• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CHARACTEIZATIONS OF WOVEN g-FRAMES AND WEAVING g-FRAMES IN HILBERT SPACES AND C?-MODULES?

    2023-04-25 01:41:36

    Faculty of Mathematical Sciences and Computer, Kharazmi University,599 Taleghani Ave., Tehran 15618, Iran

    E-mail: khosravi_amir@yahoo.com; khosravi@khu.ac.ir; mr.farmanis@gmail.com

    Abstract In this paper,using Parseval frames we generalize Sun’s results to g-frames in Hilbert C?-modules.Moreover,for g-frames in Hilbert spaces,we present some characterizations in terms of a family of frames,not only for orthonormal bases.Also,we have a note about a comment and a relation in the proof of Proposition 5.3 in [D.Li et al.,On weaving g-frames for Hilbert spaces,Complex Analysis and Operator Theory,2020].Finally,we have some results for g-Riesz bases,woven and P-woven g-frames.

    Key words g-frame;fusion frame;woven frame;Riesz basis;g-Riesz basis

    1 Introduction

    Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [1],to study nonharmonic Fourier series in 1952.Daubechies,Grossmann and Meyer (2017 Abel Prize winner)in their fundamental paper [2]reintroduced frames and from then on frame theory popularized(see [3,4]).

    Sun in [5]introduced g-frames in Hilbert spaces and presented some characterizations for them.Later,the first author et al.in [6]introduced g-frames and fusion frames in HilbertC?-modules.Recently,Bemrose,Casazza,Gr?chenig,Lammers and Lynch in [7]introduced a new concept of weaving frames which is motivated by a problem regarding distributed signal processing.For a finite number of g-frames,the notions of woven and weaving (P-woven) are defined,which have some applications in distributed wireless sensor networks,too (see [8]).Many interesting and useful results of weaving frames and weaving g-frames are obtained,see[6,8–13].

    In the rest of this section we state some definitions.In Section 2,we define woven and P-woven g-frames in HilbertC?-modules and using Parseval frames we present some characterizations for them and generalize some results in [5]to g-frames in HilbertC?-modules.We remark that all the results in Section 2 are valid for g-frames in Hilbert spaces.In Section 3,we present some characterizations for g-frames in Hilbert spaces with respect to frames (not necessarily Parseval frames) and we get some results for g-frames and g-Riesz bases and we generalize Theorem 3.1 in [14]to g-frames in Hilbert spaces.We also consider a claim in the proof of Proposition 5.3 in [13]and we improve their result.In Section 4,we get some results for woven and P-woven g-frames.

    Throughout this paper except Section 2,H,K,HiandKi,wherei ∈I,denote separable Hilbert spaces andI,JandIiare finite or countable subsets of Z.Also,for everyi ∈I,B(H,Ki)is the set of all bounded linear operators fromHtoKi,andB(H,H) is denoted byB(H).

    Definition 1.1A family of vectors{fi}i∈Iin a Hilbert spaceHis said to be a frame if there are constants 0

    whereAandBare lower frame bound and upper frame bound,respectively.

    A frame is called a tight frame ifA=B,and is called a Parseval frame ifA=B=1.If a sequence{fi}i∈Isatisfies the upper bound condition,then{fi}i∈Iis called a Bessel sequence.

    Nowadays frame theory is a standard notion in applied mathematics,computer science,engineering,physics,probability,data processing and many other fields.However,technical advances and massive amount of data increased demands for generalizations of frames and so many generalizations of frames have been introduced,e.g.oblique frames [5],pseudo-frames[15],outer frames [16],fusion frames [12,14,17]and g-frames [5,14].

    For each sequence{Ki:i ∈I} of Hilbert spaces,we define the space⊕i∈IKiby

    which is a Hilbert space with the inner product defined by

    Definition 1.2A sequence Λ={Λi ∈B(H,Ki):i ∈I} is called a generalized frame,or simply a g-frame,forHwith respect to{Ki:i ∈I} if there are two positive constantsAandBsuch that

    We callAandBthe lower and upper frame bounds,respectively,and{Λi:i ∈I} is called a tight g-frame ifA=Band a Parseval g-frame ifA=B=1.

    If only the right-hand side inequality is required,Λ is a g-Bessel sequence.

    If Λ is a g-Bessel sequence,then the synthesis operator for Λ is the linear operator,

    The adjoint of synthesis operator is called the analysis operator.The analysis operator is the linear operator,

    Definition 1.3A sequence{Λi ∈B(H,Ki):i ∈I} is called

    (1) g-complete,if{f:Λif=0,i ∈I}={0},

    (2) a g-Riesz basis forHwith respect to{Ki}i∈I,if{Λi ∈B(H,Ki):i ∈I} is g-complete and there exist two positive constantsAandBsuch that for each finite subsetJ ?Iandgj ∈Ki,

    (3)a near g-Riesz basis,if there exists a finite subsetσofIfor which{Λi}i∈Iσis a g-Riesz basis forHwith respect to{Ki}i∈Iσ.

    Definition 1.4A sequence{Λi ∈B(H,Ki):i ∈I} is called a g-Riesz sequence if it is a g-Riesz basis for

    Definition 1.5Let{Wi:i ∈I} be a sequence of closed subspaces ofH,{ωi:i ∈I} ??∞(I) such thatωi>0,for eachi ∈I.The sequenceW={(Wi,ωi) :i ∈I} is said to be a fusion frame forH,if there exist constants 0

    whereπWiis the orthogonal projection ontoWi.The constantsAandBare called fusion frame bounds.A fusion frameW={(Wi,ωi):i ∈I} is called a tight fusion frame if the constantsAandBcan be chosen so thatA=B.IfA=B=1 we say that it is a Parseval fusion frame.If only the right hand side inequality is required,it is called a Bessel fusion sequence.

    2 g-frames in Hilbert C?-modules

    In this section we generalize Sun’s results to HilbertC?-modules,and since every orthonormal basis is a Parseval frame and Parseval frame is more suitable for HilbertC?-modules,using Parseval frames we present some characterizations for g-frames.First we recall some definitions.

    In this section,letHandKi,for eachi ∈I,be finitely or countably generated HilbertC?-modules overC?-algebraAand letB(H,Ki) denote the set of all adjointable operators fromHtoKi.We note that frames,g-frames,g-Bessel sequences and fusion frames are defined as in Hilbert spaces except that norm is replaced byA-valued norm and everyWiis a closed orthogonally complemented submodule ofH(see [18]).

    Definition 2.1Let Λ={Λi ∈B(H,Ki):i ∈I}.Then Λ is called a g-frame inHwith respect to{Ki:i ∈I} if there exist constantsA,B>0 such that

    Theorem 2.2Let Λ={Λi ∈B(H,Ki) :i ∈I} and for eachi ∈I,{fij:j ∈Ii} be a Parseval frame forKi.Then

    (i) Λ={Λi:i ∈I} is a g-Bessel sequence if and only if?={(fij):i ∈I,j ∈Ii} is a Bessel sequence and in this case their frame operators are the same,SΛ=S?.

    (ii) Λ is a g-frame if and only if?is a frame.

    ProofLetx ∈H.Thenand since for eachi ∈I,Λix ∈Kiand{fij:j ∈Ii} is a Parseval frame forKi,then

    HenceSΛ=S?,which yields the results.

    Corollary 2.3LetW={(Wi,vi) :i ∈I},whereWiis a closed orthogonally complemented submodule ofHandvibe a positive constant for eachi ∈I.Let also{fj:j ∈J}be a Parseval frame forH.Then{(Wi,vi):i ∈I} is a fusion frame if and only if?={viπWi(fj):i ∈I,j ∈J} is a frame forHand their frame operators are the same,S?=SW.

    ProofPlainly,Wis a fusion frame if and only if{viπWi:i ∈I} is a g-frame and their frame operators are the same.Now since{fj:j ∈J} is a Parseval frame forH,then for eachi ∈I,{πWi(fj) :j ∈J} is a Parseval frame forWiand by the above theorem we have the result.

    Definition 2.4Let?={?i:i ∈I} andψ={ψi:i ∈I} be Bessel sequences inH.ThenS?,ψ:H →His defined byfor everyx ∈H.Then{ψi:i ∈I}is called a dual frame of{?i:i ∈I} ifS?,ψ=IH,whereIHis the identity operator onH.Alsoψis called an approximate dual of{?i:i ∈I} if‖S?,ψ-IH‖<1.

    Definition 2.5Let Λ={Λi ∈B(H,Ki) :i ∈I} and Γ={Γi ∈B(H,Ki) :i ∈I} be g-Bessel sequences.ThenSΛ,Γ:H →His defined by

    IfSΛ,Γ=IH,then{Γi:i ∈I} is a g-dual of{Λi:i ∈I} and if‖SΛ,Γ-IH‖<1,then{Γi:i ∈I} is an approximate g-dual of{Λi:i ∈I} (see [19]).

    Theorem 2.6Let Λ={Λi ∈B(H,Ki) :i ∈I},Γ={Γi ∈B(H,Ki) :i ∈I} and for eachi ∈I,{fij:j ∈Ii} be a Parseval frame forKi.Then

    (i) Γ is a g-dual of Λ if and only ifψ={(fij) :i ∈I,j ∈Ii} is a dual frame of?={(fij):i ∈I,j ∈Ii} andSΛ,Γ=S?,ψ.

    (ii) Γ is an approximate g-dual of Λ if and only ifψis an approximate dual of?.

    ProofBy Theorem 2.2,Γ={Γi:i ∈I} is a g-Bessel sequence if and only ifψis a Bessel sequence.Similar result holds for Λ and?.Also for everyx ∈H,and for eachi ∈I,Λix ∈Kiand{fij:j ∈Ii} is a Parseval frame forKi,then

    Therefore (i) and (ii) follow.Also (iii) follows from Theorem 2.2 and (i).

    Weaving frames were introduced in [9]and weaving g-frames were introduced by Li et al.in [13]and they have potential applications in wireless sensor networks.In the sequel of this section,we introduce a P-woven family of g-Bessel sequences and get some results for woven g-frames and P-woven g-Bessel sequences (see [8]).

    Definition 2.7A family{∈B(H,Ki) :i ∈I} forj=1,2,···,m,of g-frames forHis said to be woven if there existA,B>0 such that for each partitionP={σ1,σ2,···,σm} ofI,its corresponding weaving ΛP={∈B(H,Ki):i ∈σj,j=1,2,···,m} is a g-frame forHwith respect to{Ki:i ∈I} with lower and upper boundsAandB,respectively.

    Definition 2.8A family{∈B(H,Ki) :i ∈I} forj=1,2,···,m,of g-Bessel sequences forHis said to beP-woven (weaving) if there exists a partitionP={σ1,σ2,···,σm}ofIsuch that its corresponding weaving is a g-frame forHwith respect to{Ki:i ∈I}.

    Proposition 2.9Let{∈B(H,Ki):i ∈I},forj=1,2,···,m,be a family of g-frames and for eachi ∈I,{fij:j ∈Ii} be a Parseval frame forKi.Then

    (i){∈B(H,Ki):i ∈I}forj=1,2,···,m,are woven g-frames forHif and only if there existA,B>0 such that for every partitionP′={δ1,δ2,···,δm} ofJ={(i,?):i ∈I,? ∈Ii},whereδj={(i,?):i ∈σj,? ∈Ii} andP={σ1,σ2,···,σm} is a partition ofIand

    (ii) If{()?(fi?) :i ∈I,? ∈Ii},j=1,2,···,m,are woven frames,then{:i ∈I} forj=1,2,···,mare woven g-frames.

    Proof(i)We know that{∈B(H,Ki):i ∈I},forj=1,2,···,m,are woven g-frames if and only if there existA,B>0 such that for each partitionP={σ1,σ2,···,σm} ofI,

    Now by Theorem 2.2,this is equivalent to

    and we have the result.

    (ii) It follows from (i).

    Remark 2.10The proof of (i) shows that if{:i ∈I},j=1,···,m,is a P-woven family of g-Bessel sequences,then the family of Bessel sequences{()?(fiv) : (i,ν)∈J},j=1,···,m,is P-woven.

    3 g-frames in Hilbert Spaces

    In this section we give some characterizations for g-frames and we get some results for g-Riesz bases.

    Theorem 3.1Let{Λi ∈B(H,Ki) :i ∈I} and{fij:j ∈Ii} be a frame forKiwith bounds,0

    ProofLetf ∈H.Then Λif ∈Kifor eachi ∈Iand so

    Consequently,

    Now if{Λi ∈B(H,Ki):i ∈I}is a g-frame with boundsC,D,then by(3.2),{(Λi)?(fij):i ∈I,j ∈Ii} is a frame with boundsACandBD.

    Conversely,if{(Λi)?(fij) :i ∈I,j ∈Ii} is a frame with boundsC′,D′,then by (3.2),{Λi ∈B(H,Ki):i ∈I} is a g-frame with bounds

    In this note,using Parseval frames we present a characterization for g-frames,which is very useful for fusion frames.

    Theorem 3.2Let{Λi ∈B(H,Ki):i ∈I} and for eachi ∈I,{fij:j ∈Ii} be a Parseval frame forKi.Then

    (i){Λi:i ∈I} is a g-frame inHwith respect to{Ki:i ∈I} (g-Bessel sequence) if and only if{(Λi)?(fij):i ∈I,j ∈Ii} is a frame inH(Bessel sequence).

    (ii) If{Λi:i ∈I} is a g-frame,then≥dimH,and the equality holds whenever{Λi:i ∈I} is a g-Riesz basis.

    Proof(i) SinceA=Ai=Bi=B=1,by Theorem 3.1,{Λi:i ∈I} is a g-frame with boundsCandDif and only if{(fij):i ∈I,j ∈Ii} is a frame forHwith boundsCandD.

    (ii) If for eachi ∈Iwe take{fij:j ∈Ii} an orthonormal basis,by (i) and the fact that in every space the cardinal of each frame is greater than or equal to the dimension of the space we have≥dimH.

    If{Λi:i ∈I} is a g-Riesz basis,then{(fij):i ∈I,j ∈Ii} is a Riesz basis forHand therefore the dimension ofHis equal to the cardinality of{(fij) :i ∈I,j ∈Ii} which is equal todim(Ki),where|Ii| denotes the cardinality ofIi,for eachi ∈Iand we have the result,see [5].

    Proposition 3.3Let{Λi ∈B(H,Ki) :i ∈I},K=⊕i∈IKiand{fj:j ∈J} be a Parseval frame forK.Then{Λi:i ∈I} is a g-frame forHwith respect to{Ki:i ∈I} if and only if{πKi(fj):i ∈I,j ∈J}is a frame forH.Moreover the g-frame operator of{Λi:i ∈I}and frame operator of{πKi(fj):i ∈I,j ∈J} are the same,where for eachi ∈I,πKiis the orthogonal projection ontoKi.

    ProofBy consideringK=⊕i∈IKi,we can take eachKias a closed subspace ofKand if we take{fj:j ∈J}a Parseval frame forK,then for eachi ∈I,{πKifj:j ∈J}is a Parseval frame forKiand we have the result.

    Corollary 3.4Let{fj:j ∈J} be a Parseval frame forH.Then{(Wi,υi) :i ∈I} is a fusion frame if and only if{υi(πWi(fj)):i ∈I,j ∈J} is a frame forH.

    ProofIf{fj:j ∈J} is a Parseval frame forH,then for eachi ∈I,{πWi(fj) :j ∈J}is a Parseval frame forWi.Then{(Wi,υi):i ∈I} is a fusion frame if and only if{υiπWi(fj):i ∈I,j ∈J} is a frame forH(see [20]).

    Theorem 3.5Let{Λi ∈B(H,Ki):i ∈I} and{fij:j ∈Ii} be a Riesz basis ofKiwith boundsAi,Bisuch thatThen{Λi:i ∈I} is a g-Riesz basis if and only if{(fij):i ∈I,j ∈Ii} is a Riesz basis.

    ProofWe note that{Λi ∈B(H,Ki):i ∈I}is g-complete if and only if{f ∈H:Λif=0 for eachi ∈I}={0}.Also Λi(f)=0,for eachi ∈I,if and only if〈f,(fij)〉=0,for eachi ∈I,j ∈Ii.Hence{Λi ∈B(H,Ki):i ∈I} is g-complete if and only if{(fij):i ∈I,j ∈Ii}is complete.Since{fij:j ∈Ii} is a Riesz basis with boundsAi,Bi,then for eachgi ∈Kiwe havefor some complex numberscij,and

    Now if{Λi ∈B(H,Ki):i ∈I}is a g-Riesz basis with boundsC,D,then for each(cij)(i,j)∈J′∈?2(J′),whereJ′={(i,j):i ∈I,j ∈Ii},we have

    and therefore

    Consequently,from (3.3) it follows that

    Conversely,let{(fij) :i ∈I,j ∈Ii} be a Riesz basis with boundsC′,D′.For eachgi ∈Kiwe haveand by (1),

    and we have the result.

    Theorem 3.6Let{Λi ∈B(H,Ki):i ∈I}and for eachi ∈I,{fij:j ∈Ii}be a Parseval frame forKi.If{(Λi)?(fij):i ∈I,j ∈Ii} is a Riesz basis,then{Λi:i ∈I} is a g-Riesz basis.Conversely,if{Λi:i ∈I} is a g-Riesz basis and for eachi ∈I,there existsmi>0 such that for every complex numbers{cij:i ∈I,j ∈Ii},

    then{(fij):i ∈I,j ∈Ii} is a Riesz basis.

    Since this relation holds for allcij,then〈fiν,fij〉=0 ifν≠jand〈fiν,fij〉=1 ifν=j,i.e.,{fiν:ν ∈Ii} is an orthonormal basis forKiand by Sun’s theorem we have the result.

    Remark 3.7We note that in the proof of [13,Proposition 5.3]the authors claimed that for a g-frame{Λi ∈B(H,Ki) :i ∈I} ifTiis invertible for eachi ∈I,then automatically{ΛiTi ∈B(H,Ki):i ∈I} is a g-frame.Also they used the following inequality for g-frames,

    in which it is not clear thatiin the right hand side is arbitrary or existing.But in the following example we show that both of them are not true in general.

    Example 3.8LetHbe a Hilbert space andT ∈B(H) be invertible.For every natural number n,letThen{Λn ∈B(H):n ∈N} is a g-frame with boundsFor eachn ∈N,by takingTn=(Λn)-1=nT-1,eachTnis invertible and{ΛnTn ∈B(H):n ∈N}={IH:n ∈N} is not a g-frame,because for each non-zerox ∈H,

    Also letx ∈Hbe non-zero.Then there exists a natural numberNsuch that for everyn ≥N,‖Tx-x‖>‖x‖/2 and therefore

    Consequently,inequality (3.4) does not hold in general.

    Remark 3.9We note that in the proof of Proposition 5.3 in [13],the first inequality is not valid in general.If we consider,we get a contradiction sinceA/B ≤1.

    Now we state a result.

    Proposition 3.10Let{Λi ∈B(H,Ki) :i ∈I} be a g-frame forHwith respect to{Ki:i ∈I} and (αi)i∈Ibe a sequence of complex numbers.

    (i) IfTi=αiT,whereT ∈B(H) is invertible and there existm,M>0 such thatm ≤|αi|≤M,for eachi ∈I,then{ΛiTi:i ∈I}={αiΛiT:i ∈I} is a g-frame.

    (ii) IfTi=αiIH,then{Λi:i ∈I} and{ΛiTi:i ∈I} are woven.

    ProofLet{Λi:i ∈I} be a g-frame with boundsAandB.For everyx ∈H,we haveHence

    and so (i) holds.

    (ii) For everyσ ?Iand everyx ∈Hwe have

    and similarly

    which completes the proof.

    4 Weaving g-frames

    In the next theorem we try to find some relations between the operators corresponding to a weaving g-frame.

    Theorem 4.1Let{∈B(H,Ki) :i ∈I} be a g-Bessel sequence forHwith Bessel boundBjand frame operatorSj,for eachj=1,2,···,m.Then

    (ii){:i ∈I} forj=1,2,···,mare woven if and only if for each partitionP={σ1,σ2,···,σm} ofI,there existsAP>0 such thatAP·I ≤SP.

    Proof(i) Plainly,and since for every partitionP={σ1,σ2,···,σm} ofIand everyf ∈H,

    we have the result.

    (ii) By Theorem 3.7 in [12]we have the result.

    The next theorem gives sufficient condition for a finite number of g-Bessel sequences to be P-woven.

    Theorem 4.2Let{∈B(H,Ki) :i ∈I} forj=1,2,···,m,be a family of g-Bessel sequences forHwith respect to{Ki:i ∈I}.Suppose that there exists a partitionP={σ1,σ2,···,σm} ofIsuch that

    Then the family{:i ∈I},j=1,2,···,m,is P-woven.

    Sincehi ∈Kiis arbitrary,we get that

    LetAjandBjbe the lower and upper bounds of{Λji ∈B(H,Ki) :i ∈σj},respectively,for eachj=1,2,···,m.Then

    Hence the family{∈B(H,Ki),i ∈I},forj=1,···,m,is P-woven.

    Lemma 4.3Let{Λi ∈B(H,Ki) :i ∈I} be a g-frame and{Γi ∈B(H,Ki) :i ∈I} be a sequence for which there exist 0<λ1,λ2<1 such that for everyi ∈Iand eachx ∈Hwe have

    Then{Λi ∈B(H,Ki):i ∈I} and{Γi ∈B(H,Ki):i ∈I} are woven g-frames.

    ProofIf{Λi ∈B(H,Ki):i ∈I} is a g-frame with boundsA,B,then for everyi ∈I

    So for eachx ∈Hwe have

    Therefore{Λi ∈B(H,Ki) :i ∈σ} ∪{Γi ∈B(H,Ki) :i ∈σc} is a g-frame with boundsConsequently,{Λi:i ∈I} and{Γi:i ∈I} are woven g-frames.

    Proposition 4.4LetH,K,HiandKibe Hilbert spaces for eachi ∈Iand let{∈B(H,Hi) :i ∈I} forj=1,2,···,mbe a woven family of g-frames.LetT ∈B(K,H)be invertible andTj i ∈B(Hi,Ki),for eachi ∈I,andj=1,···,msuch that for some 0<δ ≤M<∞we haveδ‖x‖ ≤‖(x)‖ ≤M‖x‖for everyx ∈Hi,i ∈Iandj=1,···,m.Then,j=1,···,mis a woven family of g-frames.

    ProofBy the assumption there exist 0

    Proposition 4.5Suppose{Λji ∈B(H,Ki) :i ∈I},j=1,2,···,m,of g-frames are woven with universal boundsAandB.IfF:⊕Ki →⊕Miis a bounded invertible operator such thatF(Ki)?Mi,for eachi,then{∈B(H,Mi) :i ∈I},j=1,2,···,mare also woven with universal boundsA‖F(xiàn)-1‖-2,B‖F(xiàn)‖2.

    ProofIt is a known fact that if a g-frame has boundsAandB,then applying an invertible operatorFto it gives a g-frame with boundsA‖F(xiàn)-1‖-2andB‖F(xiàn)‖2.Let{∈B(H,Ki) :i ∈I},j=1,2,···,mbe a family of woven g-frames with universal boundsAandB.Then for each partitionP={σ1,σ2,···,σm} ofI,{∈B(H,Ki) :i ∈σj,j=1,2,···,m} is a g-frame with boundsAandB.Hence{∈B(H,Mi):i ∈σj,j=1,2,···,m} is a g-frame with boundsA‖F(xiàn)-1‖-2andB‖F(xiàn)‖2.Hence we have the result.

    Now we state a result which is useful for Gabor frames and wavelets.

    Proposition 4.6Let{∈B(H,Ki):i ∈I},forj=1,2,···,m,be a P-woven g-frame and for a partitionP={σ1,···,σm} ofI,ΛP={Λji ∈B(H,Ki) :i ∈σj,j=1,···,m} be a g-frame with boundsAandB,and also let for eachi ∈I,{∈B(Ki,Wi,?) :? ∈Ii} for?=1,2,···,ni,be aP-wowen g-frame forKiand for a partitionPi={δi,1,···,δi,ni} ofIi,(Γi)Pi={∈B(Ki,Wi,ν) :ν ∈δi,l,l=1,···,ni} be a g-frame with boundsCi,Disuch that 0

    ProofBy the assumption,there exists a partitionP={σ1,σ2,···,σm} ofIsuch that{∈B(H,Ki) :i ∈σj,j=1,2,···,m} is a g-frame with boundsAandB,and for eachi ∈Ithere is a partitionPi={δi,1,δi,2,···,δi,ni} ofIisuch that{∈B(Ki,Wi,?):? ∈δi,l,l=1,···,ni} is a g-frame with boundsCi,Di.Now similarly to the proof of Proposition 4.4 we get that:i ∈σj,j=1,···,m;? ∈δi,l,l=1,···,ni} is a g-frame with boundsAC,BD,which is the weaving g-frame corresponding to the partitionP′={δ1,δ2,···,δm} ofJ′={(i,?) :i ∈I,? ∈Ii},whereδj={(i,?) :i ∈σj,? ∈δi,?,?=1,···,ni}.Then we have

    and similarly

    and we have the result.

    Conflict of InterestThe authors declare no conflict of interest.

    如何舔出高潮| 日韩伦理黄色片| 女人久久www免费人成看片| 99热6这里只有精品| 久久韩国三级中文字幕| 日韩三级伦理在线观看| 久久精品国产自在天天线| 欧美日韩综合久久久久久| 91精品一卡2卡3卡4卡| 赤兔流量卡办理| 国产毛片a区久久久久| 国产永久视频网站| 超碰97精品在线观看| 成人毛片a级毛片在线播放| 少妇人妻久久综合中文| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久影院| 国产男女超爽视频在线观看| 成人亚洲精品av一区二区| 毛片一级片免费看久久久久| 亚洲国产精品专区欧美| 欧美xxⅹ黑人| 精品人妻一区二区三区麻豆| 男人和女人高潮做爰伦理| 久久精品综合一区二区三区| 成人国产麻豆网| 人人妻人人爽人人添夜夜欢视频 | 久久久国产一区二区| 欧美日韩综合久久久久久| 久久99热6这里只有精品| 国产精品三级大全| 亚洲欧美日韩无卡精品| 大陆偷拍与自拍| 国产欧美日韩精品一区二区| 免费看日本二区| 五月天丁香电影| 亚洲av电影在线观看一区二区三区 | 又爽又黄a免费视频| 国产淫片久久久久久久久| 欧美日韩视频高清一区二区三区二| 99热国产这里只有精品6| 成人毛片a级毛片在线播放| 一个人看视频在线观看www免费| 国产爽快片一区二区三区| 午夜福利视频1000在线观看| 狂野欧美激情性xxxx在线观看| 亚洲自拍偷在线| 五月开心婷婷网| 天堂网av新在线| 亚洲精品久久久久久婷婷小说| 亚洲欧美清纯卡通| 大片电影免费在线观看免费| 蜜臀久久99精品久久宅男| 久久亚洲国产成人精品v| 中文字幕免费在线视频6| 一级毛片我不卡| 国产成人免费观看mmmm| 在线观看一区二区三区| 国产精品av视频在线免费观看| 久久久久久久久大av| 久久影院123| 亚洲综合精品二区| 久久久久精品性色| 97热精品久久久久久| 国产一区亚洲一区在线观看| 亚洲国产精品专区欧美| 国产精品久久久久久精品电影| 国产精品久久久久久精品电影| 成人国产av品久久久| 久久精品国产亚洲av涩爱| 一级毛片aaaaaa免费看小| 国产大屁股一区二区在线视频| 亚洲美女搞黄在线观看| 亚洲人成网站高清观看| 国产探花在线观看一区二区| 日韩电影二区| 伦精品一区二区三区| 大香蕉久久网| 精品酒店卫生间| 国产男女超爽视频在线观看| 两个人的视频大全免费| 亚洲精品日韩在线中文字幕| 亚洲自拍偷在线| 成人国产av品久久久| 大码成人一级视频| 日韩大片免费观看网站| 少妇人妻 视频| 中文精品一卡2卡3卡4更新| 日韩av免费高清视频| 我要看日韩黄色一级片| 久久久久久久精品精品| 好男人视频免费观看在线| 国产亚洲av嫩草精品影院| 老司机影院成人| 国产黄色视频一区二区在线观看| 亚洲欧美中文字幕日韩二区| 国产淫片久久久久久久久| 狂野欧美激情性bbbbbb| 国产成人aa在线观看| 一级av片app| 丝袜喷水一区| 国产色爽女视频免费观看| 久久久欧美国产精品| 伊人久久精品亚洲午夜| 人人妻人人澡人人爽人人夜夜| 精品熟女少妇av免费看| 两个人的视频大全免费| 国产精品偷伦视频观看了| 亚洲精品乱久久久久久| 中文精品一卡2卡3卡4更新| 中国三级夫妇交换| 日本爱情动作片www.在线观看| 大片免费播放器 马上看| 在线 av 中文字幕| 亚洲人与动物交配视频| 国产中年淑女户外野战色| 中文字幕免费在线视频6| 精品亚洲乱码少妇综合久久| 亚洲天堂国产精品一区在线| 秋霞伦理黄片| 久久久久国产网址| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区黑人 | 亚洲欧美一区二区三区黑人 | 亚洲av中文字字幕乱码综合| 免费看不卡的av| 久久久久久久久久成人| 一个人看的www免费观看视频| 亚洲欧美一区二区三区黑人 | 亚洲国产精品专区欧美| 男人舔奶头视频| 国产综合懂色| 在线精品无人区一区二区三 | 精品亚洲乱码少妇综合久久| 免费少妇av软件| a级一级毛片免费在线观看| 国产成人freesex在线| 欧美三级亚洲精品| 国产精品国产三级专区第一集| 国产精品无大码| 成人国产av品久久久| 99热这里只有是精品在线观看| 亚洲人成网站在线播| 欧美潮喷喷水| 国产男女超爽视频在线观看| 国产亚洲5aaaaa淫片| 99热国产这里只有精品6| 欧美国产精品一级二级三级 | 欧美日韩一区二区视频在线观看视频在线 | 国产熟女欧美一区二区| 男女边摸边吃奶| 亚洲av.av天堂| 观看美女的网站| 免费观看的影片在线观看| 成人二区视频| 青春草视频在线免费观看| 久久精品国产亚洲av涩爱| 成人亚洲欧美一区二区av| 免费看a级黄色片| 免费不卡的大黄色大毛片视频在线观看| 国产视频首页在线观看| 好男人在线观看高清免费视频| 亚洲精品456在线播放app| 又爽又黄a免费视频| 欧美潮喷喷水| 亚洲成人av在线免费| 国产精品国产三级专区第一集| 国产精品秋霞免费鲁丝片| 我要看日韩黄色一级片| 国产片特级美女逼逼视频| 国产爽快片一区二区三区| kizo精华| 大话2 男鬼变身卡| 久久99热这里只有精品18| 日韩强制内射视频| 欧美日韩国产mv在线观看视频 | 干丝袜人妻中文字幕| 成人综合一区亚洲| 国产白丝娇喘喷水9色精品| 国产精品偷伦视频观看了| 2018国产大陆天天弄谢| 卡戴珊不雅视频在线播放| 啦啦啦啦在线视频资源| 极品少妇高潮喷水抽搐| 伦精品一区二区三区| 永久免费av网站大全| 在线观看一区二区三区| a级毛片免费高清观看在线播放| 久久久久九九精品影院| 欧美成人精品欧美一级黄| 欧美潮喷喷水| .国产精品久久| 国产 一区精品| 精品久久国产蜜桃| 成人无遮挡网站| 免费看日本二区| 国产精品99久久久久久久久| 十八禁网站网址无遮挡 | 丰满少妇做爰视频| 美女视频免费永久观看网站| av专区在线播放| 免费av不卡在线播放| 国产精品无大码| 激情五月婷婷亚洲| 性色avwww在线观看| 亚洲精品456在线播放app| 欧美潮喷喷水| 亚洲成人av在线免费| 91aial.com中文字幕在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 97超碰精品成人国产| www.av在线官网国产| 日本黄大片高清| 亚洲综合色惰| 国产免费视频播放在线视频| 亚洲人与动物交配视频| 成人美女网站在线观看视频| 国产男女超爽视频在线观看| 日韩伦理黄色片| 在线观看美女被高潮喷水网站| 人妻少妇偷人精品九色| 亚洲图色成人| 内射极品少妇av片p| 91久久精品电影网| 美女主播在线视频| 在线观看国产h片| 亚洲成人久久爱视频| 国产亚洲午夜精品一区二区久久 | 午夜免费男女啪啪视频观看| 国产精品久久久久久久电影| 日韩伦理黄色片| 最近中文字幕高清免费大全6| 国产亚洲一区二区精品| 大又大粗又爽又黄少妇毛片口| 亚洲国产高清在线一区二区三| 日韩伦理黄色片| 亚洲色图综合在线观看| 国产一级毛片在线| 国产午夜精品一二区理论片| 午夜福利在线观看免费完整高清在| 久久久久精品久久久久真实原创| 一级二级三级毛片免费看| 禁无遮挡网站| 亚洲人成网站在线播| 亚洲,欧美,日韩| 国产永久视频网站| 神马国产精品三级电影在线观看| 中文欧美无线码| 欧美日韩精品成人综合77777| 亚洲成人中文字幕在线播放| 国产成人福利小说| 少妇猛男粗大的猛烈进出视频 | 午夜福利在线观看免费完整高清在| 美女主播在线视频| 成人漫画全彩无遮挡| 2021少妇久久久久久久久久久| 国产大屁股一区二区在线视频| 日本熟妇午夜| 日产精品乱码卡一卡2卡三| 在线观看三级黄色| 禁无遮挡网站| 九九爱精品视频在线观看| 一个人看视频在线观看www免费| 国产女主播在线喷水免费视频网站| 日韩中字成人| 亚洲精品久久午夜乱码| 建设人人有责人人尽责人人享有的 | 日韩av在线免费看完整版不卡| 成人国产麻豆网| 嫩草影院入口| 亚洲精品国产av蜜桃| 日日摸夜夜添夜夜添av毛片| 亚洲av日韩在线播放| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 性色av一级| 亚洲人成网站在线观看播放| 亚洲av国产av综合av卡| 久久久久久国产a免费观看| 毛片一级片免费看久久久久| 国产一级毛片在线| 成人免费观看视频高清| 亚洲精品久久久久久婷婷小说| 免费av毛片视频| 免费观看性生交大片5| 超碰97精品在线观看| 成年版毛片免费区| 午夜日本视频在线| 国产视频首页在线观看| 亚洲欧美中文字幕日韩二区| 国产乱人偷精品视频| 人人妻人人看人人澡| av播播在线观看一区| 18禁在线播放成人免费| 亚洲人与动物交配视频| 国产成人精品一,二区| 你懂的网址亚洲精品在线观看| 九九久久精品国产亚洲av麻豆| 国产亚洲av嫩草精品影院| 国产色爽女视频免费观看| 我的老师免费观看完整版| 久久精品综合一区二区三区| 国产精品99久久99久久久不卡 | 亚洲国产精品成人久久小说| 亚洲精品国产av蜜桃| 色综合色国产| 亚洲av成人精品一二三区| 六月丁香七月| 欧美一级a爱片免费观看看| 看十八女毛片水多多多| 日韩不卡一区二区三区视频在线| 久久午夜福利片| 高清毛片免费看| 久久久久久久久久久免费av| 在线观看一区二区三区| 美女内射精品一级片tv| 伊人久久国产一区二区| 国产免费福利视频在线观看| 国国产精品蜜臀av免费| 人妻系列 视频| 久久精品国产亚洲av涩爱| 日韩制服骚丝袜av| 五月天丁香电影| 国产午夜精品一二区理论片| 少妇人妻一区二区三区视频| 少妇猛男粗大的猛烈进出视频 | 亚洲精品自拍成人| 国产精品女同一区二区软件| 国产精品久久久久久久久免| 久久精品国产亚洲av涩爱| 精品国产乱码久久久久久小说| 亚洲色图综合在线观看| 国产大屁股一区二区在线视频| 在线看a的网站| 深爱激情五月婷婷| 狠狠精品人妻久久久久久综合| 三级经典国产精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩一区二区三区影片| 日韩国内少妇激情av| 亚洲欧美成人综合另类久久久| 一区二区三区免费毛片| av线在线观看网站| 国产免费一级a男人的天堂| 欧美一区二区亚洲| 亚洲图色成人| 亚洲国产高清在线一区二区三| 精品一区二区免费观看| 日本一二三区视频观看| 99久久精品一区二区三区| 国产精品国产三级专区第一集| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| 永久免费av网站大全| 搡老乐熟女国产| 高清毛片免费看| 大话2 男鬼变身卡| 嫩草影院精品99| 免费看日本二区| 全区人妻精品视频| 日本猛色少妇xxxxx猛交久久| 久久久久性生活片| 久久久久久久久久久免费av| 国产精品国产三级国产av玫瑰| 国产美女午夜福利| 欧美人与善性xxx| 亚洲av成人精品一二三区| 亚洲av免费高清在线观看| 久热这里只有精品99| eeuss影院久久| 最后的刺客免费高清国语| 高清在线视频一区二区三区| 日本黄大片高清| 精品一区在线观看国产| 免费黄色在线免费观看| 黄色配什么色好看| 亚州av有码| 简卡轻食公司| 免费大片黄手机在线观看| 亚洲自偷自拍三级| 麻豆乱淫一区二区| 麻豆成人av视频| 亚洲综合色惰| 亚洲国产色片| 亚洲欧美日韩东京热| 97超视频在线观看视频| 亚洲欧美一区二区三区国产| 久久久久久久久久成人| 亚洲伊人久久精品综合| 国产精品99久久99久久久不卡 | av女优亚洲男人天堂| 国产成人精品一,二区| 国产精品福利在线免费观看| 少妇猛男粗大的猛烈进出视频 | 亚洲美女视频黄频| 亚洲综合精品二区| 尾随美女入室| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人久久小说| 欧美人与善性xxx| 精品国产三级普通话版| 国内精品宾馆在线| 人人妻人人爽人人添夜夜欢视频 | 91精品伊人久久大香线蕉| 国产色婷婷99| 91aial.com中文字幕在线观看| 午夜福利视频1000在线观看| 久热这里只有精品99| 日韩中字成人| 精品一区二区三区视频在线| 日韩在线高清观看一区二区三区| 国产精品av视频在线免费观看| 在现免费观看毛片| 在线精品无人区一区二区三 | 国产一区二区在线观看日韩| 久久6这里有精品| 日韩电影二区| 午夜日本视频在线| 美女内射精品一级片tv| 精品久久久久久久人妻蜜臀av| 又大又黄又爽视频免费| 亚洲国产精品成人久久小说| 免费大片黄手机在线观看| 午夜激情久久久久久久| 国产久久久一区二区三区| 日韩av在线免费看完整版不卡| 日日摸夜夜添夜夜爱| 国产成人精品一,二区| 日本免费在线观看一区| 日本猛色少妇xxxxx猛交久久| 在线亚洲精品国产二区图片欧美 | 在线a可以看的网站| 五月玫瑰六月丁香| 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人 | 免费观看的影片在线观看| 欧美老熟妇乱子伦牲交| 国产精品人妻久久久影院| 晚上一个人看的免费电影| 人人妻人人澡人人爽人人夜夜| 97超视频在线观看视频| 51国产日韩欧美| 亚洲在久久综合| 精品午夜福利在线看| 亚洲精品成人av观看孕妇| 在线播放无遮挡| 最近最新中文字幕免费大全7| 蜜桃亚洲精品一区二区三区| 亚洲电影在线观看av| 国产男女内射视频| 女人被狂操c到高潮| 波野结衣二区三区在线| 亚洲av电影在线观看一区二区三区 | 99久久人妻综合| 亚洲无线观看免费| 亚洲人成网站高清观看| 深夜a级毛片| 亚洲精品日本国产第一区| 国产伦在线观看视频一区| 欧美精品国产亚洲| 亚洲人成网站在线播| 免费高清在线观看视频在线观看| 亚洲va在线va天堂va国产| 国产毛片a区久久久久| 亚洲精品国产成人久久av| 国产精品麻豆人妻色哟哟久久| 亚洲熟女精品中文字幕| 热99国产精品久久久久久7| 国产精品.久久久| 青春草亚洲视频在线观看| 天堂网av新在线| 少妇人妻久久综合中文| 中文字幕制服av| 亚洲一区二区三区欧美精品 | 99视频精品全部免费 在线| 国产黄片视频在线免费观看| 亚洲av中文字字幕乱码综合| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费少妇av软件| 欧美bdsm另类| 麻豆精品久久久久久蜜桃| 欧美三级亚洲精品| 性插视频无遮挡在线免费观看| 伊人久久精品亚洲午夜| 搡老乐熟女国产| 久久久精品免费免费高清| 亚洲自偷自拍三级| 97在线人人人人妻| 精品国产三级普通话版| 亚洲精品中文字幕在线视频 | 69av精品久久久久久| 99re6热这里在线精品视频| 大片电影免费在线观看免费| 极品少妇高潮喷水抽搐| 男女下面进入的视频免费午夜| 国产一级毛片在线| 亚洲av国产av综合av卡| 国产老妇伦熟女老妇高清| 欧美区成人在线视频| 性插视频无遮挡在线免费观看| 欧美+日韩+精品| 久久ye,这里只有精品| 日韩电影二区| 国产成人免费观看mmmm| 亚洲美女搞黄在线观看| 欧美bdsm另类| 女的被弄到高潮叫床怎么办| 日韩欧美精品v在线| 久久久久性生活片| 22中文网久久字幕| 下体分泌物呈黄色| 成人毛片60女人毛片免费| 国产亚洲av嫩草精品影院| 波野结衣二区三区在线| 69人妻影院| 伦精品一区二区三区| 美女xxoo啪啪120秒动态图| 少妇的逼水好多| 国国产精品蜜臀av免费| 久久精品熟女亚洲av麻豆精品| 亚洲av免费在线观看| tube8黄色片| 一本色道久久久久久精品综合| 尤物成人国产欧美一区二区三区| 国产精品秋霞免费鲁丝片| 久久久久久久国产电影| 欧美日韩精品成人综合77777| 美女高潮的动态| 街头女战士在线观看网站| 99热全是精品| 91aial.com中文字幕在线观看| 人妻系列 视频| 国产极品天堂在线| 51国产日韩欧美| 久久精品人妻少妇| 国产黄色视频一区二区在线观看| 国内少妇人妻偷人精品xxx网站| 午夜爱爱视频在线播放| 成年女人看的毛片在线观看| 99久国产av精品国产电影| 日本免费在线观看一区| 春色校园在线视频观看| 夜夜看夜夜爽夜夜摸| 99久久精品国产国产毛片| 欧美xxⅹ黑人| 中文乱码字字幕精品一区二区三区| av在线蜜桃| 精品人妻熟女av久视频| 日韩人妻高清精品专区| 少妇 在线观看| 汤姆久久久久久久影院中文字幕| 成年免费大片在线观看| 日本色播在线视频| 亚洲精品456在线播放app| 国产真实伦视频高清在线观看| 国产精品久久久久久久久免| 精品国产乱码久久久久久小说| 国产欧美日韩一区二区三区在线 | 黑人高潮一二区| 一级爰片在线观看| 各种免费的搞黄视频| 欧美97在线视频| 久久久国产一区二区| 国产欧美日韩精品一区二区| 欧美另类一区| 在线播放无遮挡| 久久人人爽av亚洲精品天堂 | 国产精品.久久久| 性插视频无遮挡在线免费观看| av天堂中文字幕网| 亚洲精品国产av成人精品| 免费观看av网站的网址| 高清欧美精品videossex| 永久网站在线| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 狂野欧美激情性bbbbbb| 亚洲精品乱码久久久久久按摩| 亚洲精品成人av观看孕妇| 亚洲自拍偷在线| 亚洲美女搞黄在线观看| 国产成年人精品一区二区| 国产精品麻豆人妻色哟哟久久| 九色成人免费人妻av| 久久这里有精品视频免费| 久久精品综合一区二区三区| 亚洲国产精品999| 午夜激情久久久久久久| 成人午夜精彩视频在线观看| 久久久精品欧美日韩精品| 高清视频免费观看一区二区| 免费观看无遮挡的男女| 国产高清不卡午夜福利| 亚洲四区av| 日韩人妻高清精品专区| 青春草国产在线视频| 国产一区二区三区av在线| 香蕉精品网在线| 国产伦精品一区二区三区视频9| 亚洲久久久久久中文字幕| 99久久精品热视频| 成人美女网站在线观看视频| 一边亲一边摸免费视频| 亚洲欧美成人精品一区二区| 一级二级三级毛片免费看| 大香蕉久久网| 久久国内精品自在自线图片| 交换朋友夫妻互换小说| 99热全是精品| 黄片无遮挡物在线观看| 亚洲精品乱码久久久v下载方式| 免费电影在线观看免费观看| 男人添女人高潮全过程视频|