• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A MULTIPLE q-EXPONENTIAL DIFFERENTIAL OPERATIONAL IDENTITY?

    2023-04-25 01:41:36劉治國
    關(guān)鍵詞:治國

    (劉治國)

    School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education)& Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China

    E-mail: zgliu@math.ecnu.edu.cn; liuzg@hotmail.com

    Dedicated to Professor George Andrews on the occasion of his 85th birthday

    Abstract Using Hartogs’ fundamental theorem for analytic functions in several complex variables and q-partial differential equations,we establish a multiple q-exponential differential formula for analytic functions in several variables.With this identity,we give new proofs of a variety of important classical formulas including Bailey’s6ψ6 series summation formula and the Atakishiyev integral.A new transformation formula for a double q-series with several interesting special cases is given.A new transformation formula for a3ψ3 series is proved.

    Key words q-hypergeometric series; q-exponential differential operator;Bailey’s6ψ6 summation;double q-hypergeometric series; q-partial differential equation

    1 Introduction and Preliminaries

    Throughout the paper,we shall use the standardq-notations.Unless stated otherwise,it is assumed that 0

    It is obvious that (a;q)0=1,and by a simple calculation we find that,for any positive integern,

    For simplicity,we also adopt the following compact notation for multipleq-shifted factorials:

    Herenis an integer or∞.

    The basic hypergeometric series or theq-hypergeometric seriesr+1φr(·) is given by

    and the bilateral basic hypergeometric series or the bilateralq-hypergeometric seriesrψr(·) is defined as

    One of the most important results in theq-series is theq-binomial theorem(see,for example[11,eq.(1.3.2)]),which states that for|q|<1 and|x|<1,

    Theq-Gauss summation theorem (see,for example [11,1.5.1]) was first proposed by E.Heine in 1847,and states that for|q|<1 and|c/ab|<1,

    For any complex function off(x),theq-derivative operatorDqis defined by

    Theq-derivative was introduced by Schendel [29]in 1878 and Jackson [12]in 1908,and is aq-analog of the ordinary derivative.

    By a direct computation,we deduce thatxn=0 form>n,and that

    The Gaussian polynomials,also called theq-binomial coefficients,areq-analogs of the binomial coefficients,and are given by (see,for example [11,p.24])

    Now we introduce the definition of the Rogers–Szeg?o polynomials,which were first studied by Rogers [28]and then by Szeg?o [30].

    Definition 1.1The Rogers–Szeg?o polynomials are defined by

    For recent research on the Rogers–Szegpolynomials,please refer to [24]and [25].

    Ifqis replaced byq-1in the Rogers-Szeg?o polynomials,we can obtain the Stieltjes–Wigert polynomials (see,for example,[7,30]).

    Definition 1.2The Stieltjes–Wigert polynomials are defined by

    By multiplying two copies of theq-binomial theorem together,we get the following proposition.

    Proposition 1.3Ifgn(x,y|q) are the Stieltjes–Wigert polynomials,then we have that

    Now we give the definitions of theq-partial derivative and theq-partial differential equations[20].

    Definition 1.4Aq-partial derivative of a function of several variables is itsq-derivative with respect to one of those variables,regarding other variables as constants.Theq-partial derivative of a functionfwith respect to the variablexis denoted by?q,xf.

    Definition 1.5Aq-partial differential equation is an equation that contains unknown multivariable functions and theirq-partial derivatives.

    Based on?q,x,we can construct theq-exponential differential operatorT(y?q,x) as follows:

    One of the most important results in the theory ofq-exponential differential operator is the following operator identity [15,eq.(3.1)]:

    Proposition 1.6For max{|as|,|at|,|au|,|bs|,|bt|,|bu|,|abstu/v|}<1,we have that

    Theq-exponential differential operatorT(y?q-1,x) is obtained from theq-exponential differential operatorT(y?q,x) by replacingqwithq-1,namely,

    We cannot simply transfer the properties ofT(y?q,x) toT(y?q-1,x) through the transformationq →q-1.In this paper we will focus on the study ofT(y?q-1,x).

    We [15,Theorems 1 and 2](see also [17,Lemma 13.2]) proved the following generalqexponential differential operational identities by using some basic properties of analytic functions in two complex variables:

    Theorem 1.7Suppose thatf(x,y)is a two-variable analytic function near(x,y)=(0,0).Then we have thatf(x,y)=T(y?q-1,x)f(x,0) if and only if?q-1,xf=?q-1,yf.

    The first principal result of this paper is the following theorem:

    Theorem 1.8Suppose thatf(x) is an analytic function nearx=0 and that its power series is

    If,for sufficiently largen,an=O(qn(n-1)/2),thenT(y?q-1,x)f(x) is a two-variable analytic function ofxandyat (x,y)=(0,0),and we also have that

    Fornbeing a non-negative integern,by takingf(x)=xnin the theorem above,we immediately find that

    Using mathematical induction we can extend Theorem 1.8 to

    Theorem 1.9Suppose thatf(x1,x2,···,xk) is analytic at (0,0,···,0)∈Ck,and that its Maclaurin series is given by

    If,for sufficiently largen1,···,nk,

    then,at (x1,y1,x2,y2,···,xk,yk)=(0,0,···,0)∈C2kwe have

    The second principal result of this paper is.

    Theorem 1.10Suppose thatf(x1,y1,···,xk,yk) is a 2k-variable analytic function at(0,0,···,0)∈C2kwhich satisfies theq-partial differential equations

    Then we have that

    This theorem reveals the deep relationship between analytic functions in several complex variables,q-partial differential equations and theq-series.It tells us that if there is an analytic functionf(x1,y1,···,xk,yk) in 2kvariables which satisfies a system ofq-partial differential equations in the theorem,then we can recoverf(x1,y1,···,xk,yk) from its special casef(x1,0,x2,0,···,xk,0) by using someq-exponential differential operators.

    In order to prove Theorems 1.9 and 1.10 we need Hartogs’ theorem in the theory of several complex variables (see,for example,[31,p.28]),which is a fundamental result in the theory of several complex variables.

    Theorem 1.11(Hartogs’theorem) If a complex valued functionf(z1,z2,···,zn)is holomorphic (analytic) in each variable separately in a domainU ∈Cn,then it is holomorphic(analytic) inU.

    We also need the following fundamental property of several complex variables (see,for example,[26,p5,Proposition 1],[27,p90]):

    Theorem 1.12Iff(x1,x2,···,xk)is analytic at the origin(0,0,···,0)∈Ck,thenfcan be expanded in an absolutely convergent power series as

    The rest of this paper is organized as follows: Section 2 is devoted to the proofs of Theorems 1.8,1.9 and 1.10.In Section 3,we will prove amongst other things the followingq-exponential differential operational identity:

    Theorem 1.13Ifnis a non-negative integer then we have that

    Settingn=0 in (1.8) and noting that (1;q)n=δ0n,we immediately arrive at [9,Theorem 2.11]

    Section 4 is devoted to the proofs of Bailey’s6ψ6series summation formula and a3ψ3series transformation due to Chen and Liu,and a new transformation formula for a3ψ3series is given.In Section 5,we will provide a new proof of the Atakishiyev integral.In Section 6 we will derive the following new doubleq-series transformation formula:

    Theorem 1.14For|αab/q|<1,we have that

    Some interesting special cases of Theorem 1.14 and their application to Rogers–Hecke type series will be discussed in Section 7.

    2 The Proofs of Theorems 1.8,1.9 and 1.10

    Proof of Theorem 1.8Settingan=qn(n-1)/2bnand noting that,for sufficiently largen,an=O(qn(n-1)/2),we find that there exists a positive constantMsuch that|bn|≤Mfor alln ∈N.Keeping the definition ofgn(x,y|q) in mind and using the triangle inequality,we find that for 0

    It is easy to show that for any non-negative integernand 0

    Thus we have that

    Settingx=y=1 in the generating function ofgn(x,y|q),we deduce that

    Since the radius of convergence of the above power series is∞,by the Cauchy root test we have that

    Using the triangle inequality,we conclude that,for max{|x|,|y|}≤1,

    Since|bn|≤M,we find that

    Thus we conclude that the seriesconverges absolutely and uniformly for max{|x|,|y|}≤1,sincegn(x,y|q) is analytic for max{|x|,|y|}≤1.Hence

    is a two-variable analytic function ofxandyfor max{|x|,|y|} ≤1.With the help of?q-1,xgn(x,y|q)=?q-1,ygn(x,y|q),we find that?q-1,xf(x,y)=?q-1,yf(x,y) .It follows that

    This completes the proof of Theorem 1.8.

    Proof of Theorem 1.9We use mathematical induction and Theorem 1.8 to prove Theorem 1.9.By Theorem 1.8 we know that Theorem 1.9 holds for the case whenk=1.

    Now assume that the theorem has been proven for the casek-1.Now we consider the casek.Suppose thatf(x1,x2,···,xk) is analytic at (0,0,···,0)∈Ck,and its Maclaurin series is given by

    If we regard the functionf(x1,x2,···,xk) as a function ofx1,thenfis analytic atx1=0.Keeping the fact that,for sufficiently largen1,an1,n2,···,nk=O(qn1(n1-1)/2) in mind,by Theorem 1.8,we have that

    By Theorem 1.8 we know that the left-hand side of the above equation is an analytic function ofx1,x2,···,xkandy1at (0,0,···,0)∈Ck+1.Using Hartogs’s theorem,we know that this is also analytic function ofx2,···,xkat (0,0,···,0)∈Ck-1.Thus,by the induction hypothesis,we can useT(y2?q-1,x2)···T(yk?q-1,xk) to act on both sides of the above equation to obtain that

    This completes the proof of Theorem 1.9.

    Proof of Theorem 1.10Letf(x1,y1,···,xk,yk) be the given function.Then,by Hartogs’s theorem,we know thatf(x1,y1,···,xk,yk) is also an analytic function ofy1aty1=0,so we can assume that

    Substituting this into theq-partial differential equation,?q-1,x1f=?q-1,y1f,we deduce that

    Equating the coefficients ofyields that

    By iteration,we easily conclude that

    By settingy1=0 in the Maclaurin expansion offabouty1,we have that

    It follows that

    Thus we have that

    By using the same argument as above,we can find that

    Combining the above two equations gives that

    Repeating the above process completes the proof of Theorem 1.10.

    3 The Proof of Theorem 1.13

    We begin this section with the following proposition:

    Proposition 3.1For max{|av|,|bt|}<1,we have that

    Settingv=sand noting that (1;q)k=δk,0,we immediately arrive at

    Lettingv →0 in (3.1),and appealing to theq-binomial theorem we deduce that

    ProofFor max{|av|,|bt|}<1,we now introduce the functionf(a,b) by

    By the ratio test we can verify thatf(a,b) is analytic at (a,b)=(0,0).A straightforward calculation shows that

    Hence,by Theorem 1.7,we find thatf(a,b)=T(b?q-1,a)f(a,0),which is the same as (3.1).

    Proof of Theorem 1.13Now we introduce the two-variable complex functiong(t,u)by

    The series on the right-hand side is a finite series whose terms are all analytic at (t,u)=(0,0).It follows thatg(t,u) is analytic at (t,u)=(0,0).By a direct computation,we find that

    Thus,by Theorem 1.7,we deduce thatg(t,u)=T(u?q-1,t)g(t,0).Combining (3.1) and(3.5),we conclude that

    It follows that

    Using the operational identity in (3.2),we have that

    Combining the above two equations gives that

    Recall the Sears transformation (see,for example [14,Theorem 3]):

    Settinga3=q-nin the equation above,and then in the resulting equation making the change that

    Using the equation above we deduce that

    Combining the equation above with (3.5) and (3.6) completes the proof of Theorem 1.13.

    Theorem 2 in [16]needs to be supplemented by a conditions=vq-n,wherenis a nonnegative integer.

    4 Bailey’s6ψ6 Summation Formula and Bailey’s2ψ2 Transformation

    4.1 Bailey’s6ψ6 Summation Formula

    Theq-exponential differential operator is used to give a proof of Bailey’s6ψ6summation formula [15].In this section we will improve the proof to make it more concise.We begin with the following proposition for the bilateral basic hypergeometric series:

    Proposition 4.1Let{An} be a sequence independent ofa,b,canddand let the series on the left hand side of the equation below be an analytic function of four variablesa,b,canddat (0,0,0,0)∈C4.Then we have that

    ProofUsing Hartogs’ theorem and theq-binomial theorem,it is easily seen that,for any integern,

    is analytic at (0,0,0,0)∈C4,and by a direct computation we find thatfn(a,b,c,d) satisfies the following twoq-partial differential equations:

    It is obvious that the left-hand side of the equation in Proposition 4.1 is a linear combination offn(a,b,c,d).If we denote it byf(a,b,c,d),then we have that

    Under the hypotheses of Proposition 4.1,f(a,b,c,d)is analytic at(0,0,0,0)∈C4.Thus we can use the case of whenk=2 from Theorem 1.10 to obtain that

    Using the case of whenk=1 from Theorem 1.10,we can conclude that

    Combining the two equations completes the proof of Proposition 4.1.

    By some elementary calculations and Jacobi’s triple product identity,we can find the following lemma [15,Lemma 2].

    Lemma 4.2For 0<|q|<1 andα≠0,we have that

    For completeness,we will repeat the proof of this lemma.

    ProofIt is easy to show that the series on the left hand side of the above equation converges to a functionf(α,a),which is an analytic function ofawhen|a|<∞.

    Using the simple identity 1-αq2n=(1-αaqn-1)-αq2n(1-aq-n-1),we find that

    Making the index changen →n+1 in the first summation and then combining it with the second summation,we readily find that

    Similarly,replacingn+1 bynin the second summation in (4.2),we find that

    Combining the two equations above yields thatf(α,a)=f(α,aq),which gives thatf(α,a)=f(α,aqn).Lettingn →∞and noticing thatf(α,a) is an analytic function ofa,we have that

    by the Jacobi triple product identity.This completes the proof of Lemma 4.2.

    Theorem 4.3(Bailey’s6ψ6summation) Fora,b,c,d ∈C with|α2abcd/q3|<1,we have that

    ProofTakingAn=(1-αq2n)α2nq2n2-nin Proposition 4.1 and keeping Lemma 4.2 in mind,we find that

    Noting thatT(c?q-1,a) is a linear operator abouta,we immediately deduce that

    Substituting this equation into the left-hand side of (4.4),we conclude that

    By making use of (3.2) and (3.3) in Proposition 3.1,we have that

    Substituting the equation above into the left-hand side of (4.5),we deduce that

    which is the same as Bailey’s6ψ6summation.This completes the proof of Theorem 4.3.

    4.2 Bailey’s2ψ2 Transformation

    We begin with the following lemma:

    Lemma 4.4For 0

    ProofFor any integerm,settingc=d=0 andb=qm+1in (4.6),we deduce that

    Multiplying both sides of the above equation byαmqm2(cq-m,dq-m;q)∞and then summing the resulting equation aboutmfrom-∞to∞yields that

    Now we begin to compute the inner series on the left-hand side of (4.8).From the definition of aq-shifted factorial we have that

    Settingm-n=kand noting that 1/(q;q)k=0 fork<0,we conclude that

    Replacingcbyαq2k+1andabyqn+1/candbbyqn+1/din theq-Gauss summation in (1.3),we deduce that

    Combining the above two equations,we conclude that

    Substituting the equation above into (4.9) gives that

    Combining the equation above with (4.8) completes the proof of Lemma 4.4.

    Based on Lemma 4.4,we can prove the following transformation formula for a3ψ3series[9,Theorem 5.3],which includes Bailey’s2ψ2transformation formula [5]as a special case:

    Theorem 4.5For|αcd/q|<1,we have that

    ProofFor the sake of brevity,we temporarily denote that

    Applying theq-exponential differential operatorT(b?q-1,a) to act on both sides of (4.7),and using (1.9) in the resulting equation,we deduce that

    Multiplying both sides of the equation above by (αab/q;q)∞,we find that

    Applying theq-exponential differential operatorT(u?q-1,a) to act on both sides of the above equation,and making using of (1.9) in the resulting equation,we conclude that

    Noting the definition ofAnin (4.10) completes the proof of Theorem 4.5.

    Since the left-hand side of the equation above is symmetric aboutdandu,so must be the right-hand side.It follows that

    By simplifying the above equation,we can obtain the following theorem,which seems to be new:

    Theorem 4.6For|αcd/q|<1 and|αcu/q|<1 we have that

    5 Ramanujan-type Representation for the Askey–Wilson Integral

    Forx=cosθ,we define the notationh(x;a|q) andh(x;a1,a2,···,am|q) as

    Using the the modular transformation property for the Jacobi theta functions and the Askey–Wilson integral evaluation,N.M.Atakishiyev discovered the Ramanujan-type representation for the Askey–Wilson integral evaluation admitting the transformationq →q-1.In this section we will use our method to give a new proof of it.Our method does not need to know the Askey–Wilson integral evaluation in advance,and we also do not need the Jacobi theta functions [4].

    Theorem 5.1(Atakishiyev) Ifαis a real number andq=exp(-2α2),then we have that

    ProofIt is easy to verify that

    Ifgn(a,b|q) is the Stieltjes–Wigert polynomials,then we definegn(sinhαx|q) as

    Using the generating function for the Stieltjes–Wigert polynomials in Proposition 1.3,we easily find that

    To compute the integral in Theorem 5.1,we begin with the integral

    which can be calculated using the following well-known integral formula in the calculus:

    Using this integral formula and the definition ofgn(sinhαx|q) in (5.3),we easily deduce that

    Using the finite form of theq-binomial theorem,and through careful examination,we find that

    Denoting the left hand side of(5.2)byK(a,b,c,d),we can show that it is an analytic function ofa,b,c,dat(0,0,0,0).Multiplying both sides of the above equation with(-ia)nqn(n-1)/2/(q;q)nand then sum overnfrom 0 to∞,we find that

    It is easy to check thatf1(a,c):=K(a,0,c,0)/(ac/q;q)∞satisfies theq-partial differential equation

    By making use of the case of whenk=1 for Theorem 1.10,we deduce that

    Setting thatf(a,b,c,d):=K(a,b,c,d)/(ab/q,cd/q;q)∞,we can show that

    Employing the case of whenk=2 for Theorem 1.10,we conclude that

    Keeping (5.6) in mind and making use of (3.2) and (3.3) from Proposition 3.1,we have the following:

    Substituting the equation above into (5.7) completes the proof of Theorem 5.1.

    In the same way,we can derive the following theorem of Askey [2]:

    Theorem 5.2For|abcd/q3|<1,we have the integral formula

    6 The Proof of Theorem 1.14

    We begin this section with the following proposition,which is stated in [17,Proposition 13.10]without proof.

    Proposition 6.1Let{fn(x)} be a sequence of analytic functions nearx=0 such that the seriesconverges uniformly to an analytic functionf(x) nearx=0,and the seriesconverges uniformly to an analytic functionf(x,y) near (x,y)=(0,0).Then we have thatf(x,y)=T(y?q-1,x)f(x),or that

    ProofIf we usefn(x,y) to denoteT(y?q-1,x)fn(x),then it is easy to verify that

    Sincef(x,y) is a linear combination ofT(y?q-1,x)fn(x),it follows that?q-1,xf(x,y)=?q-1,yf(x,y).Thus,by Theorem 1.7,we have that

    which is the same as

    We also need the following proposition,which can be found in [17,Proposition 13.9]:

    Proposition 6.2Let{fn(x)} be a sequence of analytic functions nearx=0 such that the seriesconverges uniformly to an analytic functionf(x) nearx=0,and the seriesconverges uniformly to an analytic functionf(x,y)near(x,y)=(0,0).Then we have thatf(x,y)=T(y?q,x)f(x),or that

    The following proposition is a special case of Watson’sq-analogue of Whipple’s theorem,which can be found in [18,Theorem 1.8]:

    Proposition 6.3For|αab/q|<1,we have theq-transformation formula

    Using Watson’sq-analogue of Whipple’s theorem,the Rogers6φ5summation formula and Tannery’s theorem,one can prove the following (see,for example [16,Lemma 3]):

    Proposition 6.4Asn →∞,we have the asymptotic formula

    Proof of Theorem 1.14Using theq-exponential differential operator identities (1.8)and (1.9) we can prove that

    For brevity,we will temporarily denote that

    Settingd=0 in Proposition 6.3 and keeping the definition ofAn(a,b) in mind,we conclude that

    Whenγ=0,Proposition 6.4 yields that

    Using this fact and (6.1),and the ratio test,we can show that the series

    converges to an analytic function ofcanddat (0,0).Thus,by Proposition 6.1,we have that

    Combining the equation above with (6.4) and using Proposition 6.1 again,we deduce that

    Substituting (6.1) and (6.2) into the above equation and simplifying,we conclude that

    Lettingv=uin Proposition 1.6,we immediately arrive at the operational identity

    For notational clarity,we denote that

    so (6.8) can be written as

    Propositions 6.2 and 6.4 allow us to use the exponential differential operatorT(γ?q,β) to act on both sides of the equation above to obtain that

    With the help of (6.9),we immediately deduce that

    Combining the above three equations and noting the definition ofCncompletes the proof of Theorem 1.14.

    7 Some Special Cases of Theorem 1.14 and the Rogers–Hecke Type Series

    Theorem 1.14 can be used to recover some identities of the Rogers–Hecke type series,and sometimes this theorem is more effective.For this purpose,we first discuss some special cases of the theorem.

    7.1 Some Special Cases of Theorem 1.14

    Lettingγ=0 in Theorem 1.14,we immediately get that

    Proposition 7.1For|αab/q|<1,we have

    Using Proposition 7.1 and the Sears4φ3transformation formula we can prove the following proposition,which is similar to [19,Theorem 1.12]:

    Proposition 7.2For|αab/q|<1,we have that

    ProofThe Sears4φ3transformation can be restated as (see,for example [11,p.71])

    Settingγ=0 in the equation above,and then replacing (c,d) by (q/d,q/c),we deduce that

    Substituting the equation above into the left-hand side of (7.1) completes the proof of Proposition 7.2.

    Based on Proposition 7.1 we can also prove that.

    Proposition 7.3For|αβabc/q2|<1,we have that

    ProofLettingd →∞in (7.1) and then substituting the limits

    into the resulting equation completes the proof of Proposition 7.3.

    Proposition 7.3 includes Rogers’6φ5summation formula [11,p44]as a special case;this is stated in the following proposition:

    Proposition 7.4For|αabc/q2|<1,we have

    ProofLetδmnbe de the Kronecker delta.Takingβ=1 in Proposition 7.3 and noting that (1;q)k=δk0,we find that the3φ2series in (7.2) have a value of 1,and thus we find that

    Using theq-Gauss summation in (1.3),we deduce that

    Substituting the equation above into the right-hand side of (7.5) completes the proof of Proposition 7.4.

    7.2 Rogers–Hecke Type Series

    Denote the finite theta seriesTn(q) by

    The following Theorem first appeared in [19,Theorem 4.9]without proof,and now we will use Proposition 7.1 to prove it:

    Theorem 7.5For|ab/q|<1,we have that

    ProofDividing both sides of (7.1) by 1-αand then lettingα →1,and finally setting thatc=q1/2,d=-q-1/2andβ=-q,we find that

    To simplify the3φ2series we need the followingq-identity,which can be found in [1,eq.(5.3)]and [19,p2087]:

    Substituting the equation above into (7.7) completes the proof of Theorem 7.5.

    Setting thata=b=0 in Theorem 7.5 and simplifying,we arrive at the Andrews identity[1,eq.(1.10)]

    Taking thatb=0 in Theorem 7.5 and then multiplying both sides of the resulting equation by(1-a),and finally lettinga →1,we find that

    Letting thatb=0 in Theorem 7.5,and replacingqbyq2,and finally putting thata=q,we find that

    Dividing both sides of (7.1) by 1-α,and then lettingα →1,and finally setting thatc=q1/2,d=-q-1/2andβ=qand using theq-identity,

    We can now find the following Theorem[19,Theorem 4.8],which has been used to derive several identities of the Rogers–Hecke type series:

    Theorem 7.6For|ab/q|<1,we have that

    Using Proposition 7.2 we can prove the following theorem [19,Theorem 1.9]which can be used to prove some identities of the Rogers–Hecke type,especially the Andrews–Dyson–Hickerson identity [19,p2703]:

    Theorem 7.7For|ab|<1,we have that

    ProofLettingc →∞in Proposition 7.2,and making a simple calculation,we easily find that

    Setting thatα=β=qandd=-1,we find that

    The followingq-identity can be found in [19,eq.(4.1)]:

    Combining the above two equations completes the proof of the theorem.

    For recent research work on Rogers–Hecke type series,please refer to [8,10,32,34,35].

    8 Remarks

    In a series papers [15–17,20–23]we started research on the applications ofq-partial differential equations and the analytic functions of several variables inq-analysis;this led us to develop a new method for derivingq-formulas.Aslan and Ismail [3]call this method “Liu’s calculus”.This method can not only be used to reprove existingq-series identities,but can also help us to find newq-series identities.Some results derived from this method cannot be simply proven by the usual methods.Wang and Ma [33]used a matrix inversion formula to give an extension of ourq-rational interpolation formula [13]found in 2002;we have been unable to prove the results presented here using similar techniques.Bhatnagar and Rai[6]extended some of our expansion formulas to the context of multiple series over root systems by using Bailey’s transformation,and their method is quite different from ours.

    AcknowledgementsI am grateful to the anonymous referees and to Dandan Chen and Dunkun Yang for careful reading of the original manuscript,and for proposing some corrections and many constructive and helpful comments that resulted in substantial improvements to the paper.

    Conflict of InterestThe author declares no conflict of interest.

    猜你喜歡
    治國
    排列問題中的順序處理
    巍治國藝術(shù)作品欣賞
    《習(xí)近平談治國理政》第三卷
    A well-balanced positivity preserving two-dimensional shallow flow model with wetting and drying fronts over irregular topography *
    Deterministic Remote State Preparation via the χ State?
    鄭治國:穿越新中國核彈爆炸中心的攝影記者
    文史春秋(2017年10期)2017-11-29 01:31:34
    “四個全面”:黨治國理政的哲學(xué)遵循
    習(xí)近平治國理政的民心指向
    論“依憲治國”在依法治國中的核心作用
    治國理政要把握“四個全面”
    国产av一区在线观看免费| 自拍偷自拍亚洲精品老妇| 特级一级黄色大片| 国产高清不卡午夜福利| 亚洲精品在线观看二区| 男女做爰动态图高潮gif福利片| 精品一区二区免费观看| 婷婷色综合大香蕉| 热99在线观看视频| 久久久久久久久久黄片| 久久久久久国产a免费观看| 最近视频中文字幕2019在线8| 最近中文字幕高清免费大全6| 亚洲无线在线观看| 亚洲精品亚洲一区二区| 一进一出好大好爽视频| 国产一区二区激情短视频| 美女xxoo啪啪120秒动态图| 天天躁日日操中文字幕| 欧美xxxx黑人xx丫x性爽| 99在线视频只有这里精品首页| 免费观看的影片在线观看| 久久久久九九精品影院| 欧美一区二区国产精品久久精品| 一个人看视频在线观看www免费| 搡老熟女国产l中国老女人| 亚洲欧美精品自产自拍| 亚洲人成网站高清观看| 99久久精品一区二区三区| 欧美激情国产日韩精品一区| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品综合一区在线观看| 久久欧美精品欧美久久欧美| 欧美区成人在线视频| 免费无遮挡裸体视频| 亚洲精品亚洲一区二区| 国产精品久久久久久精品电影| 国产精品日韩av在线免费观看| 有码 亚洲区| 中文字幕熟女人妻在线| 午夜亚洲福利在线播放| 亚洲va在线va天堂va国产| 久久久久性生活片| 91精品国产九色| 久久久久精品国产欧美久久久| 成人综合一区亚洲| 亚洲精品亚洲一区二区| 成人漫画全彩无遮挡| 精品无人区乱码1区二区| 日韩一区二区视频免费看| 99久久久亚洲精品蜜臀av| 亚洲精品色激情综合| 最近手机中文字幕大全| 成人一区二区视频在线观看| 老熟妇仑乱视频hdxx| 亚州av有码| 成年女人永久免费观看视频| 久久久久精品国产欧美久久久| 高清毛片免费看| 欧美中文日本在线观看视频| 久久精品国产鲁丝片午夜精品| 欧美国产日韩亚洲一区| 色尼玛亚洲综合影院| 国产乱人偷精品视频| 波多野结衣巨乳人妻| 亚洲色图av天堂| ponron亚洲| 久久久久久久久大av| 久久中文看片网| 午夜福利在线观看吧| 在线播放国产精品三级| 日本黄大片高清| 久久久久久久久久黄片| 一级黄片播放器| 日韩在线高清观看一区二区三区| 黄片wwwwww| 日韩av在线大香蕉| 国产大屁股一区二区在线视频| 小说图片视频综合网站| 国产一区亚洲一区在线观看| 国产精品美女特级片免费视频播放器| 国产欧美日韩精品一区二区| 村上凉子中文字幕在线| 69av精品久久久久久| 校园春色视频在线观看| 欧美三级亚洲精品| 露出奶头的视频| 国产麻豆成人av免费视频| 国产在线男女| www日本黄色视频网| 欧美zozozo另类| 日韩 亚洲 欧美在线| 成人亚洲精品av一区二区| 免费看光身美女| 精品久久久久久久久亚洲| 亚洲熟妇中文字幕五十中出| 少妇的逼好多水| 91在线精品国自产拍蜜月| 偷拍熟女少妇极品色| 精品久久久久久久末码| 一进一出抽搐动态| 欧美国产日韩亚洲一区| 亚洲无线观看免费| 永久网站在线| 男人舔女人下体高潮全视频| 国产精品女同一区二区软件| 亚洲av不卡在线观看| 国产毛片a区久久久久| 国产高清激情床上av| 欧美成人一区二区免费高清观看| 淫妇啪啪啪对白视频| 成人毛片a级毛片在线播放| 国产一区二区在线av高清观看| 日韩 亚洲 欧美在线| av在线亚洲专区| 精品人妻视频免费看| 精品免费久久久久久久清纯| 亚洲在线自拍视频| 日韩人妻高清精品专区| 色综合站精品国产| 国产精品伦人一区二区| 少妇高潮的动态图| 一区二区三区高清视频在线| 级片在线观看| 国产精品一二三区在线看| 夜夜夜夜夜久久久久| 久久久久久久亚洲中文字幕| 精品久久久久久久人妻蜜臀av| 又黄又爽又免费观看的视频| 国产精品福利在线免费观看| 变态另类丝袜制服| 两个人视频免费观看高清| 欧美丝袜亚洲另类| 在线播放国产精品三级| 中文资源天堂在线| 在线观看av片永久免费下载| 亚洲美女视频黄频| 久久久久久久久久黄片| 69av精品久久久久久| 国产亚洲欧美98| 成人欧美大片| 日本黄色视频三级网站网址| 久久婷婷人人爽人人干人人爱| 我要搜黄色片| 秋霞在线观看毛片| a级一级毛片免费在线观看| 国语自产精品视频在线第100页| 啦啦啦韩国在线观看视频| 97超级碰碰碰精品色视频在线观看| 亚洲精品乱码久久久v下载方式| 精品无人区乱码1区二区| 午夜激情欧美在线| 在线免费观看不下载黄p国产| 日本欧美国产在线视频| 国产精华一区二区三区| 在线观看美女被高潮喷水网站| 亚洲美女黄片视频| av视频在线观看入口| 国产私拍福利视频在线观看| av福利片在线观看| 日韩,欧美,国产一区二区三区 | 熟女人妻精品中文字幕| 亚洲成人久久爱视频| 一本一本综合久久| 国产成人影院久久av| 啦啦啦韩国在线观看视频| 亚洲国产色片| 欧美色视频一区免费| 亚洲不卡免费看| 成人一区二区视频在线观看| 亚洲欧美日韩东京热| 日本色播在线视频| 久久韩国三级中文字幕| 亚洲精品456在线播放app| 色5月婷婷丁香| 午夜福利高清视频| 村上凉子中文字幕在线| 国产91av在线免费观看| 高清毛片免费看| 人人妻人人看人人澡| av.在线天堂| 日韩人妻高清精品专区| 此物有八面人人有两片| 国产精品亚洲美女久久久| 欧美3d第一页| 日本爱情动作片www.在线观看 | 99久久成人亚洲精品观看| 亚洲欧美精品综合久久99| 深夜精品福利| 色播亚洲综合网| 亚洲国产精品成人久久小说 | 亚洲av熟女| 日本黄色片子视频| 亚洲欧美日韩高清在线视频| 国产高清不卡午夜福利| 日本与韩国留学比较| 亚洲18禁久久av| 淫秽高清视频在线观看| 99riav亚洲国产免费| 免费看日本二区| 99精品在免费线老司机午夜| 欧美绝顶高潮抽搐喷水| 一区二区三区高清视频在线| 搡女人真爽免费视频火全软件 | av卡一久久| 性欧美人与动物交配| 中文字幕av在线有码专区| av在线亚洲专区| 亚洲精品在线观看二区| 国产午夜福利久久久久久| 黄色配什么色好看| 国内少妇人妻偷人精品xxx网站| 日日撸夜夜添| 国产一区二区亚洲精品在线观看| 午夜福利在线观看吧| 欧美中文日本在线观看视频| 久久草成人影院| 在线国产一区二区在线| 免费看a级黄色片| 日本免费a在线| 成年女人毛片免费观看观看9| 亚洲成人av在线免费| 国产高清不卡午夜福利| 热99在线观看视频| videossex国产| 免费人成在线观看视频色| 国产精品人妻久久久久久| av天堂中文字幕网| 18禁黄网站禁片免费观看直播| 日日摸夜夜添夜夜爱| 亚洲欧美清纯卡通| 精品欧美国产一区二区三| 男人和女人高潮做爰伦理| 禁无遮挡网站| 俺也久久电影网| av在线播放精品| av卡一久久| 国产亚洲精品久久久com| 精品人妻熟女av久视频| 亚洲成a人片在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久电影中文字幕| 国产精品一二三区在线看| 91av网一区二区| 亚洲aⅴ乱码一区二区在线播放| 三级毛片av免费| av黄色大香蕉| 亚洲经典国产精华液单| 久久久久久久久大av| 国产高清视频在线播放一区| 日本精品一区二区三区蜜桃| 国产欧美日韩一区二区精品| 又爽又黄a免费视频| 又黄又爽又免费观看的视频| 亚洲欧美成人综合另类久久久 | 黄色配什么色好看| 18禁黄网站禁片免费观看直播| 99热只有精品国产| 深夜a级毛片| 国产精品女同一区二区软件| 色视频www国产| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 久久精品夜色国产| 99久久成人亚洲精品观看| 精品熟女少妇av免费看| 听说在线观看完整版免费高清| 久久精品国产亚洲网站| av福利片在线观看| 九九热线精品视视频播放| 精品99又大又爽又粗少妇毛片| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣高清无吗| 国产精品人妻久久久影院| 精品一区二区三区视频在线| 亚洲在线观看片| 亚洲欧美精品自产自拍| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩高清专用| 精品国内亚洲2022精品成人| av国产免费在线观看| 一个人观看的视频www高清免费观看| 性欧美人与动物交配| 婷婷亚洲欧美| 一进一出好大好爽视频| 日本一二三区视频观看| 欧美潮喷喷水| 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站| 免费看日本二区| 国产伦一二天堂av在线观看| 亚洲综合色惰| 亚洲成人久久爱视频| 日本熟妇午夜| 国产一区亚洲一区在线观看| 简卡轻食公司| 尾随美女入室| 日韩精品有码人妻一区| 国模一区二区三区四区视频| 国产大屁股一区二区在线视频| 精品福利观看| 久久久久久久久久黄片| 国产人妻一区二区三区在| 久久亚洲国产成人精品v| 男女下面进入的视频免费午夜| 性色avwww在线观看| 国产激情偷乱视频一区二区| 91av网一区二区| 男人的好看免费观看在线视频| 亚洲av中文字字幕乱码综合| 美女大奶头视频| 久久国内精品自在自线图片| 啦啦啦韩国在线观看视频| 亚洲乱码一区二区免费版| 午夜老司机福利剧场| 精品久久久久久久人妻蜜臀av| 3wmmmm亚洲av在线观看| 国内精品宾馆在线| 国产成人一区二区在线| 久久99热这里只有精品18| 国产成人aa在线观看| 免费无遮挡裸体视频| 色哟哟·www| 人妻久久中文字幕网| 亚洲一区二区三区色噜噜| 日韩欧美免费精品| 国产高清三级在线| 国产精品福利在线免费观看| 亚洲va在线va天堂va国产| 国产精品不卡视频一区二区| 久久99热这里只有精品18| 午夜激情福利司机影院| 亚洲av五月六月丁香网| 国产精品三级大全| 亚洲美女搞黄在线观看 | 日韩av在线大香蕉| 欧美潮喷喷水| 久久精品久久久久久噜噜老黄 | 丰满人妻一区二区三区视频av| 久久人人爽人人片av| 精品福利观看| 久久中文看片网| 成人性生交大片免费视频hd| 国内精品一区二区在线观看| 亚洲熟妇熟女久久| 美女高潮的动态| 日本黄色视频三级网站网址| 亚洲av一区综合| 又爽又黄a免费视频| 高清午夜精品一区二区三区 | 精品一区二区免费观看| 日韩亚洲欧美综合| 久久久久久久久中文| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 亚洲欧美日韩东京热| 淫秽高清视频在线观看| 天堂网av新在线| 菩萨蛮人人尽说江南好唐韦庄 | 国内少妇人妻偷人精品xxx网站| 亚洲av成人av| 99久久精品国产国产毛片| 女人被狂操c到高潮| 高清午夜精品一区二区三区 | 给我免费播放毛片高清在线观看| 成人美女网站在线观看视频| 亚洲精品亚洲一区二区| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品av在线| 亚洲av.av天堂| 成年免费大片在线观看| 麻豆久久精品国产亚洲av| 一夜夜www| 看片在线看免费视频| 国产精品一及| 久久99热6这里只有精品| 不卡一级毛片| 精品免费久久久久久久清纯| 成人一区二区视频在线观看| 香蕉av资源在线| 成年女人毛片免费观看观看9| 成人毛片a级毛片在线播放| 久久久久国内视频| 欧美+日韩+精品| 国产成人福利小说| 成熟少妇高潮喷水视频| 此物有八面人人有两片| 自拍偷自拍亚洲精品老妇| 男女视频在线观看网站免费| 人妻丰满熟妇av一区二区三区| 色在线成人网| 一级毛片我不卡| 日韩成人伦理影院| 国产精品国产三级国产av玫瑰| 久久99热6这里只有精品| 九九在线视频观看精品| 国产高清有码在线观看视频| 亚洲精华国产精华液的使用体验 | 亚洲欧美日韩无卡精品| 男人和女人高潮做爰伦理| 国产免费男女视频| 十八禁网站免费在线| 欧美成人精品欧美一级黄| 国产爱豆传媒在线观看| 性插视频无遮挡在线免费观看| 少妇的逼水好多| 亚洲av成人av| 尤物成人国产欧美一区二区三区| 国产真实伦视频高清在线观看| 1024手机看黄色片| 亚洲激情五月婷婷啪啪| 欧美中文日本在线观看视频| 国产伦精品一区二区三区视频9| 天堂影院成人在线观看| 国产男人的电影天堂91| 久久久欧美国产精品| av在线天堂中文字幕| 欧美激情国产日韩精品一区| 性插视频无遮挡在线免费观看| 国产精品亚洲一级av第二区| 麻豆国产av国片精品| 一区二区三区高清视频在线| 国产亚洲欧美98| 3wmmmm亚洲av在线观看| 乱码一卡2卡4卡精品| 国产亚洲91精品色在线| 91在线观看av| 欧美激情在线99| 人人妻人人澡人人爽人人夜夜 | 日韩精品中文字幕看吧| 欧美在线一区亚洲| 日本黄色视频三级网站网址| 欧美xxxx性猛交bbbb| 99国产极品粉嫩在线观看| 欧美中文日本在线观看视频| 国产蜜桃级精品一区二区三区| 久久人妻av系列| 国产一区二区在线av高清观看| 免费av观看视频| 日本a在线网址| 国语自产精品视频在线第100页| 男插女下体视频免费在线播放| 不卡一级毛片| 亚洲成a人片在线一区二区| 欧美日韩精品成人综合77777| 99久久成人亚洲精品观看| 亚洲国产欧洲综合997久久,| 国产亚洲精品av在线| 岛国在线免费视频观看| 全区人妻精品视频| 99热6这里只有精品| 色噜噜av男人的天堂激情| 久久精品国产亚洲av天美| 国产精品一及| 小蜜桃在线观看免费完整版高清| 一区二区三区四区激情视频 | 国产精品国产三级国产av玫瑰| 99精品在免费线老司机午夜| 观看美女的网站| 欧美最新免费一区二区三区| 1024手机看黄色片| 国产午夜精品久久久久久一区二区三区 | 女人十人毛片免费观看3o分钟| av在线亚洲专区| 超碰av人人做人人爽久久| 性插视频无遮挡在线免费观看| 久久人妻av系列| 国产成人91sexporn| 特大巨黑吊av在线直播| 日本五十路高清| 最近2019中文字幕mv第一页| 三级国产精品欧美在线观看| 男人和女人高潮做爰伦理| 人妻夜夜爽99麻豆av| 1024手机看黄色片| 国产女主播在线喷水免费视频网站 | 国产女主播在线喷水免费视频网站 | 丰满乱子伦码专区| 日韩大尺度精品在线看网址| 久久久久久久久大av| 亚洲图色成人| 成人国产麻豆网| 校园春色视频在线观看| av国产免费在线观看| 欧美成人精品欧美一级黄| 欧美日韩在线观看h| 桃色一区二区三区在线观看| av中文乱码字幕在线| 51国产日韩欧美| 婷婷精品国产亚洲av在线| 99热这里只有精品一区| 床上黄色一级片| 日韩国内少妇激情av| 午夜免费激情av| 神马国产精品三级电影在线观看| 欧美国产日韩亚洲一区| 国产一区二区在线av高清观看| 不卡视频在线观看欧美| 毛片女人毛片| 22中文网久久字幕| 毛片女人毛片| 18禁在线无遮挡免费观看视频 | av天堂在线播放| 国产精品久久视频播放| 日韩成人伦理影院| 九色成人免费人妻av| 亚洲av不卡在线观看| 亚洲成人精品中文字幕电影| 在线看三级毛片| 日韩中字成人| 午夜久久久久精精品| 久久人人爽人人爽人人片va| 日日摸夜夜添夜夜添小说| 嫩草影院精品99| 国产精品一区二区三区四区免费观看 | 99久国产av精品| 午夜福利18| 亚洲成人久久爱视频| 精品一区二区三区人妻视频| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 最后的刺客免费高清国语| 亚洲中文字幕日韩| 久久这里只有精品中国| 色播亚洲综合网| 欧美日韩国产亚洲二区| 一级毛片电影观看 | 欧美激情久久久久久爽电影| 日日干狠狠操夜夜爽| 黄色一级大片看看| 久久韩国三级中文字幕| 婷婷精品国产亚洲av| 国模一区二区三区四区视频| 亚洲国产高清在线一区二区三| 日本欧美国产在线视频| 国产日本99.免费观看| 日韩人妻高清精品专区| 久久人人爽人人片av| 2021天堂中文幕一二区在线观| 久久久国产成人精品二区| 国产一区二区三区av在线 | 乱码一卡2卡4卡精品| 亚州av有码| 99精品在免费线老司机午夜| 一级毛片电影观看 | 色哟哟·www| 欧美国产日韩亚洲一区| 久久久久久久久大av| 日本一本二区三区精品| 国产成年人精品一区二区| 成人一区二区视频在线观看| 成人特级av手机在线观看| 亚洲无线观看免费| av在线播放精品| 高清午夜精品一区二区三区 | 欧美国产日韩亚洲一区| 久久久精品欧美日韩精品| 国产精品久久久久久久电影| 免费看日本二区| 九色成人免费人妻av| 一个人看的www免费观看视频| 99热6这里只有精品| av免费在线看不卡| 色5月婷婷丁香| 日本欧美国产在线视频| 男人舔女人下体高潮全视频| 久久久久久久久中文| 亚洲va在线va天堂va国产| 无遮挡黄片免费观看| 欧美一级a爱片免费观看看| 一区二区三区四区激情视频 | 舔av片在线| 高清午夜精品一区二区三区 | 白带黄色成豆腐渣| 99热全是精品| 亚洲自偷自拍三级| 大香蕉久久网| 99热全是精品| 亚洲18禁久久av| 成年版毛片免费区| 免费在线观看成人毛片| 色吧在线观看| 亚洲国产精品合色在线| 三级毛片av免费| 精品乱码久久久久久99久播| 一个人看视频在线观看www免费| 简卡轻食公司| 久久久久久久久大av| 国产探花极品一区二区| 国产美女午夜福利| 国产精品免费一区二区三区在线| 亚洲欧美日韩东京热| 最近的中文字幕免费完整| 久久久久久久久大av| 伊人久久精品亚洲午夜| 亚洲人与动物交配视频| 一进一出好大好爽视频| 天天一区二区日本电影三级| 日韩 亚洲 欧美在线| 国产私拍福利视频在线观看| 少妇熟女aⅴ在线视频| 国产成人aa在线观看| 丰满人妻一区二区三区视频av| 天天一区二区日本电影三级| 午夜激情欧美在线| 亚洲自偷自拍三级| 亚洲av二区三区四区| 干丝袜人妻中文字幕| 国产一区二区亚洲精品在线观看| 中文亚洲av片在线观看爽| 老司机福利观看| 听说在线观看完整版免费高清| 国产免费一级a男人的天堂| 国产乱人偷精品视频| 狠狠狠狠99中文字幕|