视频三级网站网址| 国产爱豆传媒在线观看| 久久精品国产自在天天线| 有码 亚洲区| 日日干狠狠操夜夜爽| 麻豆国产av国片精品| 国产亚洲欧美98| 精品人妻一区二区三区麻豆| 小蜜桃在线观看免费完整版高清| 老熟妇乱子伦视频在线观看| 成年女人看的毛片在线观看| 日本与韩国留学比较| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久噜噜| 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av涩爱 | 国产精品人妻久久久影院| 一级二级三级毛片免费看| 亚洲av熟女| 免费观看的影片在线观看| 性欧美人与动物交配| 亚洲在线观看片| 岛国毛片在线播放| 午夜福利高清视频| www.色视频.com| a级毛片a级免费在线| 亚洲婷婷狠狠爱综合网| 青春草国产在线视频 | 麻豆精品久久久久久蜜桃| 国产成人a区在线观看| 人人妻人人看人人澡| 中文字幕av成人在线电影| 久久久久久国产a免费观看| 最近2019中文字幕mv第一页| 国产成人freesex在线| 亚洲欧美成人综合另类久久久 | 日韩制服骚丝袜av| 性插视频无遮挡在线免费观看| 亚洲av电影不卡..在线观看| 日韩欧美在线乱码| 人人妻人人澡欧美一区二区| 亚洲av免费高清在线观看| 国产av麻豆久久久久久久| 欧美又色又爽又黄视频| 18禁在线无遮挡免费观看视频| 十八禁国产超污无遮挡网站| 永久网站在线| 日韩强制内射视频| 最近2019中文字幕mv第一页| 波多野结衣巨乳人妻| 2022亚洲国产成人精品| а√天堂www在线а√下载| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区免费观看| 欧美性猛交╳xxx乱大交人| 麻豆av噜噜一区二区三区| 国产亚洲精品av在线| 亚洲国产精品sss在线观看| 免费观看人在逋| 尤物成人国产欧美一区二区三区| 熟女电影av网| 又粗又硬又长又爽又黄的视频 | 中文字幕免费在线视频6| 国产成人freesex在线| 麻豆国产97在线/欧美| 欧美xxxx性猛交bbbb| 国产在线男女| 久久精品久久久久久噜噜老黄 | 国产精品久久久久久av不卡| 日本在线视频免费播放| 欧美三级亚洲精品| 精品久久久久久久久av| 亚洲国产精品久久男人天堂| 人妻夜夜爽99麻豆av| 久久久久久久午夜电影| 欧美成人精品欧美一级黄| 亚洲av中文av极速乱| 免费人成视频x8x8入口观看| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三区人妻视频| 亚洲婷婷狠狠爱综合网| 美女被艹到高潮喷水动态| 亚洲欧美精品专区久久| av视频在线观看入口| 少妇的逼水好多| 婷婷色综合大香蕉| 春色校园在线视频观看| 精品国内亚洲2022精品成人| 国产国拍精品亚洲av在线观看| 欧美色欧美亚洲另类二区| 大香蕉久久网| 亚洲无线在线观看| 99热精品在线国产| 国产三级在线视频| 国模一区二区三区四区视频| 欧美最新免费一区二区三区| 一级二级三级毛片免费看| 中文字幕免费在线视频6| 亚洲一区二区三区色噜噜| 一边摸一边抽搐一进一小说| 搞女人的毛片| 一级毛片电影观看 | 午夜福利视频1000在线观看| 黄色一级大片看看| 97在线视频观看| 麻豆av噜噜一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲五月天丁香| 欧美变态另类bdsm刘玥| 天堂√8在线中文| 干丝袜人妻中文字幕| 全区人妻精品视频| 激情 狠狠 欧美| 赤兔流量卡办理| 日韩精品有码人妻一区| 熟女人妻精品中文字幕| 婷婷亚洲欧美| а√天堂www在线а√下载| 99精品在免费线老司机午夜| 热99在线观看视频| 内地一区二区视频在线| 久久99蜜桃精品久久| 一本久久精品| 国产精品久久久久久久电影| 欧美成人a在线观看| 国产av麻豆久久久久久久| 欧美日韩在线观看h| 欧美3d第一页| 日韩欧美 国产精品| 天美传媒精品一区二区| 日韩国内少妇激情av| АⅤ资源中文在线天堂| 成人亚洲精品av一区二区| 又粗又爽又猛毛片免费看| 免费观看的影片在线观看| 国产精品乱码一区二三区的特点| 久久久精品94久久精品| 亚洲丝袜综合中文字幕| 一区福利在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲激情五月婷婷啪啪| 少妇人妻精品综合一区二区 | 日韩制服骚丝袜av| 欧美高清性xxxxhd video| 丰满乱子伦码专区| 一卡2卡三卡四卡精品乱码亚洲| 1000部很黄的大片| 人妻少妇偷人精品九色| 欧美日韩综合久久久久久| 狂野欧美激情性xxxx在线观看| 亚洲第一电影网av| 12—13女人毛片做爰片一| 亚洲欧美日韩无卡精品| a级毛片免费高清观看在线播放| 欧美成人a在线观看| 超碰av人人做人人爽久久| 26uuu在线亚洲综合色| av免费在线看不卡| 97在线视频观看| 一区二区三区免费毛片| 天堂网av新在线| 久久欧美精品欧美久久欧美| 国产亚洲91精品色在线| 18禁在线无遮挡免费观看视频| 内地一区二区视频在线| 看免费成人av毛片| 搡女人真爽免费视频火全软件| 女人十人毛片免费观看3o分钟| 如何舔出高潮| 婷婷精品国产亚洲av| АⅤ资源中文在线天堂| 亚洲精品456在线播放app| 欧美+日韩+精品| 不卡一级毛片| 国产成年人精品一区二区| 一夜夜www| 一卡2卡三卡四卡精品乱码亚洲| 白带黄色成豆腐渣| 人人妻人人澡欧美一区二区| 丰满人妻一区二区三区视频av| 亚洲一级一片aⅴ在线观看| 男人和女人高潮做爰伦理| 成人欧美大片| 高清午夜精品一区二区三区 | 美女xxoo啪啪120秒动态图| 国产精品伦人一区二区| kizo精华| 国产三级中文精品| 亚洲熟妇中文字幕五十中出| 亚洲最大成人手机在线| 午夜久久久久精精品| 国内精品美女久久久久久| 国产精品免费一区二区三区在线| 69av精品久久久久久| 亚洲精品456在线播放app| 人人妻人人澡人人爽人人夜夜 | 日韩国内少妇激情av| 国产黄a三级三级三级人| 久久精品国产亚洲网站| av在线观看视频网站免费| 国内揄拍国产精品人妻在线| 亚洲激情五月婷婷啪啪| 噜噜噜噜噜久久久久久91| 久久人人爽人人片av| 国产精品一区二区在线观看99 | 亚洲国产欧美在线一区| 成人无遮挡网站| 国产精品麻豆人妻色哟哟久久 | 在线国产一区二区在线| 亚洲不卡免费看| 一本精品99久久精品77| 国产亚洲精品av在线| 欧美人与善性xxx| 免费看a级黄色片| 少妇猛男粗大的猛烈进出视频 | 国产女主播在线喷水免费视频网站 | av免费在线看不卡| 久久中文看片网| 国产亚洲91精品色在线| 久久精品夜夜夜夜夜久久蜜豆| 69人妻影院| 国产中年淑女户外野战色| 白带黄色成豆腐渣| 一区福利在线观看| 亚洲va在线va天堂va国产| 亚洲欧美日韩高清在线视频| 国产精品综合久久久久久久免费| 国产一区二区亚洲精品在线观看| a级毛片免费高清观看在线播放| 精品人妻熟女av久视频| www.av在线官网国产| 国产伦精品一区二区三区视频9| 一级黄片播放器| 国产精品国产高清国产av| 久久精品综合一区二区三区| 久久久久性生活片| av.在线天堂| 亚洲av成人av| 好男人在线观看高清免费视频| 可以在线观看毛片的网站| 不卡一级毛片| 黑人高潮一二区| 久久久久网色| 最近最新中文字幕大全电影3| 全区人妻精品视频| 久久精品国产亚洲av香蕉五月| 欧美xxxx性猛交bbbb| 久久精品91蜜桃| 有码 亚洲区| 两性午夜刺激爽爽歪歪视频在线观看| 青青草视频在线视频观看| 成人美女网站在线观看视频| 成人漫画全彩无遮挡| 天堂av国产一区二区熟女人妻| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 久久精品夜夜夜夜夜久久蜜豆| 国产人妻一区二区三区在| 一个人看的www免费观看视频| 亚洲内射少妇av| 中文字幕av在线有码专区| 国产精品,欧美在线| 欧美极品一区二区三区四区| 只有这里有精品99| 亚洲久久久久久中文字幕| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片| 美女cb高潮喷水在线观看| 日本在线视频免费播放| 久久久久久九九精品二区国产| 波多野结衣高清作品| 精品欧美国产一区二区三| 人人妻人人看人人澡| 国产精品人妻久久久影院| 亚洲天堂国产精品一区在线| 精品人妻偷拍中文字幕| 如何舔出高潮| 哪个播放器可以免费观看大片| a级毛色黄片| 22中文网久久字幕| 久久久国产成人精品二区| av在线观看视频网站免费| 非洲黑人性xxxx精品又粗又长| 亚洲美女视频黄频| 晚上一个人看的免费电影| 亚洲精品自拍成人| 国产久久久一区二区三区| 久久99精品国语久久久| 高清在线视频一区二区三区 | 黄色欧美视频在线观看| 一级二级三级毛片免费看| 在线播放无遮挡| 能在线免费看毛片的网站| 欧美最新免费一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲欧美精品自产自拍| 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在 | 国产精品一区www在线观看| 人妻制服诱惑在线中文字幕| 插阴视频在线观看视频| 女同久久另类99精品国产91| 嫩草影院新地址| 免费观看在线日韩| 国产亚洲av嫩草精品影院| 九九在线视频观看精品| 秋霞在线观看毛片| 国产三级中文精品| 在线观看午夜福利视频| 亚洲激情五月婷婷啪啪| 老司机影院成人| 国内精品美女久久久久久| 干丝袜人妻中文字幕| 2021天堂中文幕一二区在线观| 中文字幕免费在线视频6| 国产成人91sexporn| 级片在线观看| 深爱激情五月婷婷| 18+在线观看网站| 亚洲内射少妇av| 午夜免费男女啪啪视频观看| 亚洲欧洲日产国产| 欧美人与善性xxx| 国产精品三级大全| 波多野结衣巨乳人妻| 欧美性猛交╳xxx乱大交人| 亚洲国产精品久久男人天堂| 人妻夜夜爽99麻豆av| 中文字幕熟女人妻在线| 午夜精品国产一区二区电影 | 春色校园在线视频观看| 日本五十路高清| 成人鲁丝片一二三区免费| 国产亚洲5aaaaa淫片| 老师上课跳d突然被开到最大视频| 免费av毛片视频| 久久精品国产鲁丝片午夜精品| 听说在线观看完整版免费高清| 国产伦一二天堂av在线观看| 18禁裸乳无遮挡免费网站照片| 国产老妇女一区| 欧美xxxx黑人xx丫x性爽| 国内精品美女久久久久久| 国产成人aa在线观看| 国产亚洲5aaaaa淫片| 亚洲在线自拍视频| 国产一区二区亚洲精品在线观看| 成人欧美大片| 一边摸一边抽搐一进一小说| 一级黄色大片毛片| 能在线免费看毛片的网站| 永久网站在线| 免费观看的影片在线观看| 97人妻精品一区二区三区麻豆| 女人被狂操c到高潮| 国产爱豆传媒在线观看| 国产av一区在线观看免费| 日韩在线高清观看一区二区三区| 国产精品久久视频播放| 99视频精品全部免费 在线| 午夜福利在线观看吧| 不卡一级毛片| 久99久视频精品免费| 日韩国内少妇激情av| 亚洲国产精品成人综合色| 国产精品久久久久久久电影| 婷婷色av中文字幕| 国产一区二区三区av在线 | 看免费成人av毛片| 乱系列少妇在线播放| 国产av在哪里看|