• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOHO/SUMER Observations of Transition Region Explosive Events in Prominence

    2016-06-15 16:40:47ZHANGMinWANGDongDENGYan
    光譜學與光譜分析 2016年8期
    關(guān)鍵詞:噴流譜線雙向

    ZHANG Min, WANG Dong, DENG Yan

    1. Department of Mathematics and Physics, Anhui Jianzhu University, Heifei 230601, China

    2. School of Earth and Space Science, University of Science and Technology of China, Heifei 230026, China

    SOHO/SUMER Observations of Transition Region Explosive Events in Prominence

    ZHANG Min1,2, WANG Dong1,2, DENG Yan1

    1. Department of Mathematics and Physics, Anhui Jianzhu University, Heifei 230601, China

    2. School of Earth and Space Science, University of Science and Technology of China, Heifei 230026, China

    Explosive events (EEs) are small-scale dynamic phenomena often observed in the solar transition region (TR). EEs are characterized by non-Gaussian and broad profiles with enhancements in the blue/red wings with an average line-of-sight Doppler velocities of ~100 km·s-1. They have a small spatial scale of about 1 800 km and a short lifetime of about 60 s on average. EEs are often found to be associated with magnetic cancellation and reveal bi-directional flows with high velocities comparable to the local Alfvén velocity; they are generally regarded as the consequence of small-scale fast magnetic reconnections. Since the launch of SOHO spacecraft, the SUMER (solar ultraviolet measurements of emitted radiation) spectrograph has been widely used to study EEs. With high spatial and spectral resolution, and wide spectral coverage, SUMER was a powerful tool of ultraviolet spectroscopy and it has greatly increased our knowledge of EEs. Relationship between EEs and other small-scale events observed in the transition region, such as blinkers and EUV spicules have also been investigated during the SOHO era. However, the association between EEs and large-scale events such as prominence remains unclear. A sit-and-stare mode observation made by SUMER is selected for the study. We investigate the properties of EEs in a prominence. EEs are identified with analysis of the width of Si Ⅲ line (111.3 nm). The Si Ⅲ lines with a width greater than three standard deviations (3σ) were singled out for further visual inspection to finally determine the occurrence of EEs. It is found that the vast majority of explosive events concentrate in the bright knots of the prominence. EEs in the core of the prominence occur repetitively with a period of about 20 mins. It is proposed that the explosive events caused by small-scale fast magnetic reconnections are triggered by magnetic flux loops in the core of prominence. The blue shift of the explosive events is significant and possibly related to the initiation of a CME.

    Sun: Prominence; Sun: Explosive events; Sun: UV line

    Introduction

    Explosive events (EEs) are small-scale dynamic phenomena often observed in the solar transition region (TR). They can be observed in far and extreme ultraviolet (FUV/EUV) spectral lines with a formation temperature ranging from 1×104~5×105K and best seen in typical transition-region lines (e.g., Si iv; C iv; O vi). As turbulent events and jets, they are characterized by non-Gaussian and broad profiles with enhancements in the blue/red wings, especially with the line-of-sight Doppler velocities of the blue wing reaching 100 km·s-1[1-2]. EEs are often found to be associated with magnetic cancellation and reveal bi-directional flows with high velocities comparable to the local Alfvén velocity, they have been suggested to be a consequence of small-scale fast magnetic reconnections[3-5].Analysis of the energetics of EEs indicates that the energy flux released by these events might be insignificant for heating the solar atmosphere globally[6]. However, the mass flux carried by such events could be a significant source of the solar wind.

    Prominences are very splendid phenomena in the solar atmosphere. They can be classified into quiet prominences (QPs), active prominences (APs) and eruptive prominences (EPs). Eruptive prominences are usually the most intense ones with the ascending speed of several hundred kilometers per second[7]. The close relationship between EPs and coronal mass ejections (CMEs) has been discussed and reviewed by many authors[8]. Prominences have fine structures such as thin threads with about 210 km in width and 3 500~28 000 km in length. They are also highly dynamic phenomena. The velocities of plasma in prominences are about 2~35 km·s-1in Hα line and slightly higher in EUV lines. Since prominences are cool and dense plasma in the corona, they are suggested to be the result of the injection of chromospheric plasma through siphon-effect, or the condensation of coronal plasma by thermal instability[9-10].

    In the past, EEs were mainly studied in the quiet-Sun (QS) region on the solar disk, while their properties above limb have been poorly investigated. There have been a lot of investigations of the association between EEs and other TR small-scale events such as blinkers and EUV spicules. However, the association between EEs and large-scale events such as prominence remains unclear. In this paper, we present results of EEs in the prominenceobserved by SOHO/SUMER for the first time.

    1 Observations and data analysis

    In this paper, we analyze a data set taken by SOHO/SUMER[11-12]from 20:50 UT on 25 Sep 2000 to 8:17 UT on the next day. A slit with length of 300″ and width of 4″ was pointing at a prominence above east limb of the Sun (x=-980″,y=-250″). In Fig.1, we overplot the sumer slit on

    Fig.1 Location of the SUMER slit (the narrow black vertical bar) on images of He Ⅱ (30.4 nm) (upper panel) and Fe Ⅻ (19.5nm) (lower panel)observed by SOHO/EIT. In the upper panel, the prominence periphery is showed in white-box, the bright spot is in green-box, the strong jet is showed in blue-triangle in the first map while the bright surge is showed in blue-box in the last map

    the He Ⅱ(30.4 nm) and Fe Ⅻ(19.5 nm) images from SOHO/EIT. Highcadence SUMER observations were carried out with an exposure time of 162 s in the wavelength range between 109.8 and 113.8 nm. We select the strong TR Si Ⅲ line (111.3 nm, ~5×104K) for this study. As a common practice, we applied the standard procedure for correcting and calibrating the SUMER raw data which includes decompression, field-field, dead-time, local-gain and geometrical corrections. The method used to deduce the line parameters (line radiance, central position of the spectral line and width) is described in detail by Dammasch[13]. In order to deduce the Doppler velocity more reliably, an additional line-position correction was performed to remove spurious spectral line shifts caused by thermal deformations of the instrument and the residual errors systematically varying along the slit. As previous studies have shown that chromospheric lines have very small systematic line shifts on average in SUMER observations, we use cold chromospheric C Ⅰ (110.9 nm) line as a reference to derive the rest wavelength of Si Ⅲ line in the prominence[1,14]. In this paper, EEs were identified by Si Ⅲ profiles. We disregarded the noisy profiles with a peak intensity below the half-peak intensity of the average profile. Then the profiles with a width greater than three standard deviations (3σ) were singled out for further visual inspection to finally identify EEs. Our method is similar to those used by Teriaca[1].

    2 Results

    Fig.1 shows EIT images with a cadence of 6 hours in the He Ⅱ (30.4 nm) and Fe Ⅻ (19.5 nm) lines. In the upper panel we can see an arc-like prominence with the length of 300″ locating above the east limb and extending to the south. The central position of its original footprint on the disk is about 0″ in Y (north-south)- direction. The SUMER slit above the solar limb was crossing the prominence exactly. To the right of the slit there is a singular bright spot (green-box in the top left of Fig.1) on the disk and the bright spots move westwards with solar rotation. Strong jets (blue-triangle in the top left of Fig.1) inject into the corona straightly from the southeast corner of the solar disk at 13:18 UT Sep. 25 and existed till 7:17 Sep. 26. The prominence periphery (white-box in the top left of Fig.1) brightens strongly and the footprint of the prominence on the disk is not distinct at 19:17 UT Sep. 25 which is close to the beginning of SUMER observation. Six hours later, the arc-like prominence erupts partially with some structures still visible. Loops appear across the SUMER slit, which can also be seen in Fe Ⅻ 195 image. The prominence fades gradually and two bright surges (blue-box in the top right of Fig.1) burst through the slit at 7:17 UT Sep. 26. The EIT Fe Ⅻ 195 images with a cadence of 6 hours are also showed in the lower panel of Fig.1. The singular bright spot and the strong jets can also be seen in Fe Ⅻ (19.5 nm)line and exist throughout the entire observation duration. At 1:11 UT Sep. 26, large amount of plasma ejected into higher layers and the coronal loops appear simultaneously. A blob-like CME observed by LASCO C2 at 2:50 UT Sep 26 has been reported to be associated with this prominence[15].

    The intensity evolution of the prominence obtained by the Si Ⅲ line is shown in the upper panel of Fig.2. The intensities are shown in logarithmic scale to increase the contrast and enhance the bright area with high intensity. Because our observation was taken in sit-and-stare mode, the figures show the evolution in time of the prominence which falls into the SUMER field-of-view. The bright knots with enhanced emission around -150″ are identified as the core of the prominence. The bright knots have a few ten arcsecs along the slit. They mainly survive before 1:25 UT Sep 26, although they can be seen again occasionally after 04:20 UT Sep 26 with much smaller size. The fine thread-like structures of the prominence are varying with time along the slit, which can also be observed by Si Ⅲ line. The Doppler shift of the prominence is shown in the middle panel of Fig.2. The blue shift (negative values) represents flows moving to the observer, while the red shift (positive values) indicates flows moving away from the observer. By calibrating with the cold chromospheric C Ⅰ (110.9 nm) line and eliminating the effect of solar rotation, the line-of-sight velocity of Si Ⅲ in the prominence is blue shifted and its average blue shift is 2.76 km·s-1. In the Dopplergram, the dynamics of prominence can be seen and some significant blue patches can be found. The blue patches with relative higher velocity concentrate from -200″ to -130″ along the slit. The velocity of the thread of the prominence alternates between blue and red. In order to facilitate the study, the Dopplergram map is overlaid by the black contours of the intensity to outline the bright knots of the prominence. We found that most of the bright knots appear in regions where large blue shifts are found. The width of the Si Ⅲ line is also showed in the bottom panels of Fig.2. The line width of the bright knots at around -150″ along the slit, which is identified as the core of the prominence, is usually large, while the bright knots in other regions has smaller line width.

    The identified events are marked as the black “+” in intensity maps of Si Ⅲ line (see Fig.3). 337 pixels with EE-like profiles were detected in the prominence. It is obvious that the black “+” is not randomly distributed. Some of them can form a small group and neighboring EE pixels in each spectral line can be regarded as a single event. The occurrence rate of EEs in the prominence is about 4×10-16m-2·s-1, which is comparable to the occurrence rate obtained by Teriaca[1]in a quiet sun (QS) region and Zhang[15]in both QS and polar coronal hole (PCH) region. We find the vast majority

    Fig.2 Intensity(logarithmic scale), Doppler shift and line width maps of the Si Ⅲ line.

    Fig.3 EEs are marked with black “+” in the intensity map of the prominence seen in the Si Ⅲ line.

    of the EEs concentrate in the region from -200″ to -130″ along the slit and most of the EEs lie in or on the edge of the bright knots. Some time, EEs occur repeatedly in the same region. Four regions marked with A,B,C and D in which EEs recur are showed in Fig.3. The center of A-region is -150″ and the repetitive occurrence here lasts for 110 mins. We find seven EEs during this period and the quasi-periodicity is about 16 mins. The center of B-region is slightly lower than that of A-region and the repetitive occurrence also lasts for 120 mins. In this region, we find six EEs and the quasi-periodicity is about 22 mins. The central positions of C and D regions are approximately the same as that of A-region and there are six and five EEs respectively. The quasi-periodicity of EEs is about 21 mins in both C and D regions.

    Fig.4 shows three typical EEs with bi-directional flows. Each spectrum of EEs has several arcsecs along the slit and all spectrums have a strong intensity in the wings. The positions of these EEs are around -170″ along the slit. The profile of each EE with bi-wings which have well-defined bursting velocities is greater than 150 km·s-1. The average line-of-sight Doppler velocities of the wings are up to ~150 km·s-1. The shift of the EE1 obtained by single-Gaussian fitting is -19.04 km·s-1and the blue shift is obvious. In contrast, EE2 and EE3 have very small shifts, with the velocities of 3.03 and 5.23 km·s-1respectively. Although with different shifts, the profiles of all events have non-Gaussian shapes and obviously enhanced wings in both the red and blue sides.

    Fig.4 Three slit spectrum are showed in the Si Ⅲ line, two solid black lines marked the lacation of the EEs

    3 Conclusions and Discussions

    We study the TR EEs in a prominence above the east limb. The prominence core is located from -200″ to -130″ along the slit and erupts at about 1:17 UT Sep. 26. A small flare and CME are observed subsequently. The blue-shift of the prominence core observed by the Si Ⅲ line is significant. But when we show the time evolution of the prominence, the red-shift of the prominence is also observed in the core. As the prominence is arclike and the main part of it is along the slit, the red-shift may be characterized as the visual-direction component of the downflow. This is consistent with the scenario that some prominence materials fall back to the disk after ascending to a certain height. Through diagnosing the line width of the profile, we select 337 EE pixels. The occurrence rate of EEs in the prominence is 4×10-16m-2·s-1which is similar to that in QS. Most TR EEs with high emission often occur in or on the edge of the core of the prominence. We studied three typical bi-directions EEs in more detail. They all have broad width and the shift of each two wings can reach 150 km·s-1.

    The repetitive occurrence of EEs was first observed in regions undergoing magnetic cancellation by Dere[16], which had been confirmed by other authors. Innes[17]found that EEs could occur repeatedly several times and lasts about 30 minutes. Ning[3]found that the repetitive occurrence of EEs was not random, but had a quasi-periodicity of three or five minutes. In the coronal hole boundary, Doyle[5]found that the period of the EEs can be increased from three minutes at beginning to five minutes in the end. In our data, the period of the repetition is around 20 min, which is larger than five minutes but is in the range of the quasi-periodicity of the high-speed fine-scale jets (see, e.g., Tian et al., 2011)[18]. These high-speed fine-scale jets might be the coronal counterpart of EEs. EEs repetitively occur in the same region and last for several hours in the prominence. We select four in the time series observation. Although the positions of the four repeated regions with higher emission are slightly difference, they are all in the position from -200″ to -130″ along the slit. As mentioned above, the core of the prominence is in the region. And the same time, we observed the loops appear in the same region from EIT images after the prominence eruption. As we know, EEs are associated with the cancellation of the magnetic flux and the emerging flux can provide the preconditions of magnetic reconnection. Chen et al.[14]described the physical mechanism detailedly and inferred that the reconnection between the emerging flux and the pre-existing coronal magnetic field causes the formation of Hα surges and the oscillation of the prominence which finally triggering the eruption of the prominence. The reconnection appears intermittently which is implied by the repetitive Hα surges. Here, we speculate that the repetitive reconnection can be triggered by some kind of wave mode (i.e. the kink mode) of the flux tubes. Then plasma is heated and accelerated, and we not only diagnosis EEs but also find two bright surges occur from EIT images.

    EEs are mainly associated with blue shift in the prominence. Although the outflow speed derived from a single Gaussian fit is roughly in the range of 10~40 km·s-1, the effluent plasma of their wings are splendidly. From the observed phenomenon, we assume that when EEs occur in the prominence, the small-scale magnetic reconnection events generate outflow and the high speed flow can be easily observed. In our study, the high speed flow generated from the EEs in the erupted prominence might play a role in the initiation of the CME or contribute to the solar wind streams following CMEs.

    Anyway, our work is just the beginning. New imaging and spectroscopic data, especially high resolution and multi-band spectrum data are needed to understand the ralationship between prominence and EEs in the future.

    Acknowledgements: The SUMER project is financially supported by DLR,CNES, NASA, and the ESA PRODEX Programme (Swiss contribution).SUMER is an instrument onboard SOHO, a mission operated by ESA and NASA. We thank Dr. H. Tian for the helpful comments.

    [1] Teriaca L, Banerjee D, Falchi A, et al. A&A, 2004, 427: 1065.

    [2] Zhang M, Xia L D, Tian H, et al. A&A, 2010, 520: 37.

    [3] Ning Z, Innes D E, Solanki S K. A&A, 2004, 419: 1141.

    [4] Innes D E, Inhester B, Axford W I, et al. Nature, 1997, 386: 811.

    [5] Doyle J G, Popescu M D, Taroyan Y. A&A, 2006, 446: 327.

    [6] Winebarger A R, Emslie A G, Mariska J T, et al. ApJ, 2002, 565: 1298.

    [7] Lin Y, Engvold O, Rouppe van der Voort, et al. Solar Phys., 2005, 226: 239.

    [8] Liu K, Wang Y M, Shen C L, et al. ApJL, 2012, 744: 168.

    [9] Olmedo O, Zhang J. ApJ, 2010, 718: 433.

    [10] Berger T, Testa P, Hillier A, et al. Nature, 2011, 472: 197.

    [11] Wilhelm K, Curdt W, Marsch E, et al. Solar Phys., 1995, 162: 189.

    [12] Wilhelm K, Lemaire P, Curdt W, et al. Solar Phys., 1997, 170: 75.

    [13] Dammasch I E, Wilhelm K, Curdt W, et al. A&A, 1999, 346: 285.

    [14] Zhang Min, Wang Dong, Liu Guohong. Spectroscopy and Spectral Analysis, 2014, 34(7): 1890.

    [15] Chen P F, Innes D E, Solanki S K. A&A, 2008, 484: 487.

    [16] Dere K P. Adv. Space. Res., 1994, 14: 13.

    [17] Innes D E, Brekke P, Germerott D, et al. Sol. Phys., 1997, 175: 341.

    [18] Tian H, McIntosh S W, De Pontieu B. ApJL, 2011, 727: 37.

    O657.3

    A

    太陽爆發(fā)日珥內(nèi)雙向噴流事件的紫外光譜研究

    章 敏1,2, 王 東1,2, 鄧 燕1

    1. 安徽建筑大學數(shù)理學院, 安徽 合肥 230601

    2. 中國科學技術(shù)大學地球與空間科學學院, 安徽 合肥 230026

    太陽雙向噴流事件是過渡區(qū)重要的小尺度現(xiàn)象之一。 雙向噴流事件的光譜特征是強的展寬和非高斯形狀。 當雙向噴流事件發(fā)生時, 光譜像的紅、 藍兩翼分別或者同時明顯增強, 其相應的多普勒速度可達100 km·s-1以上。 雙向噴流事件的平均尺度約1 800 km, 壽命約60 s。 雙向噴流事件出現(xiàn)在磁對消區(qū)附近, 且其速度與當?shù)氐陌柗宜俣认喈敚?普遍認為其產(chǎn)生機制為小尺度快速磁重聯(lián)。 對其系統(tǒng)、 全面地研究始于SOHO時代。 SOHO/SUMER具有高時空和譜分辨率、 寬的譜線覆蓋, 其觀測的光譜數(shù)據(jù)為探究雙向噴流事件提供了有力的光譜學診斷工具。 雙向噴流事件及其他過渡區(qū)小尺度現(xiàn)象的相互聯(lián)系已被廣泛研究, 但雙向噴流事件與日珥及其精細結(jié)構(gòu)的關(guān)系研究還很少。 文章通過SOHO/SUMER的Si Ⅲ譜線的定點觀測, 再現(xiàn)了爆發(fā)日珥演化的強度﹑多普勒速度和寬度演化圖。 通過Si Ⅲ譜線分析, 找出寬度大于三個標準偏差的Si Ⅲ譜線, 然后進行視像篩選出雙向噴流事件, 最終在爆發(fā)日珥中診斷出多個雙向噴流事件, 且大多數(shù)的雙向噴流事件以準周期20 min重復出現(xiàn)在爆發(fā)日珥的中心區(qū)域。 通過討論, 認為日珥中心磁流管之間的磁重聯(lián)導致了雙向噴流事件的重復出現(xiàn), 雙向噴流事件產(chǎn)生的高速等離子體流可能是日面物質(zhì)拋射的一部分, 或是跟隨日面物質(zhì)拋射的太陽風的一部分。

    太陽日珥; 雙向噴流事件; 紫外光譜

    2015-10-27,

    2016-02-25)

    2015-10-27; accepted: 2016-02-25

    the National Natural Science Foundation of China(NSFC) under contract 41304134, the foundation for Young Talents in College of Anhui Province (2013SQRL044ZD), colleges and Universities Natural Science Foundation of Anhui Province (KJ2016JD18), the doctoral foundation of Anhui University of Architecture (K02654) and CAS Key Research Program KZZD-EW-01

    10.3964/j.issn.1000-0593(2016)08-2679-07

    Biography: ZHANG Min, (1980—), female, associate professor in Anhui Jianzhu University e-mail: chengzm@ustc.edu.cn

    猜你喜歡
    噴流譜線雙向
    雙向度的成長與自我實現(xiàn)
    出版人(2022年11期)2022-11-15 04:30:18
    基于HITRAN光譜數(shù)據(jù)庫的合并譜線測溫仿真研究
    “慧眼”發(fā)現(xiàn)迄今距離黑洞最近的高速噴流
    鐵合金光譜譜線分離實驗研究
    電子測試(2018年11期)2018-06-26 05:56:00
    噴流干擾氣動熱數(shù)值模擬的若干影響因素
    鍶原子光鐘鐘躍遷譜線探測中的程序控制
    一種軟開關(guān)的交錯并聯(lián)Buck/Boost雙向DC/DC變換器
    耀變體噴流高能電子譜的形成機制
    發(fā)生在活動區(qū)11931附近的重復噴流?
    天文學報(2015年6期)2015-06-27 09:33:30
    一種工作頻率可變的雙向DC-DC變換器
    99热只有精品国产| 国产精品电影一区二区三区 | 人人妻人人添人人爽欧美一区卜| 国产亚洲精品久久久久5区| 一级a爱片免费观看的视频| 午夜激情av网站| 国产高清videossex| 久久久久久久久久久久大奶| 精品国产一区二区三区四区第35| 99久久99久久久精品蜜桃| 日韩一卡2卡3卡4卡2021年| 狠狠婷婷综合久久久久久88av| 美女午夜性视频免费| 欧美日韩瑟瑟在线播放| 国产精品永久免费网站| 欧美日韩福利视频一区二区| 精品久久久久久久毛片微露脸| 乱人伦中国视频| 757午夜福利合集在线观看| 伦理电影免费视频| 国产精品偷伦视频观看了| 宅男免费午夜| 成人国产一区最新在线观看| 韩国av一区二区三区四区| 亚洲免费av在线视频| 久久亚洲真实| 久久精品国产清高在天天线| 成人特级黄色片久久久久久久| 久久这里只有精品19| 捣出白浆h1v1| 亚洲专区中文字幕在线| 国产麻豆69| 久久精品熟女亚洲av麻豆精品| 757午夜福利合集在线观看| 国产精品欧美亚洲77777| 成年人黄色毛片网站| 国产一区二区三区在线臀色熟女 | 成人特级黄色片久久久久久久| 一区二区三区国产精品乱码| 国产成人欧美在线观看 | 亚洲成人手机| 日本撒尿小便嘘嘘汇集6| 久久久久久久久久久久大奶| 19禁男女啪啪无遮挡网站| 999久久久国产精品视频| 久久精品亚洲精品国产色婷小说| 午夜成年电影在线免费观看| 男人的好看免费观看在线视频 | av国产精品久久久久影院| 可以免费在线观看a视频的电影网站| 亚洲中文av在线| 亚洲第一av免费看| 九色亚洲精品在线播放| 黄片播放在线免费| 亚洲免费av在线视频| 高清毛片免费观看视频网站 | 成年版毛片免费区| 黄色丝袜av网址大全| 如日韩欧美国产精品一区二区三区| 免费高清在线观看日韩| 久久久久久久午夜电影 | 国产精品一区二区在线不卡| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线免费观看网站| av欧美777| 久久婷婷成人综合色麻豆| 香蕉久久夜色| 人人澡人人妻人| 亚洲成国产人片在线观看| a级毛片在线看网站| 国产精品九九99| 久久亚洲精品不卡| 男人舔女人的私密视频| 欧美人与性动交α欧美软件| 中文字幕最新亚洲高清| 很黄的视频免费| 亚洲av欧美aⅴ国产| 岛国毛片在线播放| 国产又色又爽无遮挡免费看| 激情视频va一区二区三区| 国产在视频线精品| 亚洲欧洲精品一区二区精品久久久| 久久香蕉激情| 久久亚洲真实| 国产成人精品在线电影| 欧美黑人精品巨大| 亚洲 国产 在线| 国产精品1区2区在线观看. | 手机成人av网站| 看片在线看免费视频| 午夜久久久在线观看| 成年人黄色毛片网站| 亚洲av日韩在线播放| 亚洲精品粉嫩美女一区| 国产一区在线观看成人免费| 99久久人妻综合| 亚洲成人免费电影在线观看| 黑人操中国人逼视频| 两个人看的免费小视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久九九热精品免费| 久久久久久久精品吃奶| 亚洲av日韩精品久久久久久密| 精品一品国产午夜福利视频| 乱人伦中国视频| 午夜两性在线视频| 看片在线看免费视频| 免费在线观看黄色视频的| 久久人妻福利社区极品人妻图片| 欧美黑人欧美精品刺激| 日韩 欧美 亚洲 中文字幕| 少妇粗大呻吟视频| 国产精品一区二区精品视频观看| 91在线观看av| xxxhd国产人妻xxx| 亚洲精品国产色婷婷电影| 欧美一级毛片孕妇| 视频区图区小说| 男人操女人黄网站| 18在线观看网站| 男女之事视频高清在线观看| 久久精品人人爽人人爽视色| 亚洲精品美女久久久久99蜜臀| 久久狼人影院| videos熟女内射| 少妇粗大呻吟视频| 亚洲成人免费电影在线观看| av免费在线观看网站| 中文字幕精品免费在线观看视频| 日日夜夜操网爽| 9色porny在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产男女超爽视频在线观看| 热re99久久精品国产66热6| av免费在线观看网站| 久久久久国产精品人妻aⅴ院 | 精品一区二区三卡| 涩涩av久久男人的天堂| 999精品在线视频| 久久久精品区二区三区| 变态另类成人亚洲欧美熟女 | www.999成人在线观看| 欧美黄色片欧美黄色片| 18禁裸乳无遮挡免费网站照片 | 欧美 日韩 精品 国产| 成年人午夜在线观看视频| 老司机深夜福利视频在线观看| 亚洲精品久久午夜乱码| 丰满迷人的少妇在线观看| 国产午夜精品久久久久久| 午夜免费观看网址| 在线观看免费视频网站a站| videos熟女内射| 国产日韩欧美亚洲二区| 午夜视频精品福利| 亚洲专区中文字幕在线| 一进一出抽搐gif免费好疼 | 亚洲午夜理论影院| 国产1区2区3区精品| 黄色怎么调成土黄色| xxx96com| 最近最新中文字幕大全电影3 | av有码第一页| 亚洲久久久国产精品| 日本精品一区二区三区蜜桃| 国产精品国产av在线观看| 国产蜜桃级精品一区二区三区 | 99精品久久久久人妻精品| 在线观看日韩欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美乱妇无乱码| 桃红色精品国产亚洲av| 电影成人av| 交换朋友夫妻互换小说| 免费女性裸体啪啪无遮挡网站| 中文字幕人妻丝袜制服| 亚洲性夜色夜夜综合| 久久久久久久午夜电影 | 美女午夜性视频免费| 亚洲第一av免费看| 国产欧美日韩一区二区三区在线| 国产精品乱码一区二三区的特点 | 亚洲男人天堂网一区| 另类亚洲欧美激情| 91麻豆精品激情在线观看国产 | 日韩欧美国产一区二区入口| 久久精品国产a三级三级三级| 天天躁夜夜躁狠狠躁躁| 黑人巨大精品欧美一区二区蜜桃| 日韩制服丝袜自拍偷拍| 亚洲成人免费av在线播放| 国产精品久久久av美女十八| 精品一品国产午夜福利视频| 亚洲精品久久成人aⅴ小说| 国产淫语在线视频| 亚洲片人在线观看| 国产一卡二卡三卡精品| 热99久久久久精品小说推荐| 久久中文看片网| 99国产精品免费福利视频| 捣出白浆h1v1| 国产成人精品在线电影| 99国产综合亚洲精品| 一夜夜www| 日日夜夜操网爽| 看片在线看免费视频| av电影中文网址| 国产免费男女视频| 久久久久国产精品人妻aⅴ院 | 91成年电影在线观看| 久久人妻福利社区极品人妻图片| 亚洲av熟女| 成人手机av| 亚洲人成电影免费在线| 国产国语露脸激情在线看| 日本vs欧美在线观看视频| 精品久久蜜臀av无| 欧美精品av麻豆av| 9色porny在线观看| 一级毛片高清免费大全| 国产亚洲精品一区二区www | 免费少妇av软件| 国产精品香港三级国产av潘金莲| 国产不卡av网站在线观看| 久久久水蜜桃国产精品网| 国产av精品麻豆| 交换朋友夫妻互换小说| 成人手机av| 精品一区二区三区四区五区乱码| 亚洲第一欧美日韩一区二区三区| 国产片内射在线| 国产在线精品亚洲第一网站| 国产日韩一区二区三区精品不卡| 国产激情欧美一区二区| 美国免费a级毛片| 久久精品亚洲精品国产色婷小说| 侵犯人妻中文字幕一二三四区| 精品国产超薄肉色丝袜足j| 一进一出抽搐gif免费好疼 | 欧美亚洲日本最大视频资源| 丝瓜视频免费看黄片| 国产野战对白在线观看| 国产精品国产av在线观看| 老汉色av国产亚洲站长工具| 露出奶头的视频| 久久亚洲真实| 欧美色视频一区免费| 很黄的视频免费| 国产片内射在线| 老司机午夜福利在线观看视频| 中文字幕最新亚洲高清| 亚洲色图综合在线观看| 国产亚洲精品一区二区www | 国产男女超爽视频在线观看| 最近最新中文字幕大全免费视频| 男人的好看免费观看在线视频 | av免费在线观看网站| 妹子高潮喷水视频| 亚洲伊人色综图| 日韩欧美一区视频在线观看| 国产精品免费一区二区三区在线 | 久久久久久久久久久久大奶| 欧美人与性动交α欧美精品济南到| 久久这里只有精品19| 免费av中文字幕在线| xxxhd国产人妻xxx| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美日韩另类电影网站| 男人舔女人的私密视频| 日韩欧美国产一区二区入口| 两个人免费观看高清视频| 大香蕉久久网| av网站免费在线观看视频| 超色免费av| 99热网站在线观看| 国产精品永久免费网站| 午夜日韩欧美国产| 美女国产高潮福利片在线看| 国产无遮挡羞羞视频在线观看| 深夜精品福利| 18禁黄网站禁片午夜丰满| 少妇的丰满在线观看| 老司机深夜福利视频在线观看| 精品视频人人做人人爽| 精品人妻熟女毛片av久久网站| 91成年电影在线观看| 高清毛片免费观看视频网站 | 视频区欧美日本亚洲| 老鸭窝网址在线观看| 日本一区二区免费在线视频| 黑人猛操日本美女一级片| 国产成人精品久久二区二区免费| 一二三四在线观看免费中文在| 丝瓜视频免费看黄片| 宅男免费午夜| 亚洲欧美一区二区三区黑人| 亚洲一卡2卡3卡4卡5卡精品中文| 国产激情久久老熟女| 国产成人精品久久二区二区免费| 女同久久另类99精品国产91| 天天影视国产精品| 国产又爽黄色视频| 黄色视频不卡| 免费看十八禁软件| 首页视频小说图片口味搜索| 50天的宝宝边吃奶边哭怎么回事| 又黄又粗又硬又大视频| 身体一侧抽搐| 天天影视国产精品| 啦啦啦 在线观看视频| 一级,二级,三级黄色视频| 国产97色在线日韩免费| 人妻丰满熟妇av一区二区三区 | 亚洲av成人不卡在线观看播放网| 国产精品国产av在线观看| 中文字幕人妻丝袜制服| 成年女人毛片免费观看观看9 | 亚洲欧美色中文字幕在线| 久久婷婷成人综合色麻豆| 90打野战视频偷拍视频| 波多野结衣一区麻豆| 久久 成人 亚洲| 少妇粗大呻吟视频| 国产亚洲欧美在线一区二区| 精品久久久久久电影网| 免费在线观看视频国产中文字幕亚洲| 国产一区有黄有色的免费视频| 一级,二级,三级黄色视频| 午夜免费鲁丝| av中文乱码字幕在线| 母亲3免费完整高清在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲av成人不卡在线观看播放网| 交换朋友夫妻互换小说| 丰满迷人的少妇在线观看| 嫩草影视91久久| 男女免费视频国产| 久久ye,这里只有精品| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 久久这里只有精品19| 99国产精品99久久久久| av不卡在线播放| 成人精品一区二区免费| 午夜免费成人在线视频| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人 | 日韩 欧美 亚洲 中文字幕| 国产av精品麻豆| 国产成人av教育| 91在线观看av| 日韩制服丝袜自拍偷拍| 国产免费av片在线观看野外av| 黄网站色视频无遮挡免费观看| av在线播放免费不卡| 亚洲av日韩在线播放| 欧美大码av| 亚洲欧美日韩另类电影网站| 欧美精品av麻豆av| 少妇 在线观看| 久久久国产精品麻豆| 91老司机精品| 十八禁高潮呻吟视频| 一二三四社区在线视频社区8| 中文字幕人妻丝袜制服| 中文字幕最新亚洲高清| 热re99久久精品国产66热6| 亚洲av日韩精品久久久久久密| 校园春色视频在线观看| 女性被躁到高潮视频| 欧美黄色片欧美黄色片| 久久久久视频综合| 日韩中文字幕欧美一区二区| 国产亚洲欧美在线一区二区| 亚洲色图 男人天堂 中文字幕| 欧美日韩乱码在线| 免费不卡黄色视频| 9191精品国产免费久久| 久久久精品免费免费高清| 欧美乱妇无乱码| 精品福利观看| 精品国产一区二区三区久久久樱花| 久久人人爽av亚洲精品天堂| 一级a爱片免费观看的视频| 日本一区二区免费在线视频| 亚洲欧美日韩另类电影网站| 亚洲人成77777在线视频| 午夜精品在线福利| 在线十欧美十亚洲十日本专区| 免费在线观看完整版高清| 免费久久久久久久精品成人欧美视频| 欧美 日韩 精品 国产| 一级,二级,三级黄色视频| 美国免费a级毛片| 亚洲精品一二三| 三级毛片av免费| 亚洲在线自拍视频| 亚洲精品国产区一区二| 日韩欧美免费精品| 脱女人内裤的视频| 国产欧美日韩一区二区三| 日本撒尿小便嘘嘘汇集6| 亚洲精品国产区一区二| 成在线人永久免费视频| 亚洲综合色网址| 亚洲精品国产区一区二| 国产午夜精品久久久久久| 十分钟在线观看高清视频www| 欧美日韩国产mv在线观看视频| 人妻 亚洲 视频| 亚洲av日韩在线播放| 伦理电影免费视频| 黄网站色视频无遮挡免费观看| 国产不卡av网站在线观看| 国产极品粉嫩免费观看在线| 亚洲在线自拍视频| 亚洲精品中文字幕在线视频| 久久国产精品大桥未久av| 久久这里只有精品19| 一边摸一边抽搐一进一出视频| 免费少妇av软件| 国产av一区二区精品久久| 国产av又大| 精品少妇久久久久久888优播| 精品亚洲成a人片在线观看| 视频区欧美日本亚洲| 久久这里只有精品19| 国产高清激情床上av| 亚洲成人国产一区在线观看| 性少妇av在线| 老司机亚洲免费影院| 亚洲久久久国产精品| 免费观看a级毛片全部| 欧美 亚洲 国产 日韩一| 精品人妻熟女毛片av久久网站| 大型av网站在线播放| 亚洲综合色网址| 999精品在线视频| 天堂√8在线中文| 国产成人一区二区三区免费视频网站| 天天躁日日躁夜夜躁夜夜| 91成人精品电影| 桃红色精品国产亚洲av| xxx96com| 婷婷精品国产亚洲av在线 | 精品一区二区三区四区五区乱码| 国产精品国产高清国产av | av片东京热男人的天堂| 757午夜福利合集在线观看| 亚洲片人在线观看| 99久久国产精品久久久| 99国产精品99久久久久| 午夜福利欧美成人| 一区二区三区精品91| 亚洲色图综合在线观看| 美女午夜性视频免费| 在线观看日韩欧美| 日韩免费高清中文字幕av| 国产91精品成人一区二区三区| 欧美乱妇无乱码| 久久久久国产精品人妻aⅴ院 | x7x7x7水蜜桃| 免费日韩欧美在线观看| 国产一区在线观看成人免费| 欧美成狂野欧美在线观看| 高潮久久久久久久久久久不卡| 亚洲精品在线观看二区| 亚洲aⅴ乱码一区二区在线播放 | 久久国产乱子伦精品免费另类| 亚洲一码二码三码区别大吗| 中文字幕av电影在线播放| 人人妻,人人澡人人爽秒播| 1024视频免费在线观看| 一级毛片女人18水好多| 天天躁夜夜躁狠狠躁躁| av超薄肉色丝袜交足视频| 丰满迷人的少妇在线观看| tube8黄色片| 久久亚洲真实| 精品少妇久久久久久888优播| 99re在线观看精品视频| 国产欧美日韩一区二区精品| 又黄又粗又硬又大视频| 亚洲成av片中文字幕在线观看| 日本vs欧美在线观看视频| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 最新在线观看一区二区三区| 超碰97精品在线观看| 亚洲人成77777在线视频| 久久久久久久久免费视频了| 亚洲av成人不卡在线观看播放网| 麻豆av在线久日| 午夜日韩欧美国产| 国产主播在线观看一区二区| 亚洲人成伊人成综合网2020| 色婷婷久久久亚洲欧美| 精品久久久久久久毛片微露脸| 国产男女内射视频| 男人舔女人的私密视频| 18禁美女被吸乳视频| 国产日韩一区二区三区精品不卡| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区三| 中文字幕色久视频| 精品卡一卡二卡四卡免费| 国产又爽黄色视频| 欧美日韩一级在线毛片| 九色亚洲精品在线播放| 午夜亚洲福利在线播放| 国产精品电影一区二区三区 | 在线观看日韩欧美| 热99国产精品久久久久久7| 成人免费观看视频高清| 亚洲第一欧美日韩一区二区三区| 日韩欧美国产一区二区入口| 电影成人av| 欧美乱码精品一区二区三区| 他把我摸到了高潮在线观看| 三级毛片av免费| 不卡一级毛片| 男女之事视频高清在线观看| 成人精品一区二区免费| 久热这里只有精品99| 成人三级做爰电影| 飞空精品影院首页| 在线观看午夜福利视频| 亚洲av片天天在线观看| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| 欧美+亚洲+日韩+国产| 亚洲五月婷婷丁香| 欧美激情久久久久久爽电影 | 精品久久蜜臀av无| 亚洲精品在线观看二区| 嫁个100分男人电影在线观看| 美女国产高潮福利片在线看| 黄色视频不卡| 精品一区二区三区av网在线观看| 亚洲国产毛片av蜜桃av| 欧美人与性动交α欧美精品济南到| 国产精品免费视频内射| 亚洲性夜色夜夜综合| 99国产精品99久久久久| 丰满的人妻完整版| av网站在线播放免费| 好男人电影高清在线观看| 十八禁网站免费在线| 首页视频小说图片口味搜索| 新久久久久国产一级毛片| 久久精品亚洲av国产电影网| 欧美成人午夜精品| 欧美日韩乱码在线| 午夜福利影视在线免费观看| 十八禁网站免费在线| 久久人人爽av亚洲精品天堂| 欧美精品高潮呻吟av久久| 老司机午夜十八禁免费视频| 不卡一级毛片| 午夜福利在线观看吧| 国产精品国产高清国产av | 亚洲精品久久午夜乱码| 99re在线观看精品视频| 婷婷丁香在线五月| 好男人电影高清在线观看| 99热国产这里只有精品6| 国产视频一区二区在线看| 国产黄色免费在线视频| 超碰成人久久| 精品免费久久久久久久清纯 | 国产不卡av网站在线观看| 亚洲第一欧美日韩一区二区三区| 韩国精品一区二区三区| 99热国产这里只有精品6| 激情视频va一区二区三区| 十八禁人妻一区二区| 亚洲午夜精品一区,二区,三区| 日本a在线网址| 亚洲成人手机| 国产男女超爽视频在线观看| 人妻丰满熟妇av一区二区三区 | 亚洲精品中文字幕一二三四区| 成人精品一区二区免费| 五月开心婷婷网| 91老司机精品| 99re6热这里在线精品视频| 高清在线国产一区| 久久久精品免费免费高清| 777米奇影视久久| 精品视频人人做人人爽| 操美女的视频在线观看| 亚洲美女黄片视频| 久久久精品国产亚洲av高清涩受| 国产深夜福利视频在线观看| 成人黄色视频免费在线看| 久久久久久人人人人人| 青草久久国产| 久久婷婷成人综合色麻豆| 一区二区三区精品91| 久久久久久免费高清国产稀缺| 国产黄色免费在线视频| 日本黄色视频三级网站网址 | 欧美国产精品va在线观看不卡| 国产午夜精品久久久久久| 亚洲成人手机| 亚洲精品国产精品久久久不卡| 少妇猛男粗大的猛烈进出视频| 亚洲熟妇中文字幕五十中出 | 国产片内射在线| 国产高清激情床上av| 制服人妻中文乱码| 国产精品国产av在线观看| 精品一区二区三区av网在线观看| 国产欧美日韩一区二区三| 国产成人av激情在线播放|