• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RELATIVE ENTROPY DIMENSION FOR COUNTABLE AMENABLE GROUP ACTIONS?

    2023-04-25 01:41:36肖祖彪

    (肖祖彪)

    School of Mathematics and Statistics, Fuzhou University, Fuzhou 350116, China

    E-mail: xzb2020@fzu.edu.cn

    Zhengyu YIN (殷正宇)?

    Department of Mathematics, Nanjing University, Nanjing 210093, China

    E-mail: yzynju 20@163.com

    Abstract We study the topological complexities of relative entropy zero extensions acted upon by countable-infinite amenable groups.First,for a given F?lner sequence{ Fn},we define the relative entropy dimensions and the dimensions of the relative entropy generating sets to characterize the sub-exponential growth of the relative topological complexity.we also investigate the relations among these.Second,we introduce the notion of a relative dimension set.Moreover,using the method,we discuss the disjointness between the relative entropy zero extensions via the relative dimension sets of two extensions,which says that if the relative dimension sets of two extensions are different,then the extensions are disjoint.

    Key words amenable groups;relative entropy dimensions;relative dimension sets

    1 Introduction

    A dynamical system for a group action is usually written by a pair (X,G) whereXis generally a compact metric space (called a phase space) andGis a topological group (called an acted group) which acts continuously onX.In the study of dynamical systems,entropy is an important tool for characterizing the dynamical behavior.Kolomogorov and Sinai developed the measure-theoretic entropy of Z-actions based on Shannon’s information theory in 1959.Topological entropy was first introduced by Adler,Konheim and McAndrew and defined by Bowen later on,in 1973,for a metric space.Topological entropy measures the maximal exponential growth rate of orbits for an arbitrary topological dynamical system.

    Although systems with positive entropy are much more complicated than those with zero entropy,zero entropy systems possess various levels of complexity,and have recently been discussed in [3,4,7,8,11,15,20,26].The authors of these work all adopted various methods for classifying zero entropy dynamical systems.Carvalho [4]introduced the notion of the entropy dimension to distinguish the zero entropy systems and obtained some basic properties of the entropy dimension.Ferenczi and Park[11]proposed the entropy dimension for the action of Z or Zdon a probability space.Given a subsetSof Z with density 0,Dou,Huang and Park in [7]introduced the notion of the dimension ofS.Moreover,they used the dimension of a special class of sequences which were called entropy generating sequences to measure the complexity of a system,and showed that the topological entropy dimension can be computed through the dimensions of entropy generating sequences.For the case of the relative setting,Zhou [26]defined the corresponding notions for Z-actions and studied their properties.In this paper,we would like to redefine the relevant notions in the relative setting for group actions by introducing a new notion called “relative entropy generating sets”.Using this concept,we can define the relative dimensions of entropy generating sets and get the relationships among different relative dimensions.We can show that the relative upper entropy dimension of an extension is the supremum of the dimensions of the relative upper entropy generating sets (see Theorem 5.4).

    Inspired by the theory of prime numbers,Furstenberg [12]first introduced the concept of disjointness to characterize the difference in the dynamics between two systems.He gave a well-known result which says that a weakly mixing system with a dense set of periodic points is disjoint from all minimal systems.Later Huang,Park and Ye [15]studied systems which are disjoint from all minimal zero entropy systems (denoted byM0).They proved that topologicalK-systems,which means every nontrivial finite open cover of the system has positive entropy,make up a proper subset of the systems which are disjoint fromM0.Dou,Huang and Park in[7]introduced the notion of the dimension set of a zero entropy topological system to measure the various levels of the topological complexity of subexponential growth rate.They investigated the property of disjointness in zero entropy systems through the dimension set and proved that under the condition of one system’s minimality,two systems with disjoint dimension sets are disjoint.This is a refinement and also a generalization of the result adhered in [2]: that uniformly positive entropy systems are disjoint from minimal entropy zero systems.Based on the above results,Zhou [26]introduced the notion of relative dimension tuples and the relative dimension set and proved that two extensions with disjoint relative dimension sets for all orders are disjoint over the same system under some conditions.This can be also regarded as a generalization of the results in [18]: that an open extension with relative uniformly positive entropy of all orders is disjoint from any minimal extension with relative zero entropy.We would like to redefine the notion of relative dimension tuples and the relative dimension set for group actions and show that an open extension is disjoint from a minimal extension if they have disjointn-th relative dimension sets,for anyn ≥2 (see Theorem 7.1).

    The rest of the paper is organized as follows: in Section 2,we give the definition of amenable groups and some basic concepts of dynamical systems.In Section 3,we define the relative entropy dimension of an extension for an amenable group action and investigate the relevant properties.In Section 4,we consider the dimensions of the relative entropy generating sets.In Section 5,we study the interrelations among the previous defined dimensions.In Section 6,we give the notions of relative dimension tuples and dimension sets,and study inheritance and lifting properties of the uniform relative entropy dimension extension.In Section 7,we prove the disjointness theorem between the extensions with disjoint relative dimension sets.

    2 Preliminaries

    2.1 Amenable Groups

    LetGbe a countable discrete infinite group.Denote byF(G)the set of all finite non-empty subsets ofG.ForK,F ∈F(G),we write that

    whereKF={kf:k ∈K,f ∈F}.The groupGis called amenable if,for anyK ∈F(G) andδ>0,there existsF ∈F(G) such that

    where|·| is the counting measure onG.Such a setFis called (K,δ)-invariant.A sequence{Fn}n∈N?F(G) is called a F?lner sequence if,for everyK ∈F(G) andδ>0,for all large enoughnwe have thatFnis (K,δ)-invariant.A groupGis amenable if and only ifGadmits a F?lner sequence{Fn}n∈N.The class of amenable groups contains,in particular,all finite groups,all abelian groups and more generally,all solvable groups;if it is closed under the operations of taking subgroups,taking quotients,taking extensions and taking inductive limits.For more details and properties of the amenable group,one can refer to [5,Chaper 4].

    2.2 G-systems and Related Concepts

    AG-system is a pair (X,G) whereXis a compact metric space andGis a countable discrete infinite group which acts continuously onX.Suppose thateis the identity ofG.Each elementg ∈Gwill be regarded as a homeomorphic action fromXto itself when there is no confusion.WhenXis a set consisting of a single point,we call (X,G) a trivial system.For a system (X,G) and a positive integerk ≥2,ak-productG-system of (X,G) is denoted by(Xk,G),and we assume thatg(x1,···,xk)=(gx1,···,gxk),for every (x1,···,xk)∈Xkandg ∈G.

    Let (X,G) be aG-system and letx ∈X.For a subsetF ?G,we denote theF-orbit ofxbyFx={gx:g ∈F}.We will callGxthe orbit ofxinstead ofG-orbit ofxwhen there is no confusion.The subsetKofXis said to beG-invariant ifGK=K(equivalentlyGK ?K).Thus a set is invariant if and only if it is a union of orbits.

    3 Relative Entropy Dimension

    LetXbe a compact metric space and letGbe a countable discrete infinite amenable group.Let(X,G)be aG-system.Without loss of generality,we assume thatGadmits a strictly increasing F?lner sequencewheree ∈Fnfor eachn.If not,we can take a subsequence denoted byand then we choose some sequencewithn1

    We recall some notations before introducing the concepts of the relative entropy dimension.Given aG-system (X,G),letCXbe the class of finite covers ofX,and letbe the class of finite open covers ofX.LetU=(Ui)i∈I,V=(Vj)j∈Jbe finite covers ofX,and the join ofUandVis the finite cover ofXdefined by

    One says thatVis finer thanUif,for anyj ∈J,there is ani ∈Isuch thatVj ?Ui.

    Let (X,G) and (Y,G) be twoG-systems.We say that (X,G) is an extension of (Y,G) if there exists a continuous surjective mapπ: (X,G)→(Y,G) such thatπ ?g=g ?πfor allg ∈G.The mapπis called a factor map fromXtoY.We say thatg ∈Gis an automorphism ofπifπ=π ?g(see [6]).

    Letπ: (X,G)→(Y,G) be a factor map and let U ∈.For a closed setE ?X,we denote

    Following the definition of the entropy dimension in [7],we give the definition of a relative upper entropy dimension ofUas

    Similarly,we denote the relative lower entropy dimension ofUas

    then the relative entropy dimension ofUis equal to 1.

    Definition 3.1Letπ:(X,G)→(Y,G)be a factor map betweenG-systems.The relative upper (resp.lower) entropy dimension of (X,G) is

    NoteIt is known that the definition of entropy for an amenable group action is independent on the choice of F?lner sequences;see [17].However,we consider the definition of entropy dimensions of zero entropy systems for amenable group actions,and this is not the case as above,which is heavily dependent on the choice of F?lner sequence.We give a simple example as follows: in[7,Example 2.8],a shift system(Y1,σ1)is obtained with the upper entropy dimensionand the lower entropy dimension(Y1,σ1)=(σ1,U1)=0.Let 0<α<.By the definitions of the upper and lower entropy dimensions,we have that

    By the definition of lim inf,we can take a subsequenceof{n} such that

    The following two propositions are basic properties of relative entropy dimension.

    Proposition 3.2Letπ:(X,G)→(Y,G) be a factor map andU,V ∈.Then,

    (1) ifUV,(G,U|π)≤(G,V|π) and(G,U|π)≤(G,V|π);

    (2) ifGis an abelian group,(G,U|π)=(G,gU|π) and(G,U|π)=(G,gU|π) for anyg ∈G.Especially,the equations also hold for the case ofg ∈Gbeing an automorphism ofπ;

    (4) we have that

    ProofIfU,V ∈with,thenN(U|π)≤N(V|π).By the definitions of the relative upper and lower entropy dimensions,we get (1).

    SinceGis a group,we have thatN(U|π)=N(g-1U|π) for allU ∈andg ∈G.Then,from the definitions of the relative upper and lower entropy dimensions and the automorphism ofπ,(2) follows.

    For (4),the first inequality is obvious from (1).We now show that

    From Proposition 3.2,we can get

    Proposition 3.3Letπ: (X,G)→(Y,G) be a factor map.If{Un} is sequence chosen fromwith,then

    ProofWe only need to consider the upper case.Sincediam(Un)=0,by (1) of Proposition 3.2,we have that

    Therefore,

    Let(X,G)be aG-system.A coverU={U,V}ofXis called a standard cover if it consists of two non-dense open sets ofX;we write the class of all standard covers ofXby.The next result shows that the relative upper entropy dimension of a system can be determined by the relative upper entropy dimension of standard covers.

    Proposition 3.4Letπ:(X,G)→(Y,G) be a factor map betweenG-systems.Then

    ProofIt is obvious that

    Now we shrinkUr={Ur,Vr}into a standard coverWwith(G,W|π)≥(G,U|π).First,if=X,then,forε>0,there existsx ∈Ursuch that

    SinceUis arbitrary,sup{(G,W|π):W ∈}≥(X,G|π).

    4 Relative Entropy Dimension via Entropy Generating Sets

    Given a strictly increasing F?lner sequence{Fn}ofG,we suppose that a setS ?Gsatisfies that

    We denote byI(G) the set of the subsetSofGsatisfying with (4.1).Forα ≥0 andS ∈I(G),we define that

    Following the definition of sets with zero density in [7],we define the upper dimension ofSas

    Similarly,we define the lower dimension ofSas

    Next,we will investigate the dimension of a special kind of subsets ofG,which is called the relative entropy generating sets.

    Letπ: (X,G)→(Y,G) be a factor map and letU ∈.S ∈I(G) is called a relative entropy generating set ofUif

    Write the set of all relative entropy generating sets ofUrelevant toπbyE(G,U|π),and denote byP(G,U|π) the set ofS ∈I(G) with the property that

    In other words,P(G,U|π)is the set of subsets ofGalong whichUa has positive relative upper entropy.

    Definition 4.1Letπ:(X,G)→(Y,G)be a factor map betweenG-systems andU ∈.We define that

    Definition 4.2Letπ:(X,G)→(Y,G) be a factor map.We define that

    The next result shows the range of(G,U|π) takes only two numbers,and this is the reason that we define the entropy generating sequence as lim inf instead of lim sup.

    Proposition 4.3Letπ:(X,G)→(Y,G) be a factor map andU ∈.Then

    ProofWe assume thatP(G,U|π)≠?.Then there area>0 andS ∈I(G) such that

    Next we take 1≤n1

    ThenF ∈I(G) and

    therefore,F ∈P(G,U|π).Since|Fnj+1|≥2|Fnj ∩S| for eachj ∈N,it is easy to see that the upper density ofFis,and hence(F)=1.This implies that(G,U|π)=1.

    5 Some Relationships Among Relative Entropy Dimensions

    Next,we study the relationships among the relative entropy dimensions appearing in Sections 3 and 4.

    Proposition 5.1Letπ:(X,G)→(Y,G) be a factor map and U ∈.Then

    Therefore,we have that

    we have that|S ∩Fn|≤m(n)≤|S ∩Fn|+|Fn|α,and then by (5.1),we have that

    SinceS ∈E(G,U|π),we have that

    which contradicts (5.3).

    Proposition 5.2Letπ:(X,G)→(Y,G) be a factor map and let U ∈.Then

    Letk ≥2 and letπ:(X,G)→(Y,G)be a factor map betweenG-systems.LetA1,A2,···,Akbeksubsets ofXandW ?G.We say{A1,A2,···,Ak}is independent alongWrelevant toπif there isy ∈Ysuch that,for anys ∈{1,2,···,k}W,we have that?(see [22]).

    Lemma 5.3(cf.[26]forG=Z) Letπ:(X,G)→(Y,G) be a factor map,and letA1,A2be two disjoint non-empty closed subsets ofX,For anyα ∈(0,1],0<η<αandc>0,there existsN ∈N (depending onα,η,c) such that,if there is a finite subsetBofGwith|B|≥Nsatisfying that

    then there existsW ?Bwith|W|≥|B|ηsuch that{A1,A2} is independent alongWrelevant toπ.

    ProofThe proof of the lemma is similar to the proof of [7,Lemma 3.7].

    From the above lemma,we can get the following result:

    Take 1=n1

    Now,for eachj ∈N,there existsWj ?Fnj+1Fnjsuch that|Wj|≥|Fnj+1Fnj|ηjand{A1,A2}is independent alongWjrelevant toπ;that is,there existsyj ∈Ysuch that?s ∈{1,2}Wj,so we have that

    For any non-empty setB ?Wjands=(s(z))z∈B ∈{1,2}B,we can find

    LetXB={xs:s ∈{1,2}B}.It is clear that,for anyl ∈{1,2}B,we have that

    Combining this fact with|XB|=2|B|,we get

    This shows thatF ∈E(G,U|π).

    Noting that

    Theorem 5.5Letπ:(X,G)→(Y,G) be a factor map betweenG-systems.Then,

    Remark 5.6Letπ:(X,G)→(Y,G) be a factor map betweenG-systems.Then,

    (1)De(X,G|π)=D(X,G|π) if one of the two values exists;

    (2) if (X,G) has a generating open cover,then there exists a relative entropy generating set (of the cover)Fsuch that

    6 Relative Dimension Tuples and Dimension Sets

    In this section,we will localize the relative entropy dimension to obtain the notion of relative dimension tuples and dimension sets.Letπ:(X,G)→(Y,G)be a factor map betweenG-systems and letn ≥2.Denote by ?n(X)={(xi)∈Xn:x1=···=xn} then-th diagonal ofX.Through out this section,B(x,?) denotes the open ball center atxwith radius?.

    6.1 Relative Dimension Tuples

    Definition 6.1Letπ: (X,G)→(Y,G) be a factor map and let (xi)∈Xn ?n(X).The relative entropy dimension of (xi)relevant toπis

    Lemma 6.2Letπ: (X,G)→(Y,G) be a factor map and letU={U1,···,Un} ∈.Then there existsxi ∈,1≤i ≤nsuch that(x1,···,xn|π)≥(G,U|π).

    where the last equality comes from Proposition 3.2(3).Thus there existsi?∈{1,···,u}such thatWe denote the set.We apply the same argument forUi,and obtain,1

    After repeating the same arguments,one can getndecreasing sequences of non-empty closed setssuch that

    Then we obtain that

    Proposition 6.3Letπ:(X,G)→(Y,G) be a factor map betweenG-systems.Then,

    (2) moreover,ifGis an abelian group,(X,G|π)∪?nXisG-invariant.

    where the second equality comes from Proposition 3.2(2).Therefore,(gx1,···,gxn)∈(G,X|π),and so(G,X|π)∪?nXisG-invariant.

    Proposition 6.4In a commutative diagram

    let (X,G),(Y,G) and (Z,G) beG-systems,and suppose thatπ,πXandπYare factor maps.

    (1) If(x1,···,xn)∈(X,G|πX),and supposing thatyi=π(xi)with(yi)∈Y n?n(Y),then(y1,···,yn|πY)≥α.

    (2) If (y1,···,yn)∈(Y,G|πY),then there exists (x1,···,xn)∈(X,G|πX) andπ(xi)=yi,i=1,···,n.

    Proof(1) If (x1,···,xn)∈(X,G|πX) andyi=π(xi),(yi)∈Y n?n(Y),then

    Then,by Lemma 6.2,there exists

    for some (x1,···,xn)∈Xn.Clearlyπ(x1)=y1,···,π(xn)=yn,so (x1,···,xn)?n(X).Now on the one hand,By Proposition 6.3(1),we have (x1,···,xn)∈(X,G|πX);that is,(x1,···,xn|πX)≥α.On the other hand,by (1),we have that

    6.2 Relative Dimension Sets and Uniform Relative Dimension Systems

    Definition 6.5Letπ: (X,G)→(Y,G) be a factor map betweenG-systems.We call the subset{α ≥0 :(X,G|π)≠?} of [0,1]then-th relative dimension set of (X,G),and denote it byDn(X,G|π).If 0?Dn(X,G|π),we will say that (X,G) has a strictly positiven-th relative entropy dimension.Letingα ∈(0,1],we call (X,G) anα-uniformn-th relative entropy dimension system (n-thα-u.r.d.system for short,and when there is no confusion,we omit “n-th”) ifDn(X,G|π)={α},and call (X,G) ann-thα+-relative dimension system (n-thα+-r.d.system for short,there is no confusion,we omit the “n-th”),ifDn(X,G|π)?[α,1].If(X,G) is the trivial system,we letDn(X,G|π)=?.

    Proposition 6.6Letα ∈(0,1].Then,

    (1) a nontrivialG-space (X,G) is an-thα-u.r.d.system if and only if(G,U|π)=αfor any open coverUofXwithU={U1,···,Un};

    (2) a commutative diagram

    if (X,G) is anα-u.r.d.system and (Y,G) is a nontrivial system,then (Y,G) is also anα-u.r.d.system.

    (3) in the commutative diagram of(2),if(X,G)is anα+-r.d.system and(Y,G)a nontrivial system,then (Y,G) is also anα+-r.d.system.

    ProofBy Proposition 6.4,we have(2)and(3).It is sufficient to show(1).Suppose that(G,U|π)=αfor any open coverUofXwithU={U1,···,Un}.Then,by Definition 6.1,for (x1,···,xn)∈Xn ?nX,we have(x1,···,xn|π)=α;that is,(X,G) isn-thα-u.r.d.system.

    7 The Relative Disjointness Between G-systems

    LetπX: (X,G)→(Z,G) and letπY: (Y,G)→(Z,G) be two factor maps,andπ1:X×Y →X,π2:X×Y →Ybe two projections.J ?X×Yis called a joining if (J,G) is aG-subsystem of (X×Y,G) with

    Define that

    Clearly,X×Z Yis a joining of (X,G) and (Y,G) over (Z,G).A joiningJof (X,G) and(Y,G) over (Z,G) is said to be proper ifJ≠X×Z Y.We say that (X,G) and (Y,G) are disjoint over (Z,G),ifX×Z Ycontains no proper joining of (X,G) and (Y,G) over (Z,G).

    Letπ:(X,G)→(Y,G)be a factor map between twoG-systems.We say thatπis minimal ifM=Xfor any closed andG-invariant subsetMofXwithπ(M)=Y,and thatπis open ifπ(U) is open for any open subsetU ?X.

    The following result is a generalization of the theorem that uniformly positive entropy systems are disjoint from minimal entropy zero systems [2]:

    Theorem 7.1LetπX: (X,G)→(Z,G) andπY: (Y,G)→(Z,G) be two factor maps withπXopen andπYminimal.If,for anyn ≥2,Dn(G,X|πX)>Dn(G,Y|πY) (i.e.for anyα ∈Dn(G,X|πX) andβ ∈Dn(G,Y|πY),α>β),then (X,G) and (Y,G) are disjoint over(Z,G).

    ProofLetJ ?X×Z Ybe any given joining of (X,G) and (Y,G) over (Z,G).

    which is a contradiction to the assumption thatDn(G,X|πX)>Dn(G,Y|πY).

    In order to prove that (X,G) and (Y,G) are disjoint over (Z,G),it is sufficient to prove thatJ=X×Z Y.Set

    AcknowledgementsThe authors would like to thank Professor Dou Dou for his many helpful comments on the first version of this paper.

    Conflict of InterestThe authors declare no conflict of interest.

    亚洲精品久久国产高清桃花| 一级av片app| 97人妻精品一区二区三区麻豆| 午夜视频国产福利| 国产高清三级在线| 在线免费观看不下载黄p国产 | 波野结衣二区三区在线| 99久久成人亚洲精品观看| 在线免费观看不下载黄p国产 | 中亚洲国语对白在线视频| 俄罗斯特黄特色一大片| 欧美黑人欧美精品刺激| 久久精品国产自在天天线| 亚洲电影在线观看av| 亚洲av二区三区四区| 色综合婷婷激情| 久久久精品大字幕| 天堂影院成人在线观看| 亚洲欧美激情综合另类| 国内毛片毛片毛片毛片毛片| 国产欧美日韩精品亚洲av| 亚洲av免费在线观看| 久久99热这里只有精品18| 人人妻人人澡欧美一区二区| 欧美激情久久久久久爽电影| 波多野结衣巨乳人妻| 精品久久久久久久久久免费视频| 精品久久久久久久久久久久久| 蜜桃亚洲精品一区二区三区| 麻豆成人午夜福利视频| 成人特级av手机在线观看| www.999成人在线观看| 宅男免费午夜| 亚洲av美国av| 国产精品av视频在线免费观看| 国产午夜福利久久久久久| 免费av不卡在线播放| 日本熟妇午夜| a级一级毛片免费在线观看| 亚洲三级黄色毛片| 亚洲av成人精品一区久久| 亚洲美女搞黄在线观看 | 亚洲av五月六月丁香网| 国产熟女xx| 欧美一级a爱片免费观看看| 亚洲不卡免费看| 国产精品久久久久久久久免 | 亚洲av中文字字幕乱码综合| 国产久久久一区二区三区| 人妻久久中文字幕网| 精品无人区乱码1区二区| 欧美中文日本在线观看视频| 精品久久久久久久末码| 国产精品三级大全| 欧美精品国产亚洲| 美女cb高潮喷水在线观看| 日韩中文字幕欧美一区二区| 免费av不卡在线播放| 国产乱人伦免费视频| 欧美不卡视频在线免费观看| 欧美激情国产日韩精品一区| 熟妇人妻久久中文字幕3abv| 国产成+人综合+亚洲专区| 欧美日本视频| 久久久久免费精品人妻一区二区| 日韩国内少妇激情av| 在线播放无遮挡| a级一级毛片免费在线观看| 免费一级毛片在线播放高清视频| 啦啦啦观看免费观看视频高清| 窝窝影院91人妻| 91在线观看av| 日韩国内少妇激情av| 国产探花极品一区二区| 久久久久免费精品人妻一区二区| 9191精品国产免费久久| 国产激情偷乱视频一区二区| 午夜日韩欧美国产| 99久久99久久久精品蜜桃| 老司机福利观看| 久久精品国产亚洲av天美| 国产又黄又爽又无遮挡在线| 国产av一区在线观看免费| 中文字幕免费在线视频6| 51国产日韩欧美| 可以在线观看的亚洲视频| 精品人妻熟女av久视频| 可以在线观看的亚洲视频| 99热6这里只有精品| 好男人在线观看高清免费视频| 精品一区二区三区视频在线| 久久久国产成人免费| 1024手机看黄色片| 久久九九热精品免费| 国产精品久久久久久人妻精品电影| 性色av乱码一区二区三区2| 久久久久久国产a免费观看| 亚洲av成人av| 国产黄a三级三级三级人| 天堂√8在线中文| 欧美一区二区国产精品久久精品| 国产成人福利小说| АⅤ资源中文在线天堂| 少妇的逼好多水| 亚洲内射少妇av| www.999成人在线观看| 麻豆国产97在线/欧美| 国产一区二区在线av高清观看| 亚洲无线在线观看| 国产av不卡久久| 有码 亚洲区| 欧美一区二区国产精品久久精品| 久久久久久国产a免费观看| 51午夜福利影视在线观看| 久久久久久久精品吃奶| 久久久久久久精品吃奶| 国产成人影院久久av| 夜夜爽天天搞| 最后的刺客免费高清国语| 亚洲成av人片免费观看| 国产人妻一区二区三区在| bbb黄色大片| 男人狂女人下面高潮的视频| 99久国产av精品| 中文字幕免费在线视频6| 尤物成人国产欧美一区二区三区| 午夜久久久久精精品| 国产综合懂色| 久久国产精品人妻蜜桃| 国产又黄又爽又无遮挡在线| 免费在线观看日本一区| 欧美日本视频| 国产免费男女视频| 91九色精品人成在线观看| .国产精品久久| 免费av不卡在线播放| 91字幕亚洲| 午夜福利18| 亚洲成人中文字幕在线播放| 少妇被粗大猛烈的视频| 亚洲18禁久久av| 欧美日韩中文字幕国产精品一区二区三区| 欧美一区二区亚洲| 日本 欧美在线| 真人一进一出gif抽搐免费| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲av一区麻豆| 最新在线观看一区二区三区| 校园春色视频在线观看| 亚洲精品乱码久久久v下载方式| 欧洲精品卡2卡3卡4卡5卡区| av黄色大香蕉| 久久久精品大字幕| 亚洲国产日韩欧美精品在线观看| 国产毛片a区久久久久| 亚洲精品在线美女| 国产三级中文精品| 亚洲精品日韩av片在线观看| 91麻豆精品激情在线观看国产| 日本精品一区二区三区蜜桃| 十八禁网站免费在线| 制服丝袜大香蕉在线| 亚洲精品久久国产高清桃花| 午夜精品久久久久久毛片777| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 精品一区二区三区av网在线观看| 日韩欧美在线乱码| 免费无遮挡裸体视频| 成人毛片a级毛片在线播放| 精品人妻1区二区| 日本 av在线| 亚洲内射少妇av| 国产伦人伦偷精品视频| 亚洲最大成人手机在线| 热99re8久久精品国产| 99久国产av精品| 又黄又爽又刺激的免费视频.| 中文字幕免费在线视频6| 国产在线男女| 国产精品一区二区三区四区免费观看 | aaaaa片日本免费| 国产久久久一区二区三区| 成人欧美大片| 国产精品一区二区三区四区免费观看 | 国产亚洲欧美在线一区二区| 性色av乱码一区二区三区2| 国产亚洲av嫩草精品影院| 老司机午夜十八禁免费视频| 国产日本99.免费观看| 首页视频小说图片口味搜索| 国产欧美日韩精品一区二区| 久久久久久久久久成人| 全区人妻精品视频| 亚洲真实伦在线观看| 久久人人精品亚洲av| 亚洲美女视频黄频| 精品久久国产蜜桃| а√天堂www在线а√下载| 国模一区二区三区四区视频| 欧美xxxx性猛交bbbb| 精品日产1卡2卡| 国产在视频线在精品| 搡老熟女国产l中国老女人| 亚洲电影在线观看av| 国产三级在线视频| 亚洲av美国av| 极品教师在线免费播放| 日本 欧美在线| 简卡轻食公司| 色尼玛亚洲综合影院| 亚洲欧美日韩高清在线视频| 又黄又爽又免费观看的视频| 精品不卡国产一区二区三区| 日韩精品青青久久久久久| 99久久精品热视频| 舔av片在线| 丝袜美腿在线中文| 国产欧美日韩一区二区精品| 久久草成人影院| 十八禁国产超污无遮挡网站| 国产精品亚洲美女久久久| 身体一侧抽搐| 色在线成人网| 十八禁网站免费在线| 男女视频在线观看网站免费| 简卡轻食公司| 欧美高清性xxxxhd video| 国产在线男女| 激情在线观看视频在线高清| 国产高潮美女av| 一a级毛片在线观看| 国产一区二区在线av高清观看| 亚洲aⅴ乱码一区二区在线播放| 毛片一级片免费看久久久久 | 最近中文字幕高清免费大全6 | 国产精品女同一区二区软件 | 男人狂女人下面高潮的视频| 成人美女网站在线观看视频| 亚洲最大成人中文| 在线观看66精品国产| 亚洲国产精品sss在线观看| 十八禁人妻一区二区| 热99re8久久精品国产| 久久久久久久亚洲中文字幕 | 日韩欧美国产一区二区入口| 婷婷六月久久综合丁香| 99在线人妻在线中文字幕| 午夜福利视频1000在线观看| 很黄的视频免费| 精品久久久久久久久久免费视频| 亚洲av五月六月丁香网| 欧美一区二区精品小视频在线| 久久精品国产清高在天天线| 51午夜福利影视在线观看| 欧美日韩福利视频一区二区| 精品人妻一区二区三区麻豆 | 精品乱码久久久久久99久播| 欧美性猛交╳xxx乱大交人| 日韩高清综合在线| 国产精品伦人一区二区| 国产精品野战在线观看| 特级一级黄色大片| 老熟妇仑乱视频hdxx| 欧美在线黄色| 有码 亚洲区| 免费观看的影片在线观看| 国产日本99.免费观看| 国产在视频线在精品| 少妇熟女aⅴ在线视频| 午夜福利高清视频| 国内揄拍国产精品人妻在线| 国产精品三级大全| 桃红色精品国产亚洲av| 亚洲欧美精品综合久久99| 国产精品人妻久久久久久| 欧美三级亚洲精品| 男人舔女人下体高潮全视频| 听说在线观看完整版免费高清| 午夜精品在线福利| 级片在线观看| 久久久久国产精品人妻aⅴ院| 久久热精品热| 我的女老师完整版在线观看| 欧美zozozo另类| 首页视频小说图片口味搜索| 波多野结衣巨乳人妻| 动漫黄色视频在线观看| 久久久成人免费电影| 亚洲国产精品成人综合色| 最新在线观看一区二区三区| 精品久久久久久久人妻蜜臀av| 一区二区三区激情视频| 欧美在线黄色| 深爱激情五月婷婷| av女优亚洲男人天堂| 亚洲av不卡在线观看| 日韩大尺度精品在线看网址| 国产精品1区2区在线观看.| 婷婷色综合大香蕉| 乱人视频在线观看| 精品熟女少妇八av免费久了| 中文在线观看免费www的网站| 日韩国内少妇激情av| 欧美日本亚洲视频在线播放| 有码 亚洲区| 别揉我奶头~嗯~啊~动态视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美+日韩+精品| 日韩欧美国产一区二区入口| 床上黄色一级片| 久久九九热精品免费| 亚洲精品乱码久久久v下载方式| 99国产精品一区二区三区| 日韩欧美精品v在线| 免费大片18禁| 老司机午夜福利在线观看视频| 搡老熟女国产l中国老女人| 成人av一区二区三区在线看| 精品一区二区免费观看| 99国产精品一区二区蜜桃av| 日本黄色片子视频| 特级一级黄色大片| 此物有八面人人有两片| 欧美日韩中文字幕国产精品一区二区三区| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 日韩中文字幕欧美一区二区| 精品一区二区免费观看| 国模一区二区三区四区视频| 日本一本二区三区精品| 日本黄色视频三级网站网址| 美女黄网站色视频| 毛片女人毛片| 十八禁国产超污无遮挡网站| 亚洲经典国产精华液单 | 免费在线观看成人毛片| 成人精品一区二区免费| 嫩草影视91久久| a级毛片a级免费在线| 美女 人体艺术 gogo| 99久久99久久久精品蜜桃| av天堂在线播放| 俄罗斯特黄特色一大片| 又爽又黄无遮挡网站| 免费无遮挡裸体视频| 久久这里只有精品中国| 国产精品久久视频播放| 内地一区二区视频在线| 黄色一级大片看看| 精品一区二区免费观看| 国产亚洲av嫩草精品影院| 国产精品一区二区免费欧美| 久久国产精品影院| 黄色女人牲交| 久久天躁狠狠躁夜夜2o2o| 精品人妻一区二区三区麻豆 | 亚洲性夜色夜夜综合| 99热这里只有是精品在线观看 | 九九热线精品视视频播放| 99精品久久久久人妻精品| 国产色爽女视频免费观看| 国产午夜福利久久久久久| 男女床上黄色一级片免费看| 别揉我奶头~嗯~啊~动态视频| 免费人成在线观看视频色| 国产伦精品一区二区三区四那| 色哟哟哟哟哟哟| 亚洲精品粉嫩美女一区| 99精品久久久久人妻精品| 免费在线观看影片大全网站| 九九久久精品国产亚洲av麻豆| 嫩草影院入口| 成人美女网站在线观看视频| 神马国产精品三级电影在线观看| 乱人视频在线观看| 99久国产av精品| 国产白丝娇喘喷水9色精品| 一区福利在线观看| 亚洲国产精品成人综合色| 尤物成人国产欧美一区二区三区| 全区人妻精品视频| 一二三四社区在线视频社区8| 日韩有码中文字幕| 国产激情偷乱视频一区二区| 人人妻人人澡欧美一区二区| 在线观看美女被高潮喷水网站 | 国产伦在线观看视频一区| 亚洲欧美日韩无卡精品| 久久亚洲真实| av黄色大香蕉| 麻豆久久精品国产亚洲av| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 99国产精品一区二区三区| 久久精品国产自在天天线| 夜夜爽天天搞| 久久国产精品人妻蜜桃| av在线蜜桃| 亚洲狠狠婷婷综合久久图片| 国产精品伦人一区二区| 成年版毛片免费区| 亚洲综合色惰| 美女cb高潮喷水在线观看| 日日夜夜操网爽| 又粗又爽又猛毛片免费看| 乱人视频在线观看| 中出人妻视频一区二区| 白带黄色成豆腐渣| 国产精品,欧美在线| 一本久久中文字幕| 可以在线观看毛片的网站| 神马国产精品三级电影在线观看| 一个人免费在线观看的高清视频| 免费看日本二区| 一级黄色大片毛片| 男女床上黄色一级片免费看| 熟女人妻精品中文字幕| 国产又黄又爽又无遮挡在线| 日本熟妇午夜| 国内揄拍国产精品人妻在线| 久久久久久大精品| aaaaa片日本免费| 看十八女毛片水多多多| 十八禁网站免费在线| 亚洲欧美激情综合另类| 欧美精品啪啪一区二区三区| 91麻豆精品激情在线观看国产| 国产欧美日韩一区二区精品| 国产精品野战在线观看| 亚洲精品日韩av片在线观看| 一区二区三区免费毛片| 国产av麻豆久久久久久久| 亚洲国产精品999在线| 欧美成人一区二区免费高清观看| 99热精品在线国产| 亚洲美女黄片视频| 国产精品久久视频播放| 国内精品久久久久精免费| 色在线成人网| 亚洲精品久久国产高清桃花| 淫妇啪啪啪对白视频| 男人舔奶头视频| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| 国产精品一区二区三区四区久久| 变态另类丝袜制服| or卡值多少钱| 女生性感内裤真人,穿戴方法视频| 亚洲熟妇中文字幕五十中出| 亚洲国产精品成人综合色| 精品99又大又爽又粗少妇毛片 | 动漫黄色视频在线观看| 精品久久国产蜜桃| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产精品影院久久| 男女视频在线观看网站免费| 免费人成在线观看视频色| 婷婷色综合大香蕉| 日韩亚洲欧美综合| 亚洲,欧美,日韩| 亚洲精品色激情综合| 桃色一区二区三区在线观看| 变态另类成人亚洲欧美熟女| 听说在线观看完整版免费高清| 在线播放国产精品三级| 国内少妇人妻偷人精品xxx网站| 夜夜爽天天搞| 精品久久久久久久人妻蜜臀av| 亚洲欧美日韩无卡精品| 成人性生交大片免费视频hd| 又黄又爽又免费观看的视频| 有码 亚洲区| 亚洲国产精品久久男人天堂| 欧美又色又爽又黄视频| 午夜老司机福利剧场| 欧美高清成人免费视频www| 日本精品一区二区三区蜜桃| 最新在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 亚洲aⅴ乱码一区二区在线播放| 窝窝影院91人妻| 日本 av在线| 两人在一起打扑克的视频| 动漫黄色视频在线观看| 一个人免费在线观看电影| 免费在线观看日本一区| 久久这里只有精品中国| 无人区码免费观看不卡| 九九在线视频观看精品| 舔av片在线| 精品一区二区三区av网在线观看| 中文字幕人成人乱码亚洲影| 可以在线观看的亚洲视频| 精品福利观看| 久久久久久久久大av| 久久久国产成人精品二区| 人妻夜夜爽99麻豆av| 69人妻影院| 免费人成在线观看视频色| 色综合亚洲欧美另类图片| 中文资源天堂在线| 长腿黑丝高跟| 国产av一区在线观看免费| 婷婷色综合大香蕉| 一级av片app| 99国产极品粉嫩在线观看| 99在线视频只有这里精品首页| 波野结衣二区三区在线| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 国产91精品成人一区二区三区| 久久精品国产99精品国产亚洲性色| 身体一侧抽搐| 中国美女看黄片| 国产精品一区二区三区四区免费观看 | 一本久久中文字幕| 日韩精品中文字幕看吧| 18禁在线播放成人免费| 99热这里只有是精品50| 中文字幕人成人乱码亚洲影| 在线看三级毛片| 精品一区二区三区人妻视频| 日韩高清综合在线| 少妇高潮的动态图| 亚洲av电影在线进入| 看片在线看免费视频| 一进一出好大好爽视频| 亚洲精品456在线播放app | 色噜噜av男人的天堂激情| 97超级碰碰碰精品色视频在线观看| ponron亚洲| 午夜福利视频1000在线观看| 网址你懂的国产日韩在线| 性色av乱码一区二区三区2| 好看av亚洲va欧美ⅴa在| 国产精品日韩av在线免费观看| 男女那种视频在线观看| 丁香欧美五月| 夜夜夜夜夜久久久久| 日韩欧美国产一区二区入口| 日韩亚洲欧美综合| 午夜两性在线视频| 日本 欧美在线| 婷婷亚洲欧美| 69人妻影院| 国产午夜精品论理片| or卡值多少钱| 亚洲av中文字字幕乱码综合| 免费高清视频大片| 九色国产91popny在线| 国产一区二区在线观看日韩| 欧美中文日本在线观看视频| 国产av在哪里看| 在线免费观看不下载黄p国产 | 亚洲精品在线观看二区| 别揉我奶头~嗯~啊~动态视频| 三级男女做爰猛烈吃奶摸视频| 最近中文字幕高清免费大全6 | 国产又黄又爽又无遮挡在线| 最新中文字幕久久久久| 精品午夜福利视频在线观看一区| 精品久久久久久,| 最新在线观看一区二区三区| 此物有八面人人有两片| 亚洲国产色片| 悠悠久久av| 男人和女人高潮做爰伦理| 午夜两性在线视频| 久久久久国内视频| 亚洲经典国产精华液单 | 欧美不卡视频在线免费观看| 免费大片18禁| 久久久久免费精品人妻一区二区| 久久久久久大精品| 小蜜桃在线观看免费完整版高清| 欧美精品国产亚洲| 久久久精品大字幕| 亚洲av成人av| 成人美女网站在线观看视频| 亚洲av美国av| 精品久久久久久久久久免费视频| 亚洲综合色惰| 中文字幕人妻熟人妻熟丝袜美| 精华霜和精华液先用哪个| 又爽又黄无遮挡网站| 深夜a级毛片| 亚洲第一欧美日韩一区二区三区| 91av网一区二区| 老司机福利观看| 欧美bdsm另类| 欧美高清性xxxxhd video| 久久婷婷人人爽人人干人人爱| 久久伊人香网站| 久久精品国产清高在天天线| 久久国产精品人妻蜜桃| 亚洲av美国av| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 看片在线看免费视频| 国产一区二区在线av高清观看| 国产在线男女| 黄色视频,在线免费观看| 9191精品国产免费久久| 偷拍熟女少妇极品色| 午夜日韩欧美国产| 18禁在线播放成人免费| 亚洲午夜理论影院| 嫩草影院精品99| a级一级毛片免费在线观看| 午夜福利免费观看在线| 在线观看舔阴道视频| 日本免费a在线| 成人高潮视频无遮挡免费网站|