• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONFORMALLY FLAT AFFINE HYPERSURFACES WITH SEMI-PARALLEL CUBIC FORM?

    2023-04-25 01:41:36徐輝陽(yáng)李策策

    (徐輝陽(yáng)) (李策策)

    School of Mathematics and Statistics, Henan University of Science and Technology,Luoyang 471023, China

    E-mail: xuhuiyang@haust.edu.cn; ceceli@haust.edu.cn

    Abstract In this paper,we study locally strongly convex affine hypersurfaces with the vanishing Weyl curvature tensor and semi-parallel cubic form relative to the Levi-Civita connection of the affine metric.As a main result,we classify these hypersurfaces as not being of a flat affine metric.In particular,2 and 3-dimensional locally strongly convex affine hypersurfaces with semi-parallel cubic forms are completely determined.

    Key words affine hypersurface;semi-parallel cubic form;Levi-Civita connection;conformally flat;warped product

    1 Introduction

    The classical equiaffine differential geometry is mainly concerned with the geometric properties and invariants of hypersurfaces in the affine space which are invariant under unimodular affine transformations.Let Rn+1be the (n+1)-dimensional real unimodular affine space.For any non-degenerate hypersurface immersion of Rn+1,it is well known how to induce the affine connection?,the affine shape operatorSwhose eigenvalues are called affine principal curvatures,and the affine metrich.The classical Pick-Berwald theorem states that the cubic formC:=?hvanishes if and only if the hypersurface is a non-degenerate hyperquadric.In that sense,the cubic form plays the role of the second fundamental form for submanifolds of real space forms.

    In recent decades,in a manner similar to that for the Pick-Berwald theorem,geometric conditions on the cubic form have been used to classify natural classes of affine hypersurfaces;see e.g.,[4,6,7,12,14–17,27,29,30].Among these,one of the most interesting developments may be the classification of locally strongly convex affine hypersurfaces withC=0,whereis the Levi-Civita connection of the affine metric.In this regard,Dillen,Vrancken,et al.obtained the classifications for lower dimensions in [10,13,18,25],and Hu,Li and Vrancken completed the classification for all dimensions as follows:

    Theorem 1.1([20]) LetMbe ann-dimensional (n ≥2) locally strongly convex affine hypersurface in Rn+1withC=0.ThenMis either a hyperquadric (i.e.,C=0) or a hyperbolic affine hypersphere withC≠0.In the latter case,either

    (i)Mis obtained as the Calabi product of a lower dimensional hyperbolic affine hypersphere with parallel cubic form and a point,or

    (ii)Mis obtained as the Calabi product of two lower dimensional hyperbolic affine hyperspheres with parallel cubic form,or

    (iii)n=m(m+1)-1,m ≥3,(M,h)is isometric to SL(m,R)/SO(m),andMis affinely equivalent to the standard embedding SL(m,R)/SO(m)Rn+1,or

    (iv)n=m2-1,m ≥3,(M,h) is isometric to SL(m,C)/SU(m),andMis affinely equivalent to the standard embedding SL(m,C)/SU(m)Rn+1,or

    (v)n=2m2-m-1,m ≥3,(M,h) is isometric to SU?(2m)/Sp(m),andMis affinely equivalent to the standard embedding SU?(2m)/Sp(m)Rn+1,or

    (vi)n=26,(M,h)is isometric to E6(-26)/F4,andMis affinely equivalent to the standard embedding E6(-26)/F4R27.

    As in[20,21],we say that an affine hypersurface has the semi-parallel(resp.parallel)cubic form relative to the Levi-Civita connection of the affine metric if·C=0 (resp.C=0),whereis the curvature tensor of the affine metric,and the tensor·Cis defined by

    for tangent vector fieldsX,Y.Obviously,the parallelism of cubic form implies its semiparallelism;the converse is not true,and we refer to Remark 3.2 for the counter-examples.

    As a generalization of Theorem 1.1,one may naturally posit the following problem:

    Problem 1.2Classify all then-dimensional locally strongly convex affine hypersurfaces with·C=0.

    Related to Problem 1.2,Hu and Xing [21]showed that such a surface is either a quadric or a flat affine surface.Recently,the present authors and Xing[24]gave an answer to Problem 1.2 in two cases for such hypersurfaces with at most one affine principal curvature of multiplicity one: one with no affine hyperspheres,the other with affine hyperspheres of constant scalar curvature.Based on the latter,the following conjecture was posed:

    Conjecture 1.3For any locally strongly convex affine hypersphere of dimensionn,the semi-parallelism and parallelism of the cubic form are equivalent,i.e.,·C=0 iff=0.

    In this paper,we continue to study locally strongly convex affine hypersurfaces with·C=0,and pay attention to the case where the Weyl curvature tensor vanishes identically.First,by investigating such affine hyperspheres,we can confirm Conjecture 1.3 for this case.

    Theorem 1.4LetMn,n ≥3 be a locally strongly convex affine hypersphere in Rn+1with·C=0 and the vanishing Weyl curvature tensor.ThenMnis affinely equivalent to either a hyperquadric,or the flat and hyperbolic affine hypersphere

    or the hyperbolic affine hypersphere with quasi-Einstein affine metric

    where (x1,···,xn+1) are the standard coordinates of Rn+1.

    From Theorem 1.4 and the fact that the Weyl curvature tensor vanishes automatically forn=3,we immediately obtain

    Corollary 1.5LetM3be a locally strongly convex affine hypersphere in R4with·C=0.ThenM3is affinely equivalent to either a hyperquadric,or one of the two hyperbolic affine hyperspheres

    where (x1,···,x4) are the standard coordinates of R4.

    Remark 1.6Conjecture 1.3 is true forn=2,3,4,by the following three facts:

    (1) By Theorem 1.1 and Corollary 2.1 in [9],Theorem 1.4 confirms Conjecture 1.3 if eithern=3,orMnis conformally flat forn ≥4.

    (2)It has been shown in[24]that Conjecture 1.3 is true if eithern=2,orMnis a constant scalar curvature forn ≥3.

    (3) It was shown in Lemma 3.1 of [13]that if·C=0 andn=4,then the Pick invariantJcan only take four constant values at any point,which implies thatJ,and thus the scalar curvature are constant.This,together with (2),confirms Conjecture 1.3 forn=4.

    Second,by removing the restriction of affine hyperspheres,we give an answer to Problem 1.2 under the assumption that the Weyl curvature tensor vanishes identically.

    Theorem 1.7LetMn,n ≥3 be a locally strongly convex affine hypersurface in Rn+1with·C=0 and the vanishing Weyl curvature tensor.Denote bymthe number of distinct eigenvalues of its Schouten tensor.Thenm ≤2,and one of the two cases occurs:

    (i)m=1,Mnis either a hyperquadric,or a flat affine hypersurface;

    (ii)m=2,Mnis affinely equivalent to either (1.3),or one of the six quasi-umbilical affine hypersurfaces with the quasi-Einstein affine metric of nonzero scalar curvature,as is explicitly described in Theorem 4.3.

    Remark 1.8m=1 in case(i)means that the affine metric is a constant sectional curvature.Related to this,we prove in Proposition 3.1 that any non-degenerate affine hypersurface satisfies that·C=0,and that the affine metric is a constant sectional curvature if and only if it is either a hyperquadric or a flat affine hypersurface.

    Remark 1.9The case (i) is partially classified in Remark 4.1,though its complete classification is still complicated and not solved.In fact,Anti?-Li-Vrancken-Wang [3]recently classified the locally strongly convex affine hypersurfaces with constant sectional curvature for when the hypersurface admits at most one affine principal curvature of multiplicity one.Even for affine surfaces with a flat affine metric,the classification problem is still open.

    Remark 1.10The examples in case (ii) are of the generalized Calabi compositions of a hyperquadric and a point in some special forms[1].The construction method of such examples initially originates from Calabi [8],and has been extended and characterized by Anti?,Dillen,Vrancken,Hu,Li,et al.in [1,2,11,19,22].

    The rest of this paper is organized as follows.In Section 2,we briefly review the local theory of equiaffine hypersurfaces,and some notions and results of conformally flat manifolds and warped product manifolds.In Section 3,we study the properties of the hypersurfaces involving the eigenvalues and eigenvalue distributions of the Schouten tensor,the difference tensor and the affine principal curvatures,and present the proof of Theorem 1.4.Based on these properties and known results,in Section 4 we discuss all of the possibilities of the immersion,and complete the proof of Theorem 1.7.

    2 Preliminaries

    In this section,we briefly review the local theory of equiaffine hypersurfaces.For more details,we refer to the monographs [23,26].

    Let Rn+1denote the standard (n+1)-dimensional real unimodular affine space that is endowed with its usual flat connectionDand a parallel volume formω,given by the determinant.LetF:Mn →Rn+1be an oriented non-degenerate hypersurface immersion.On such a hypersurface,up to a sign,there exists a unique transversal vector fieldξ,called the affine normal.A non-degenerate hypersurface equipped with the affine normal is called an(equi)affine hypersurface,or a Blaschke hypersurface.Denote always byX,Y,Z,Uthe tangent vector fields onMn.By the affine normal we can write that

    which induce onMnthe affine connection?,a semi-Riemannian metrichcalled the affine metric,the affine shape operatorS,and the cubic formC:=?h.An affine hypersurface is said to be locally strongly convex ifhis definite,and we always chooseξ,up to a sign,such thathis positive definite.We call a locally strongly convex affine hypersurface quasi-umbilical (resp.quasi-Einstein) if it admits exactly two distinct eigenvalues ofS(resp.Ricci tensor ofh),one of which is simple.

    We also writeKXYandKX=?X-.Since both?andhave zero torsion,Kis symmetric inXandY.It is also related to the totally symmetric cubic formCby

    which implies that the operatorKXis symmetric relative toh.Moreover,Ksatisfies the apolarity condition,namely,trKX=0 for allX.

    Here,by definition,[KX,KY]Z=KXKY Z-KY KXZ,and

    Contracting the Gauss equation (2.5) twice we have that

    Mnis called an affine hypersphere ifS=H id.Then it follows from(2.7)thatHis constant ifn ≥2.Mnis said to be a proper (resp.improper) affine hypersphere ifHis nonzero (resp.zero).Moreover,a locally strongly convex affine hypersphere is said to be parabolic,elliptic or hyperbolic according to whetherH=0,H>0 orH<0,respectively.For affine hyperspheres,the Gauss and Codazzi equations reduce to

    We collect the following two results for later use:

    Theorem 2.1(cf.Theorem 1.1 and Corollary 2.1 of [9]) LetMn,n ≥3 be a locally strongly convex affine hypersphere in Rn+1with the constant scalar curvaturer.ThenJr ≤0 and the traceless Ricci tensorsatisfies that

    where‖·‖hdenotes the tensorial norm with respect toh.This equality sign holds identically if and only ifMnhas the parallel cubic form and the vanishing Weyl curvature tensor,and if and only if one of three cases occurs:

    (i)J=0,Mnis affinely equivalent to a hyperquadric;

    (ii)J≠0,r=0,Mnis affinely equivalent to (1.2);

    (iii)J≠0,r<0,Mnis affinely equivalent to (1.3).

    Theorem 2.2(cf.Theorem 1 of[1]) LetMm+1,m ≥2 be a locally strongly convex affine hypersurface of the affine space Rm+2such that its tangent bundle is an orthogonal sum with respect to the affine metrichof two distributions: a one-dimensional distributionD1spanned by a unit vector fieldT,and anm-dimensional distributionD2such that

    Then eitherMm+1is an affine hypersphere such thatKT=0,or it is affinely congruent to one of the following immersions:

    (1)f(t,x1,···,xm)=(γ1(t),γ2(t)g2(x1,···,xm)) forγ1,γ2such that

    (2)f(t,x1,···,xm)=γ1(t)C(x1,···,xm)+γ2(t)em+1forγ1,γ2such that

    (3)f(t,x1,···,xm)=C(x1,···,xm)+γ2(t)em+1+γ1(t)em+2forγ1,γ2such that

    Hereg2:Rm →Rm+1is a proper affine hypersphere centered at the origin with the affine mean curvature?,andC:Rm →Rm+2is an improper affine hypersphere given byC(x1,···,xm)=(x1,···,xm,p(x1,···,xm),1) with the affine normalem+1.

    Finally,we review some notions and results regarding conformally flat manifolds and warped product manifolds.The Schouten tensor of (1,1)-type,on a Riemannian manifold (M,h) of dimensionn ≥3,is a self-adjoint operator relative tohdefined by

    whereQ,Iandrare the Ricci operator,identity operator and scalar curvature,respectively.Note that (M,h) is conformally flat,which means that a neighborhood of each point can be conformally immersed into the Euclidean space Rn.Forn ≥4,(M,h)is conformally flat if and only if the Weyl curvature tensor defined below vanishes:

    Forn=3,it is well known thatW=0 identically,and that (M,h) is conformally flat if and only if the Schouten tensor is a Codazzi tensor.IfW=0,the Riemannian curvature tensor can be rewritten by

    (M,h)of dimensionn ≥3 is of constant sectional curvature if and only ifW=0 and its metric is Einstein,where the Einstein metric means that the eigenvalues of the operatorPorQare single.

    For Riemannian manifolds(B,gB),(M1,g1)and a positive functionf:B →R,the product manifoldM:=B×M1,equipped with the metrich=gB ⊕f2g1,is called a warped product manifold with the warped functionf,denoted byB×f M1.IfEandU,Vare independent vector fields ofBandM1,respectively,then(cf.(2)of[5])the sectional curvatures ofMsatisfy that

    Theorem 2.3(cf.Theorem 3.7 of [5]) LetM=B×f M1be a warped product with dimB=1 and dimM1≥2.ThenMis conformally flat if and only if,up to a reparametrization ofB,(M1,g1) is a space of constant curvature andfis any positive function.

    3 Conformally Flat Affine Hypersurfaces with ·C=0

    From this section on,when we say that an affine hypersurface has the semi-parallel cubic form,this always means that·C=0,or equivalently,that·K=0.Then,by the Ricci identity ofK,we have that

    In fact,by (2.4) and the Ricci identities ofCandK,the equivalence above follows from the following formula:

    First,under the assumption that the affine metric is of constant sectional curvature,we extend the result of Theorem 6.2 in [21],stating that a locally strongly convex affine surface has the semi-parallel cubic form if and only if it is either a quadric or a flat affine surface,from the surface to the non-degenerate affine hypersurface,as follows:

    Proposition 3.1LetMn,n ≥2 be a non-degenerate affine hypersurface of Rn+1.ThenMnhas the semi-parallel cubic form and an affine metric of constant sectional curvature if and only ifMnis either a hyperquadric or a flat affine hypersurface.

    ProofThe “if part” follows from (3.1) and the Pick-Berwald theorem.

    Now,we prove the “only if part”.Assume that the affine metric is of constant sectional curvaturec,then

    Let us choose an orthonormal basis{e1,···,en} such thath(ei,ej)=?iδijand?i=±1.Then,from (3.1),we get that

    which,together with (3.3),implies that,fori≠j,

    Therefore,eitherc=0,orc≠ 0 andKeiei=cieifor alli.In the latter case,the apolarity condition shows thatcj=trKej=0 for eachj,and thusKeiei=0 for alli.AsKis symmetric,we have thatK=0 identically.By the Pick-Berwald theorem,the conclusion follows.

    Remark 3.2To see the examples whose cubic forms are semi-parallel but not parallel,we refer to Remark 6.2 in [21]for flat surfaces,and Theorem 4.1 in [3]for the flat quasi-umbilical affine hypersurfaces.

    From now on,letF:Mn →Rn+1,n ≥3 be a locally strongly convex affine hypersurface with·C=0 and the vanishing Weyl curvature tensor.Then we have(3.1)and(2.12).Denote by{e1,···,en} the local orthonormal frame ofMn,whereeiare the eigenvector fields of the Schouten tensorPwith corresponding eigenvaluesνi,i=1,···,n.Then,we see from (2.12)that

    for any tangent vectorZ.TakingX=ei,Y=ej,u=ek,Z=e?in (3.1),we have that

    Fork=?=i≠jin (3.5),we obtain that

    Taking the inner product of (3.6) withei,we deduce that

    Interchanging the roles ofeiandej,similarly we have that

    Taking the inner product of (3.6) withej,by (3.8),we see that

    Together with (3.7),we obtain from (3.6) that

    On the other hand,settingk=i,?=jin (3.5),and by (3.7) and (3.8),we deduce that

    For more information,we denote byν1,···,νmthemdistinct eigenvalues forPof multiplicities(n1,n2,···,nm).Let D(νi)be the eigenvalue distribution of eigenvalueνifori=1,···,m.Then,we can prove the following two lemmas:

    Lemma 3.3It holds that

    (i) ifνi≠0 andni ≥2,thenh(K(u,v),w)=0,?u,v,w ∈D(νi);

    ProofIfνi≠ 0 andni ≥2,then,by takingνj=νiandei=uin (3.9),we haveh(K(u,u),u)=0 for any unit vectoru ∈D(νi).Then,the conclusion (i) follows from the symmetric property ofK.

    Then,by (3.9),we have thath(K(u,u),u)=0 for any vectoru ∈D(νi),which,together with the symmetric property ofK,implies thatK(u,u)?D(νi).Furthermore,it follows from(3.10)and (3.11) that

    for any unit vectorsu ∈D(νi),v ∈D(νj).Ifm=2,then (3.13) immediately implies thatK(u,u)=K(v,v)=0.Ifm ≥3,for arbitraryνk,different fromνiandνj,then by (3.12),eitherνk+νi≠ 0 orνk+νj≠ 0 holds.In either case,by (3.7) and the arbitrariness ofνkwe see from (3.13) thatK(u,u)=K(v,v)=0.Therefore,by the symmetric property ofKwe have (ii).

    Lemma 3.4The numbermof distinct eigenvalues of the Schouten tensorPis at most 2.In particular,ifm=2,denoting byν1,ν2the two distinct eigenvalues ofP,then one of their multiplicity must be 1,and

    ProofFirst,form ≥2,we claim that there must exist two distinct eigenvalues,νiandνj,ofPsuch thatνi+νj=0.Otherwise,we have thatfor anyνi≠νj,which,together with Lemma 3.3 (ii),implies thatK=0 identically.Then,the Pick-Berwald theorem implies that the hypersurface is a hyperquadric,and is thus of constant sectional curvature.This means thatm=1,which stands in contradiction tom ≥2.

    By the claim above,form ≥2,we denote byν1,ν2the two distinct eigenvalues ofPsuch thatν1+ν2=0,and thusν1ν2≠0.

    Next,we prove thatm ≤2.Otherwise,ifm ≥3,then,for arbitraryνi,differently that forν1andν2,we have that (νi+ν1)(νi+ν2)≠0,and thus,

    It follows from Lemma 3.3 (ii) that

    for any vectorsu ∈D(ν1),v ∈D(ν2),w ∈D(νi).Therefore,the arbitrariness ofνiimplies thatK(u,v)=0.Together with (3.15) and the symmetric property ofK,we have thatK=0 identically.As before,it follows from the Pick-Berwald theorem thatm=1,which stands in contradiction tom ≥3.Hencem ≤2.

    Finally,form=2,letν1,ν2be the two distinct eigenvalues ofPwith multiplicities(n1,n2).From the analysis above,we have (3.14).It is sufficient to prove that eithern1=1 orn2=1 holds.On the contrary,assume thatn1≥2 andn2≥2.Denote by,···,the orthonormal eigenvector fields ofP,which span D(νi) fori=1,2.Then,asνi≠ 0 andni ≥2,by Lemma 3.3 (i) and (3.11),we have that

    fori=1,2.It follows from the apolarity condition that

    for anyu ∈D(ν1).Therefore,h(Kuv,v)=0 for anyu ∈D(ν1),v ∈D(ν2).Similarly,we have thath(Kvu,u)=0.Then,by the symmetric property ofK,we have thatK(u,v)=0.Together with (3.16),we further obtain thatK=0 identically.As before,this stands in contradiction to the fact thatm=2.Lemma 3.4 has been proven.

    Next,based on Lemma 3.4,we pay attention to the case ofm=2.We always denote byν1,ν2the two distinct eigenvalues ofPwith multiplicities 1,n-1,respectively.LetTbe the unit eigenvector field of the eigenvalueν1,and let{X1,···,Xn-1} be any orthonormal frame of D(ν2).By (3.14),(3.10),(3.11) and Lemma 3.3 (i),we see that

    It follows from the apolarity condition that

    Summing the above,asm=2 and thusK≠0,we can assume that

    Combining the last formula with (2.11) and the fact that trQ=r,we obtain that

    which implies that the affine metric is quasi-Einstein with nonzero scalar curvature.

    Now,we are ready to prove the following:

    Lemma 3.5Ifm=2,then the numberσof distinct affine principal curvatures is at most 2.Moreover,there exists a local orthonormal frame,still denoted by{T,X1,···,Xn-1},such that there hold (3.18),(3.19) and

    ProofFrom the analysis above we still have the freedom to rechoose the orthonormal frame of D(ν2) such that (3.18) and (3.19) hold.Therefore,we can reselect the orthonormal frame of D(ν2) if necessary,still denoted by{X1,···,Xn-1},such that

    Then,it follows from (3.18),(3.4) and the Gauss equation (2.5) that

    which,together with (3.21),implies that both D(ν1) and D(ν2) are the invariant subspaces ofS.Therefore,we can rechoose the local orthonormal frame on D(ν2),still denoted by{X1,···,Xn-1},such that

    Then,we see from (3.18),(3.4) and the Gauss equation (2.5) that

    which imply that

    Therefore,we have thatσ ≤2 and (3.20).

    Finally,we conclude this section by proving Theorem 1.4.

    Completion of Proof Theorem 1.4LetF:Mn →Rn+1,n ≥3 be a locally strongly convex affine hypersphere with·C=0 and the vanishing Weyl curvature tensor.Then,we see from Lemma 3.4 that the numbermof distinct eigenvalues of the Schouten tensorPis at most 2.

    Ifm=1,byW=0 we see from (2.12) thatMnis of constant sectional curvature.Then,it follows from Proposition 3.1 and the Main theorem of [28]thatMnis affinely equivalent to either a hyperquadric,or the flat and hyperbolic affine hypersphere (1.2).

    Ifm=2,based on Lemma 3.5,by the fact thatH=μ1=μ2is constant,we see from(3.20),(3.19) and (2.8) that

    and thusris a negative constant.Defining the traceless Ricci tensorwe deduce from (3.19) and (3.22) that all of the components ofvanish except for

    Combining this with (3.22),we have that

    where‖·‖hdenotes the tensorial norm with respect toh.

    In summary,Mnis a hyperbolic affine hypersphere with constant negative scalar curvature andJ≠ 0,which further satisfies the formula (3.23).Then,it follows from Theorem 2.1 thatMnis affinely equivalent to the hyperbolic affine hypersphere (1.3).

    4 Proof of Theorem 1.7

    LetMn,n ≥3 be a locally strongly convex affine hypersurface in Rn+1with·C=0 and the vanishing Weyl curvature tensor.Denote bym(resp.σ)the number of distinct eigenvalues of its Schouten tensor (resp.affine shape operator).Then,by Lemma 3.4 we have thatm ≤2.

    Ifm=1,byW=0,we see from (2.12) thatMnis of constant sectional curvature.Then,it follows from Proposition 3.1 thatMnis either a hyperquadric,or a flat affine hypersurface.

    Remark 4.1IfMnis a flat affine hypersurface withC≠ 0,it follows from Theorems 1.1 and 1.2 of [3]and Theorem 1.4 thatMnis affinely equivalent to either (1.2) ifσ=1,or one of the three flat quasi-umbilical affine hypersurfaces (1),(2) or (7) explicitly described in Theorem 4.1 of [3]ifσ=2.However,forσ ≥3,Mnis a flat affine hypersurface with at least two affine principal curvatures of multiplicity one,whose classification is still complicated and has not been involved until now.

    Ifm=2,by Lemma 3.5,we have thatσ ≤2.Forσ=1,i.e.,Mnis an affine hypersphere,Theorem 1.4 shows thatMnis affinely equivalent to (1.3).

    For the last case,m=σ=2,we see from Lemma 3.5 thatMnis a quasi-umbilical affine hypersurface with a quasi-Einstein affine metric of nonzero scalar curvature.Moreover,for the local orthonormal frame{T,X1,···,Xn-1},it holds that

    By (3.18) and (3.19),we further obtain from (2.12) that

    Remark 4.2Forσ=m=2,Mnis affinely equivalent to one of the three classes of immersions in Theorem 2.2.In fact,it follows from (4.1) thatMnsatisfies the conditions of Theorem 2.2.In the proof of Theorem 2.2 in [1],it was shown in Lemma 3 that ifλ2=0,thenKT=0 andMnis an affine hypersphere.In our situation,byMnnot an affine hypersphere,we can exclude this possibility in Theorem 2.2.

    Next,we give more information about the three classes of warped product immersions in Theorem 2.2.Denote by D(μ2)=span{X1,···,Xn-1} the eigenvalue distribution ofScorresponding toμ2.In the proof of Theorem 2.2 in [1],by (4.2) it was shown that

    and thatMnis locally a warped product R×fM2,where the warping functionfis determined byα=-T(lnf),and R andM2are,respectively,integral manifolds of the distributions span{T}and D(μ2),andM2is an affine hypersphere.The same proof implies that the projection of the difference tensor on D(μ2) is the difference tensor of the componentsM2given by

    Then,it follows from (4.1) thatL2=0.HenceM2is a hyperquadric with constant sectional curvaturec.

    By the warped product structure,if not otherwise stated,we always take the local coordinates{t,x1,···,xn-1} onMnsuch thatThen all functionsμi,λi,α,randfdepend only ont.Denoting that?t()=(·)′,we have thatα=-f′/f.It follows from (2.13),(4.3) andα′=α2in (4.4) that

    Furthermore,we can get,from the equations above forfandα,that,up to a translation and a direction of the parametrict,

    where locally we take thatt>0.Together with(4.2)and(4.4)we can check thatiff=1,andiff=t.It follows from (4.2) and (4.6) that

    where the scalar curvatureris nonzero in either case.

    The Pick-Berwald theorem states that the cubic form or difference tensor vanishes if and only if the hypersurface is a non-degenerate hyperquadric.For the locally strongly convex case,for later use,we recall from [23]pages 104–105 the following three hyperquadrics revised for dimensionn-1:

    (1) The ellipsoid described in Rnby

    This has constant sectional curvaturecand the affine normal-cF1,where in local coordinates we denote this immersion byF1(x1,···,xn-1).

    (2) The hyperboloid described in Rnby

    This has constant sectional curvaturecand the affine normal-cF2,where in local coordinates we denote this immersion byF2(x1,···,xn-1).

    (3) The elliptic paraboloid described in Rnby

    The affine metric is flat.This is the only parabolic affine hypersphere with constant sectional curvature.

    Finally,armed with the above preparations,by Remark 4.2 and the computations carried out in[3]for the three classes of immersions in Theorem 2.2,we can prove the following theorem,which,together with the previous cases,completes the proof of Theorem 1.7:

    Theorem 4.3LetMn,n ≥3 be a locally strongly convex affine hypersurface in Rn+1with·C=0 and the vanishing Weyl curvature tensor.Assume that both the numbers of distinct eigenvalues of its Schouten tensor and affine shape operator are 2.ThenMnis a quasi-umbilical affine hypersurface with a quasi-Einstein metric of nonzero scalar curvaturer.Moreover,(Mn,h) is locally isometric to the warped product R+×f M2,where the warped function isf(t)=1 ort,M2is of constant sectional curvaturec,andMnis affinely equivalent to one of the following six hypersurfaces:

    (1) The immersion (γ1(t),γ2(t)F1(x1,···,xn-1)),where

    (a)f(t)=1,andis positive constant,

    (b)γ1andγ2are determined by

    wherec1,c2are constants such thatγ2>0.

    (2) The immersion (γ1(t),γ2(t)F2(x1,···,xn-1)),where

    (a)f(t)=1,andis negative constant,

    (b)γ1andγ2are determined by

    wherec1,c2are constants such thatγ2>0.

    (3) The immersion (γ1(t),γ2(t)F1(x1,···,xn-1)),where

    (a)f(t)=t,andis positive constant,

    (b)γ1andγ2are determined by

    wherek(t) is a positive solution to the linear differential equation

    (4) The immersion (γ1(t),γ2(t)F2(x1,···,xn-1)),where

    (a)f(t)=t,andis negative constant,

    (b)γ1andγ2are determined by

    wherek(t) is a positive solution to the linear differential equation

    (b)γ1andγ2are determined by

    wherec1is a constant.

    Remark 4.4By Theorem 2.3,the warped product structure in Theorem 4.3 implies that all of the examples above,especially for the 3-dimensional case,are conformally flat.

    ProofBased on the previous analysis,we will discuss the three classes of immersions in Theorem 2.2 by takingm=n-1.

    Case 1It was shown in [1]that if

    thenMnis affinely equivalent to the immersion(γ1(t),γ2(t)g2(x1,···,xn-1)),whereg2:M2→Rnis a proper affine hypersphere with the difference tensorL2defined by (4.5).It follows from the analysis above and (4.7)-(4.9) thatL2=0,andg2has constant sectional curvaturec≠ 0,the affine mean curvaturecand the affine normal-cg2.Thusg2=F1ifc>0,org2=F2ifc<0.Asr≠ 0,(4.8) implies thatc≠ 1 iff=t.Moreover,by the computations of the immersion on pages 292–294 of [3],we take thatλ=-cin (4.3) of [3],and deduce that

    wherek(t),and thusγ2are positive functions.

    Iff=1,we see from (4.10) thatandγ2=k(t)1/(n+1),where

    Solving this equation,we obtain that

    where the constantsc1,c2are chosen such thatγ2>0.We obtain the immersion (1) ifc>0,and the the immersion (2) ifc<0.

    Iff=t,we see from (4.2),(4.8) and (4.10) thatand

    In particular,ifk(t) is a power function oft,we can solve this equation to obtain that

    wherec1is a positive constant,the constantsc2,c3are chosen such thatγ2>0,andτ1,τ2are the solutions of the quadric equationτ2-(n+2)τ+(n+1)c=0.We obtain the immersion(3) ifc>0,and the immersion (4) ifc<0.

    Case 2It was shown in [1]that if

    thenMnis affinely equivalent to the immersion

    whereg(x1,···,xn-1) is a convex function whose graph immersion is a parabolic affine hypersphere with the difference tensorL2defined by (4.5).It follows from the first equation of (4.2),(4.7),(4.8) and (4.14) thatL2=0,f=t,c=0,and that this parabolic affine hypersphere has a flat affine metric,and thus

    Moreover,we recall from the computations of the hypersurfaces on page 294 of [3]thatγ1,γ2satisfy that

    which yields that

    Here,by applying equiaffine transformations,we may set thatc2=-(n+1)/(n+2)2andc3=0.We have the immersion (5).

    Case 3It was shown in [1]that if

    thenMnis affinely equivalent to the immersion (x1,···,xn-1,g(x1,···,xn-1)+γ1(t),γ2(t)),whereg(x1,···,xn-1) is a convex function whose graph immersion is a parabolic affine hypersphere with the difference tensorL2defined by (4.5).It follows from the analysis above,λ2≠0 in (4.2),(4.7),(4.8) and (4.16),thatL2=0,μ2=0,λ2=α=-,f=tandc=0.As before,

    Moreover,we see from the computations of the hypersurfaces on page 295 of [3]thatγ1,γ2satisfy that

    Then,takingf=tinto this equation,we deduce that

    where?∈{-1,1}.Then,we can directly solve these equations to obtain that

    By applying a translation and a reflection in Rn+1,we may assume thatc1=c3=0 andγ2>0,i.e.,?=1.Also,by possibly applying an equiaffine transformation,we may set thatc2=0.Hence,we obtain the immersion (6).

    Conflict of InterestThe authors declare no conflict of interest.

    国产99久久九九免费精品| 人人妻人人澡人人爽人人夜夜| 一级片免费观看大全| 一区二区av电影网| 亚洲色图综合在线观看| 丝袜在线中文字幕| 91精品三级在线观看| 亚洲国产欧美一区二区综合| 可以免费在线观看a视频的电影网站 | 亚洲欧美清纯卡通| 欧美av亚洲av综合av国产av | 国产精品嫩草影院av在线观看| 亚洲美女搞黄在线观看| 精品一品国产午夜福利视频| 满18在线观看网站| 国产男人的电影天堂91| 97人妻天天添夜夜摸| 亚洲欧美色中文字幕在线| 国产在线视频一区二区| 亚洲av欧美aⅴ国产| 国产一区亚洲一区在线观看| 午夜日韩欧美国产| av在线app专区| 五月开心婷婷网| 免费高清在线观看视频在线观看| 中国国产av一级| 777久久人妻少妇嫩草av网站| 欧美精品高潮呻吟av久久| 免费高清在线观看日韩| 菩萨蛮人人尽说江南好唐韦庄| 9色porny在线观看| 国产成人欧美| 亚洲av电影在线进入| 国产极品粉嫩免费观看在线| av国产久精品久网站免费入址| 女的被弄到高潮叫床怎么办| 欧美最新免费一区二区三区| 狂野欧美激情性xxxx| 亚洲欧美一区二区三区久久| 少妇精品久久久久久久| 国产成人精品无人区| 爱豆传媒免费全集在线观看| 久久久久网色| 午夜福利一区二区在线看| 国产女主播在线喷水免费视频网站| 成人国语在线视频| 咕卡用的链子| 久久精品熟女亚洲av麻豆精品| 亚洲精品aⅴ在线观看| 18禁裸乳无遮挡动漫免费视频| 好男人视频免费观看在线| 晚上一个人看的免费电影| 欧美人与善性xxx| 欧美亚洲 丝袜 人妻 在线| 精品一区在线观看国产| 亚洲av综合色区一区| 午夜福利,免费看| 久久99精品国语久久久| 一区二区三区四区激情视频| 人人妻,人人澡人人爽秒播 | 国产黄色免费在线视频| 成人影院久久| 一边摸一边做爽爽视频免费| 亚洲久久久国产精品| 制服诱惑二区| 久久精品久久精品一区二区三区| 熟妇人妻不卡中文字幕| 午夜福利免费观看在线| 日韩不卡一区二区三区视频在线| 美女福利国产在线| 亚洲成人免费av在线播放| 一级毛片黄色毛片免费观看视频| 国产亚洲欧美精品永久| 久久久久精品性色| 国产精品久久久人人做人人爽| 亚洲一码二码三码区别大吗| 美女扒开内裤让男人捅视频| 久热爱精品视频在线9| 欧美变态另类bdsm刘玥| 黄片无遮挡物在线观看| 久久综合国产亚洲精品| 少妇人妻精品综合一区二区| kizo精华| 最新的欧美精品一区二区| av天堂久久9| 黄网站色视频无遮挡免费观看| 国产精品久久久人人做人人爽| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 亚洲精品成人av观看孕妇| 久久久欧美国产精品| 1024视频免费在线观看| www.熟女人妻精品国产| 悠悠久久av| 伦理电影大哥的女人| 少妇人妻久久综合中文| 一区二区三区乱码不卡18| 午夜福利视频在线观看免费| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久 | 亚洲av电影在线观看一区二区三区| 欧美日韩av久久| 久久婷婷青草| 日本色播在线视频| 日日爽夜夜爽网站| 一级爰片在线观看| 永久免费av网站大全| 亚洲综合色网址| 国产 精品1| 久久久欧美国产精品| 黄片无遮挡物在线观看| 丁香六月欧美| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 国产亚洲最大av| 日韩中文字幕欧美一区二区 | 男人操女人黄网站| 一本久久精品| 国产成人午夜福利电影在线观看| 亚洲美女视频黄频| 老司机影院成人| 亚洲国产看品久久| 国产一区二区三区av在线| 美女福利国产在线| 久热这里只有精品99| 国产精品国产三级专区第一集| 国产精品女同一区二区软件| 男人舔女人的私密视频| 国产女主播在线喷水免费视频网站| 国产视频首页在线观看| 男人舔女人的私密视频| 国产福利在线免费观看视频| 久久精品久久精品一区二区三区| 老熟女久久久| 满18在线观看网站| av国产精品久久久久影院| 久久久久久久国产电影| 99国产综合亚洲精品| 又粗又硬又长又爽又黄的视频| 国产亚洲av高清不卡| 捣出白浆h1v1| 777米奇影视久久| 精品少妇一区二区三区视频日本电影 | 1024视频免费在线观看| av在线播放精品| 91成人精品电影| 最近最新中文字幕大全免费视频 | 亚洲精品国产av成人精品| 青春草视频在线免费观看| 这个男人来自地球电影免费观看 | 国产成人精品在线电影| 男女边吃奶边做爰视频| 欧美成人午夜精品| videosex国产| 欧美另类一区| 国产欧美日韩一区二区三区在线| 国产精品久久久久久人妻精品电影 | 亚洲国产精品国产精品| 视频在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| h视频一区二区三区| 丝袜人妻中文字幕| 高清欧美精品videossex| 日韩欧美一区视频在线观看| 日本午夜av视频| 人妻人人澡人人爽人人| 久久毛片免费看一区二区三区| 如日韩欧美国产精品一区二区三区| 在线观看免费高清a一片| 在线观看一区二区三区激情| 大香蕉久久成人网| 午夜日韩欧美国产| 午夜福利,免费看| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩av久久| 国产在线视频一区二区| 男女边吃奶边做爰视频| 日韩制服丝袜自拍偷拍| 午夜日本视频在线| 亚洲综合精品二区| 在线精品无人区一区二区三| 亚洲一级一片aⅴ在线观看| 国产黄色视频一区二区在线观看| 黑丝袜美女国产一区| 一二三四中文在线观看免费高清| 亚洲第一av免费看| 欧美人与性动交α欧美精品济南到| 咕卡用的链子| 老汉色av国产亚洲站长工具| 中文精品一卡2卡3卡4更新| 天堂俺去俺来也www色官网| 看十八女毛片水多多多| 国产男女内射视频| 亚洲国产成人一精品久久久| 午夜福利网站1000一区二区三区| 少妇猛男粗大的猛烈进出视频| 亚洲国产看品久久| 性少妇av在线| 黄网站色视频无遮挡免费观看| 国产男女超爽视频在线观看| 久久热在线av| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 天堂8中文在线网| 少妇精品久久久久久久| 国产国语露脸激情在线看| 老司机深夜福利视频在线观看 | 国产 精品1| 欧美人与善性xxx| 久久久久视频综合| 国产欧美日韩一区二区三区在线| 这个男人来自地球电影免费观看 | 1024视频免费在线观看| netflix在线观看网站| 精品国产一区二区三区四区第35| 欧美日韩一级在线毛片| 亚洲精品第二区| 久久久国产精品麻豆| 国产亚洲欧美精品永久| 精品亚洲成a人片在线观看| 男女免费视频国产| 最近中文字幕高清免费大全6| 国产无遮挡羞羞视频在线观看| 亚洲第一区二区三区不卡| 国产精品女同一区二区软件| 国产淫语在线视频| 色婷婷av一区二区三区视频| 一边摸一边做爽爽视频免费| 午夜福利网站1000一区二区三区| 好男人视频免费观看在线| 一区福利在线观看| 国产精品一国产av| 最近2019中文字幕mv第一页| 国产成人精品久久久久久| 精品一区二区三区av网在线观看 | 男人操女人黄网站| 亚洲欧美清纯卡通| 国产成人精品在线电影| 免费av中文字幕在线| 日韩制服丝袜自拍偷拍| 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 欧美激情高清一区二区三区 | av.在线天堂| 91老司机精品| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 亚洲欧美激情在线| 高清黄色对白视频在线免费看| 久久 成人 亚洲| 国产成人午夜福利电影在线观看| 亚洲综合色网址| 久久人人97超碰香蕉20202| 一级,二级,三级黄色视频| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区三区在线| 国产精品无大码| 丝袜脚勾引网站| 午夜福利免费观看在线| 国产av国产精品国产| 赤兔流量卡办理| 亚洲成国产人片在线观看| 在线亚洲精品国产二区图片欧美| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| 国产av码专区亚洲av| 91老司机精品| 亚洲第一青青草原| svipshipincom国产片| 丁香六月天网| 欧美人与性动交α欧美精品济南到| 国产精品一区二区精品视频观看| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美网| 亚洲国产精品999| 国产97色在线日韩免费| 国产成人欧美| 国产精品 国内视频| 久久精品国产综合久久久| 欧美变态另类bdsm刘玥| 高清av免费在线| 中文字幕制服av| 一级片免费观看大全| 无限看片的www在线观看| 99国产精品免费福利视频| 国产精品欧美亚洲77777| 成年av动漫网址| 欧美亚洲 丝袜 人妻 在线| 中文乱码字字幕精品一区二区三区| 亚洲中文av在线| 青春草亚洲视频在线观看| 亚洲国产看品久久| 亚洲综合色网址| 极品少妇高潮喷水抽搐| 日韩伦理黄色片| 国产亚洲一区二区精品| 婷婷色麻豆天堂久久| 我要看黄色一级片免费的| 在线天堂中文资源库| 日本猛色少妇xxxxx猛交久久| 日本91视频免费播放| 日本一区二区免费在线视频| 黄色 视频免费看| 久久天躁狠狠躁夜夜2o2o | 欧美精品高潮呻吟av久久| 精品国产一区二区久久| 亚洲av成人不卡在线观看播放网 | 麻豆av在线久日| 超碰成人久久| 免费女性裸体啪啪无遮挡网站| 国产成人免费无遮挡视频| 男女床上黄色一级片免费看| 久久久久人妻精品一区果冻| 午夜福利一区二区在线看| xxx大片免费视频| 国产野战对白在线观看| 99久久精品国产亚洲精品| 国产无遮挡羞羞视频在线观看| 51午夜福利影视在线观看| 制服人妻中文乱码| 国产伦理片在线播放av一区| 久久久久久久久免费视频了| 99re6热这里在线精品视频| 搡老乐熟女国产| 久久久精品免费免费高清| 日韩中文字幕视频在线看片| 一级爰片在线观看| 最新在线观看一区二区三区 | 男人舔女人的私密视频| 最黄视频免费看| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| 麻豆精品久久久久久蜜桃| 老鸭窝网址在线观看| av不卡在线播放| 国产av精品麻豆| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区| 国产免费视频播放在线视频| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 欧美激情 高清一区二区三区| 激情五月婷婷亚洲| 久久久欧美国产精品| 黑人猛操日本美女一级片| 亚洲精品久久成人aⅴ小说| 亚洲av福利一区| 热re99久久国产66热| 日本黄色日本黄色录像| 国产1区2区3区精品| 捣出白浆h1v1| 精品少妇久久久久久888优播| 熟女av电影| 亚洲欧洲日产国产| 80岁老熟妇乱子伦牲交| 制服人妻中文乱码| 亚洲成av片中文字幕在线观看| 国产亚洲最大av| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 男女无遮挡免费网站观看| 成年女人毛片免费观看观看9 | 一区二区三区乱码不卡18| 黑丝袜美女国产一区| 好男人视频免费观看在线| 国产成人精品在线电影| 日韩免费高清中文字幕av| 午夜福利在线免费观看网站| 久久青草综合色| 91精品三级在线观看| av天堂久久9| 少妇被粗大的猛进出69影院| 久久ye,这里只有精品| 午夜福利一区二区在线看| 性少妇av在线| 波多野结衣av一区二区av| 日韩大片免费观看网站| 午夜影院在线不卡| 色吧在线观看| 一级爰片在线观看| 男女边吃奶边做爰视频| 人妻 亚洲 视频| 大片电影免费在线观看免费| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 久久亚洲国产成人精品v| 9色porny在线观看| 国产毛片在线视频| 看免费av毛片| 伦理电影大哥的女人| 丝袜美足系列| 国产熟女欧美一区二区| 99久国产av精品国产电影| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 亚洲欧美精品自产自拍| 我要看黄色一级片免费的| 久久精品国产亚洲av高清一级| 中文乱码字字幕精品一区二区三区| 国产成人精品久久久久久| av女优亚洲男人天堂| 国产精品久久久久久人妻精品电影 | 伦理电影大哥的女人| 丝袜美足系列| 51午夜福利影视在线观看| 美女国产高潮福利片在线看| 亚洲激情五月婷婷啪啪| 亚洲精品国产区一区二| 国产精品秋霞免费鲁丝片| 丁香六月天网| 国产成人啪精品午夜网站| 80岁老熟妇乱子伦牲交| 色视频在线一区二区三区| 日本黄色日本黄色录像| 大片免费播放器 马上看| 香蕉丝袜av| 中文乱码字字幕精品一区二区三区| 一级片免费观看大全| 国产亚洲av高清不卡| 制服诱惑二区| 亚洲国产精品国产精品| 久久久国产一区二区| 午夜免费男女啪啪视频观看| 我的亚洲天堂| 免费高清在线观看日韩| 老司机影院成人| 亚洲精品自拍成人| 黄色 视频免费看| 少妇人妻 视频| 久久久国产欧美日韩av| 国产精品欧美亚洲77777| 黄片小视频在线播放| 啦啦啦中文免费视频观看日本| 久久精品人人爽人人爽视色| 亚洲四区av| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品| 桃花免费在线播放| 精品视频人人做人人爽| 久久综合国产亚洲精品| 90打野战视频偷拍视频| videosex国产| 咕卡用的链子| a级毛片在线看网站| 免费黄色在线免费观看| 99精品久久久久人妻精品| 国产成人欧美| 亚洲国产av新网站| 亚洲第一av免费看| 亚洲国产精品一区三区| 90打野战视频偷拍视频| av女优亚洲男人天堂| 亚洲av中文av极速乱| 热re99久久精品国产66热6| av福利片在线| 午夜影院在线不卡| 亚洲欧洲日产国产| 国产伦理片在线播放av一区| 大片免费播放器 马上看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品免费视频内射| av福利片在线| 免费少妇av软件| 搡老乐熟女国产| 精品酒店卫生间| 欧美 亚洲 国产 日韩一| 日韩一本色道免费dvd| 在线观看www视频免费| 日本一区二区免费在线视频| 国产色婷婷99| 国产成人av激情在线播放| 性高湖久久久久久久久免费观看| 老司机亚洲免费影院| av网站免费在线观看视频| 啦啦啦啦在线视频资源| 久久久精品国产亚洲av高清涩受| 精品视频人人做人人爽| 久久久久久久精品精品| 叶爱在线成人免费视频播放| 久久精品亚洲熟妇少妇任你| 街头女战士在线观看网站| 乱人伦中国视频| 国产男人的电影天堂91| 黄片小视频在线播放| 99久久综合免费| 亚洲精品aⅴ在线观看| 超碰97精品在线观看| 国产成人91sexporn| 国产精品香港三级国产av潘金莲 | 韩国高清视频一区二区三区| 一区二区av电影网| 一区二区日韩欧美中文字幕| 啦啦啦在线免费观看视频4| 免费女性裸体啪啪无遮挡网站| 亚洲精品成人av观看孕妇| 又大又黄又爽视频免费| 一区福利在线观看| 亚洲精品av麻豆狂野| 免费观看人在逋| 少妇人妻精品综合一区二区| 日韩不卡一区二区三区视频在线| 久久婷婷青草| 黄色毛片三级朝国网站| 久久99一区二区三区| 亚洲成人一二三区av| 色吧在线观看| 尾随美女入室| 国产在视频线精品| 久久精品亚洲av国产电影网| 国产日韩欧美亚洲二区| 久久久久人妻精品一区果冻| 久久久国产精品麻豆| 欧美日韩精品网址| 日韩精品有码人妻一区| 久久精品aⅴ一区二区三区四区| 久久99热这里只频精品6学生| 免费女性裸体啪啪无遮挡网站| 亚洲熟女毛片儿| 久久这里只有精品19| h视频一区二区三区| 丁香六月欧美| 母亲3免费完整高清在线观看| 老汉色∧v一级毛片| 国产一区亚洲一区在线观看| 91精品三级在线观看| 不卡av一区二区三区| 欧美精品一区二区免费开放| 欧美精品高潮呻吟av久久| 黄片播放在线免费| 51午夜福利影视在线观看| 免费看av在线观看网站| 国产精品人妻久久久影院| 中文字幕人妻丝袜一区二区 | 免费人妻精品一区二区三区视频| 男女午夜视频在线观看| www.熟女人妻精品国产| 亚洲av电影在线进入| 国产 精品1| 人人妻人人澡人人看| 久热这里只有精品99| 国产成人a∨麻豆精品| 日韩一本色道免费dvd| 亚洲图色成人| av天堂久久9| 国产精品av久久久久免费| 亚洲三区欧美一区| 女人精品久久久久毛片| 黄片小视频在线播放| 无限看片的www在线观看| 香蕉国产在线看| 久久国产精品男人的天堂亚洲| 日本爱情动作片www.在线观看| 亚洲国产精品一区二区三区在线| 18禁动态无遮挡网站| 国产成人啪精品午夜网站| 久久精品人人爽人人爽视色| 精品少妇一区二区三区视频日本电影 | 久久久久人妻精品一区果冻| 在线天堂最新版资源| 亚洲成人一二三区av| 啦啦啦在线观看免费高清www| 亚洲成av片中文字幕在线观看| 欧美国产精品va在线观看不卡| 久久免费观看电影| 如何舔出高潮| 亚洲成国产人片在线观看| h视频一区二区三区| 久久ye,这里只有精品| 亚洲中文av在线| 又大又爽又粗| 国产乱来视频区| 男人操女人黄网站| 少妇精品久久久久久久| 99热网站在线观看| 欧美变态另类bdsm刘玥| 99热网站在线观看| 欧美变态另类bdsm刘玥| av国产精品久久久久影院| 最近中文字幕2019免费版| 欧美日韩av久久| 肉色欧美久久久久久久蜜桃| 一二三四中文在线观看免费高清| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 精品人妻在线不人妻| 91精品国产国语对白视频| 国产福利在线免费观看视频| 亚洲av综合色区一区| 日韩制服骚丝袜av| 亚洲图色成人| 激情五月婷婷亚洲| 欧美日本中文国产一区发布| 久久97久久精品| 亚洲av日韩精品久久久久久密 | 久久免费观看电影| 另类精品久久| 最黄视频免费看| 国产成人系列免费观看| 欧美精品av麻豆av| 亚洲,欧美精品.| 91精品伊人久久大香线蕉| 男女免费视频国产| 久久久久久免费高清国产稀缺| 亚洲国产av影院在线观看| 久久精品熟女亚洲av麻豆精品| 我的亚洲天堂| 一级毛片黄色毛片免费观看视频| 侵犯人妻中文字幕一二三四区| 在线观看免费午夜福利视频| 国产日韩欧美在线精品| 黑人欧美特级aaaaaa片| 色网站视频免费| 亚洲五月色婷婷综合|