• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the Detection of Rice Seed Germination Rate Based on Infrared Thermal Imaging Technology Combined with Generalized Regression Neural Network

    2016-06-15 16:40:58FANGWenhuiLUWeiXUHongliHONGDelinLIANGKun
    光譜學(xué)與光譜分析 2016年8期
    關(guān)鍵詞:稻種標(biāo)準(zhǔn)偏差廣義

    FANG Wen-hui, LU Wei,2*, XU Hong-li, HONG De-lin, LIANG Kun

    1. College of Engineering, Jiangsu Province Engineering Laboratory of Modern Facility Agriculture Technology and Equipment,Nanjing Agricultural University, Nanjing 210031, China

    2. Key Laboratory of Remote Measurement and Control Technology of Jiangsu Province, Nanjing 210096, China

    3. College of Agriculture/State Key Laboratory of Crop Genetics &Germplasm Enhancement,Nanjing Agricultural University, Nanjing 210095, China

    Study on the Detection of Rice Seed Germination Rate Based on Infrared Thermal Imaging Technology Combined with Generalized Regression Neural Network

    FANG Wen-hui1, LU Wei1,2*, XU Hong-li1, HONG De-lin3, LIANG Kun1

    1. College of Engineering, Jiangsu Province Engineering Laboratory of Modern Facility Agriculture Technology and Equipment,Nanjing Agricultural University, Nanjing 210031, China

    2. Key Laboratory of Remote Measurement and Control Technology of Jiangsu Province, Nanjing 210096, China

    3. College of Agriculture/State Key Laboratory of Crop Genetics &Germplasm Enhancement,Nanjing Agricultural University, Nanjing 210095, China

    On the basis of the differences in physiology and physics of rice seed with different aging time, the paper proposes a fast and nondestructive method which is based on infrared thermal imaging technology and generalized regression neural network to detect the germination rate of rice seed. This method solves the problems of long experimental period, complex operations and other disadvantages of the traditional method which is used to detect germination rate. When the temperature is 45 ℃ and humidity is 90%, the rice seeds are aged for 0, 1, 2, 3, 4, 5, 6 and 7 d respectively to get rice seeds of different germination rate. The data of 144 groups was extracted from the germ of rice seed. This data was divided into two groups randomly: the calibration set was 96 groups and the prediction set was 48 groups. Through analyzing and comparing the differences of infrared thermal image of rice seeds of different aging days, the relationship in physics and physiology between germination rate of rice seed and infrared thermal images was revealed. The infrared prediction model for germination rate of rice seed was established by combining partial least squares algorithm, Back Propagationneural network and General regression neural network. The result shows that the optimal germination rate model is built with GRNN. In this model, the correlation coefficient (RC) and standard deviation (SEC) of calibration sets are 0.932 0 and 2.056 0. At the same time, the correlation coefficient (RP) and standard deviation (SEP) of prediction sets are 0.900 3 and 4.101 2. The relevance reaches a higher level and the standard deviation is small. Therefore, the experiment shows that combining infrared thermal imaging technology with GRNN to study germination rate of rice seed is feasible. The model has a higher accuracy in terms of rapid determination of the germination rate of rice seed.

    Infrared thermal imaging technology; Rice seed;Germination rate; Nondestructive detecting; GRNN

    Introduction

    Food is a basic material security of people’s life. According to the data from “Chinese Statistical Yearbook” published in 2014, the acreage sown of rice reached 30 312 000 hectares and its output reached 203.612 million tons in China in 2013. The production of rice affects Chinese grain problem directly. Therefore, food production has become a hot issue in these years. The germination rate of rice seed is one of the basic, common and indispensable quality indicators to detect rice seed. To some extent, it affects food production[1].

    Currently, germination test method, which is the most common method to detect germination rate of rice seed. It not only requires preprocessing rice seed before experiment but also needs test environment to stimulate various indicators of rice seed which grows in natural environment. The experimental environment is demanding and requires long experimental period. At the same time, it is affected by the impact of seed dormant period easily. In addition to conventional detection methods, Wang Chunfang et al realized to use the ultra-weak luminescence technology to detect germination rate of wheat seed. It states that the germination rate of rice and wheat seed and their ultra-weak luminescence value show a monotone decreasing trend with the extension of storage time[2]. Li Yinian et al used near-infrared spectroscopy to study germination rate of hybrid rice seed and proposed a fast nondestructive testing method to detect germination rate[3].

    Infrared thermal imager has following characteristics: high accuracy, strong real-time in temperature measurement and realization of image acquisition and analysis in one. Therefore, it has been widely used in aerospace, mining, petrochemical, new energy and other fields. Research and application of infrared thermal imaging technology has gradually expanded to modern agriculture, industry, biology, medical and other fields and has got some achievements[4]. In the field of agriculture, infrared thermal technology has been applied to early detection of plant diseases, nondestructive testing of seed vigor and detection of rice chaff and so on. Li Xiaolong et al used infrared thermal imaging technology to detect early wheat disease. They took wheat stripe rust as an example to prove that using infrared thermal imaging technology could detect the difference of temperature after wheat was infected by pathogen. Therefore, infrared thermal imaging technology can be used as a method to detect early wheat diseases[5]. Xu Xiaolong et al used infrared thermal imaging technology to detect early tomato mosaic disease. Through using temperature difference between infected leaves and normal leaves to reflect the disease level of tomato leaves, they proved that this technology could be applied to detect early mosaic virus of tomato[6]. NorazlidaJamil et al used infrared thermal imaging technology to detect the composition of rice bran. Through comparing the thermal image pixel of rice and rice bran, they distinguished rice and rice bran successfully. The experiment proves that the cooling of 25S is the most suitable time for the separation of rice and rice bran[7]. LlseKranner et al. applied infrared thermal imaging technology to predict whether or not a static seed could germinate under suction conditions. Through analyzing, they concluded that infrared thermal imaging could detect biophysical and biochemical changes which are related to imbibition and germination[8].

    At present, the relevant literature of using infrared thermal imaging technology to establish research model to detect germination rate of rice seed is rarely reported both home and abroad. Based on infrared thermal imaging technology, this paper proposes a method to detect germination rate of rice seed rapidly and nondestructively. Through the process of artificial aging, acquisition of thermal infrared image, germination experiments and analysis of temperature difference of rice seed germ of Nanjing 46 rice seed, the author established the prediction model of germination rate of rice seed.

    1 Materials and methods

    1.1 Materials

    The materials used for experiment is Nanjing 46 rice seed which was harvested from experimental field of Nanjing Agricultural University in 2014. Through selecting artificially and removing clutter and other seeds, researchers got 10kg of rice seeds which are full particles and at the same size and shape.

    1.2 Methods

    1.2.1 Method of rice seed aging

    The aging of rice seed adopted artificial aging method with high temperature and high humidity. First, researchers divided the treated rice seeds into 8 groups equally. Each sample was placed in a glass tray and the glass tray was placed in RXZ type (Multi-Programming) intelligent artificial climate chamber (Ningbo Jiangnan Instrument Manufacturing). Then researchers aged seeds for 0 day, 1 day, 2 days, 3 days, …, and 7 days orderly by setting the climate chamber at the temperature of 45 ℃ and humidity of 90%. Next, seeds were removed from intelligent climate chamber according to different aging days. Finally, seeds were dried in sunshine and placed in airtight bag. According to different aging days, seeds were classified and numbered. Seeds of the each aging day are 10 parts which includes 9 grains. So there were altogether 720 grains. Different seeds were randomly divided at the ration of 2∶1 into calibration set (96) and prediction set (48).

    1.2.2 Sample collection of infrared thermal images

    The experiment adopted Fluke Ti27 infrared thermal imager of Fluke Corporation. Set the norm as following: the range of images is from 43.2 to 103.2 ℃, the range of calibration is from minus 10.0 to 600.0 ℃ and the resolution is 0.1 ℃. First, researchers heated rice seed. Then, they collected infrared thermal images. The heating source (500 W xenon lamp) was placed at a plane of 7 cm from the floor. Next, they used Fresnel lens to focus light at 17 cm from the light. When the angle between plane mirror and floor is 45 degree, the focused light passed the plane mirror and then projected to the floor vertically after reflection. To reduce the impact of the uneven distribution of heating source, silicon photovoltaic cells were used to regulate the light intensity of heating zone of rice seed. Experimental device is shown in Figure 1.

    Fig.1 Rice infrared image collected experimental setup

    1: Xenon light source box; 2: Plane mirror; 3: The bracket of plane mirror; 4: Zone of heating rice seed; 5: Infrared; 6: Rice seed; 7: The bracket of infrared

    The rice seeds of different aging days were divided into eight groups. They were named as Aging 0 d, Aging 1 d, Aging 2 d, Aging 3 d, Aging 4 d, Aging 5 d, Aging 6 d and Aging 7 d. Each group was divided into five parts and each part had nine grains. They were secured in squares respectively. The place of rice seed was consistent. After preheating the light source for one minute, researchers would heat the rice seed. Research shows that the infrared thermal images are relatively clear when heating 30 s and the seed will not lose activity. After heating, researchers adopted the fluke Ti27 (the distance of infrared thermal imager lens and rice is 16 cm) to shoot the rice seeds which were cooled 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 s respectively to get images. Researchers used data processing software SmartView to extract the image data of the infrared thermal imager.

    1.2.3 Germination tests

    The author referred GB/T3543.4—1995[9]as the rules for agricultural seed testing. For rice seeds of different aging days, researchers took 100 grains from each sample into 150mL beaker and then soaked seeds for two days under the conditions of constant 30℃. Then, researchers put the sample into a glass culture dish with two layers of filter paper. After instilling an appropriate amount of water into the germination boxes, researchers could carry out the implantation germination test. Control conditions are as following: daylight for 8h at 30 ℃ and night for 16 h at 20 ℃. Seven days later, researchers could count the number of germination of rice seeds of different aging days and then calculated the germination rate.

    1.2.4 Data processing

    Researchers used SmartView software to extract the data of infrared thermal images. The germination rate depends on the germ of rice seed, so researchers extracted the average temperature of germ of each rice seed as modeling data. Then, researchers grouped the data according to different aging days and different cooling time. This paper used Matlab (2012b) to build and validate the infrared thermal model for germination rate. The experimental data was divided into the calibration set (96) parts and the prediction set (48) with the ratio of 2∶1 randomly. The calibration set was used to build model. The evaluation indication of the model is correlation coefficient (RC) and standard deviation (SEC) of calibration set. The largerRC, the smaller SEC and thus researchers could get better modeling effort. After modeling, the prediction set was used to test and evaluate the model. The lager the prediction set correlation coefficient (RP), the smaller the standard deviation (SEP) and thus researchers could get a more predictive model.

    2 Results and discussion

    2.1 The relationship between germination rate of seed rice and infrared thermal image

    From germination test, researchers can get the germination rate of different aging time which is shown in table 1. It can be seen from the table that the aging time and rice seed germination rate are in inverse proportional relationship. It states that a series of physiological changes during the aging of rice seed happen in rice seed. The longer aging time, the lower germination rate is[10]. From the point of view of biology, physiological changes occurring in the aging of rice seed mainly include the auto-oxidation of the cell membrane, the destruction of integrity of rice seed membrane, the damage of nucleic acid and chromosomal, changes of enzyme activity and composition of rice seed, the accumulation of toxic substances, the reduction of the synthetic ability and recovery ability and so on[11].

    The infrared thermal image of Nanjing 46 rice seed is shown in Figure 2. 3D pseudo-true color image of rice seed is shown in Figure 3. The relationship between the cooling time and the difference of temperature of rice seed is shown in Figure 4. As we can see from Figure 2 and Figure 3, for the rice seeds which were cooled different time after aged different time, there is a temperature difference. As we can see from Figure 4, the rice seeds of different aging days have the same cooling trend in overall but they don’t have the same speed.

    Table 1 Germination rate of Nanjing 46

    Fig.2 Infrared thermal images of rice seed

    Fig.3 3D Pseudo-true color images of rice seed

    Fig.4 The graph of relationship between temperature

    Zhang Leijie et al used BP neural network to build the model to predict the regulation of various physical properties of food and specific heat capacity. They proved that the specific heat capacity would change with the change of the chemical composition of food[12]. Hence, the rice seeds of different aging days have different specific heat capacity. At the same time, the rice seeds with same heating time and different cooling time have different specific heat capacity. Jin Wen et al used hot-wire method to detect thermal conductivity of food. They proved that it increased with the increase of temperature and moisture at room temperature[13]. Therefore, rice seeds of different aging days have different thermal conductivity. It is feasible that to research the changes of relationship between the germination rate and temperature by analyzing the temperature difference of rice seed of different aging days. Solving formulas of the specific heat capacity and the thermal conductivity are shown in formula (1) and formula (2).

    (1)

    (2)

    In formula (1),mrepresents the quality of rice seed;Qrepresents the heat of absorption (release);t1represents the initial temperature of rice seed;t2represents the temperature of rice seed after heating. In formula (2),t1andt2represents the time of measurement;qrepresents the quantity of heat which was absorbed per unit time;θ1represents the temperature att1;θ2represents the temperature att2.

    2.2 The choose of different modeling approaches

    The most common modeling approaches include PLS, Artificial Neural Network (ANN) and et al. PLS is a novel multivariate statistical data analysis method. It will be easier to interpret the regression coefficients of each independent variable of mathematical model[14]. So it is suitable to be used to model and analyze the infrared thermal images of rice seed. BP neural network is a more mature nonlinear approximation method. 80% to 90% of neural networks use BP neural network or its variations in practical application[15]. GRNN is a novel neural network algorithm which was first proposed in 1991 by a German named Donald Specht. GRNN has following advantages: learning fast, approaching fast when the sample number is very large and very effective for processing sparse data of real-time environment[16]. Artificial neural network has a strong ability of self-adjustment, nonlinear processing and adaptive learning. According to the characteristic that ANN can be used to approximate any nonlinear system and have nonlinear mapping ability (in theory), it is also suitable to be used to model and analyze the infrared thermal images of rice seed.

    This paper used PLS, BP neural network and GRNN to build the prediction model for germination rate of rice seed. The author calculated the calibration set correlation coefficient (RC), standard deviation (SEC), the prediction set correlation coefficient (RP) and the standard deviation (SEP). The results are shown in table 2.

    Table 2 Modeling results of Partial least squares method

    It can be seen from table 2 that the effect of GRNN in the infrared thermal models of rice seed is better than the BP neural networks and partial least squares method. So the author chose the GRNN as the modeling method to predict the germination rate of rice seed.

    2.3 Establishment and test of infrared thermal image model of rice seed

    Researchers used the 96 parts of data in calibration set to build the prediction model of rice seed. Then, they used this model to predict the 48 parts of data in prediction set. Researchers took the data which was extracted from the germ as the input of the model. Through combining it with GRNN, researchers built the infrared thermal model of rice seed. The relationship of the actual value and the prediction value in calibration set is shown in Figure 5. The relationship of the actual value and the prediction value in prediction set are shown in Figure 6. From Figure 5, we can see that the infrared thermal prediction model for germination rate rice seed has good linear relationship. In this model, the value ofRCis 0.932 0 and the value of SEC is 2.056 0. The correlation of this model reaches a good level. From Figure 6, we can see that the value ofRPis 0.900 3 and the value of SEP is 4.101 2. It proves that the result of the prediction set is credible because theRPis larger and the SEP is smaller. In conclusion, applying infrared thermal imaging technology to conduct nondestructive testing for germination rate of rice seed is feasible.

    Fig.5 Fitting graph of calibration set

    Fig.6 Fitting graph of prediction set

    3 Conclusion

    According to the physics principle that the rice seeds of different aging days have different specific heat capacity and thermal conductivity, this paper proposes a testing method for germination rate of rice seed. This method is based on the infrared thermal imaging technology and GRNN. This paper combines PLS, BP neural network with GRNN to build the prediction model. The result proves that using GRNN to build the model can get best modeling effort. In this model, RC and SEC of calibration set are 0.932 0 and 2.056 0. The correlation of the model reaches a high level.RPand SEP of the prediction set are 0.900 3 and 4.101 2. All the data matches the condition of the maximum permissible error range of the rice seed germination test[9]. That is to say that the rapid and nondestructive prediction model for germination rate of rice seed which is established by using infrared thermal imaging technology has good accuracy. Hence, applying infrared thermal imaging technology to conduct nondestructive testing for germination rate of rice seed is feasible.

    [1] Chen N W, Zhang T G. Hybrid Rice, 2009, 24(3): 23.

    [2] Wang C F, Zhan Y, Hu F F, et al. Journal of the Chinese Cereals and Oils Association, 2013, 28(2): 105.

    [3] Li Yinian, Jiang Dan, Liu Yingying, et al. Spectroscopy and Spectral Analysis, 2014, 34(6): 1528.

    [4] Shi D P, Wu C, Li Z J, et al. Infrared Technology, 2015, 37(6): 528.

    [5] Li X L, Wang K, Ma Z H, et al. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 183.

    [6] Xu X L, Jiang H Y, Hang Y L. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 145.

    [7] Jamil Norazlida, Siti Khairunniza Bejo. Agriculture and Agricultural Science Procedia, 2014, 2: 128.

    [8] Kranner Ilse, et al. Proceedings of the National Academy of Sciences, 2010, 107(8): 3912.

    [9] Zhi J Z, Bi X H, Du K M, et al. Rules for Agricultural Seed Testing-Germination Test. Beijing: Chinese Standard Press, 1995.

    [10] Xu H B, Wei Y D, Lian L, et al. Molecular Plant Breeding, 2013, 11(5): 552.

    [11] Yang Y P, Jiang X C, Chen L B, et al. Journal of Hunan Agricultural University: Natural Sciences, 2008, 34(3): 265.

    [12] Zhang L J, Zhang M, Yang L, et al. Journal of Anhui Agri. Sci., 2009, 37(17): 8296.

    [13] Jin W, Zhang L L, Li G T, et al. Foodstuffs Technology, 2010, 18(2): 1.

    [15] Li H D, Guan D X, Yuan F J, et al. Acta Ecologicasinica, 2015, 6(4): 1.

    [16] Zhang Y L, La G Y. Journal of Data Acquisition & Processing, 2009, 24(B10): 100.

    *通訊聯(lián)系人

    S511

    A

    基于紅外熱成像技術(shù)和廣義回歸神經(jīng)網(wǎng)絡(luò)的稻種發(fā)芽率檢測(cè)方法研究

    方文輝1, 盧 偉1, 2*, 徐鴻力1, 洪德林3, 梁 琨1

    1. 南京農(nóng)業(yè)大學(xué)工學(xué)院/江蘇省現(xiàn)代設(shè)施農(nóng)業(yè)技術(shù)與裝備工程實(shí)驗(yàn)室, 江蘇 南京 210031

    2. 遠(yuǎn)程測(cè)控技術(shù)江蘇省重點(diǎn)實(shí)驗(yàn)室, 江蘇 南京 210096

    3. 南京農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/作物遺傳與種質(zhì)創(chuàng)新國(guó)家重點(diǎn)實(shí)驗(yàn)室, 江蘇 南京 210095

    基于稻種老化時(shí)間不同時(shí)的物理學(xué)和生理學(xué)差異, 提出一種基于紅外熱成像技術(shù)及廣義回歸神經(jīng)網(wǎng)絡(luò)的快速、 無損檢測(cè)稻種發(fā)芽率的檢測(cè)方法, 解決傳統(tǒng)稻種發(fā)芽率檢測(cè)方法操作復(fù)雜、 實(shí)驗(yàn)周期長(zhǎng)等問題。 在溫度為45 ℃、 濕度為90%的條件下, 將水稻種子依次老化0, 1, 2, 3, 4, 5, 6和7 d, 得到不同發(fā)芽率的種子; 采集稻種紅外熱圖像, 然后提取稻種胚芽部位數(shù)據(jù), 總計(jì)144份, 隨機(jī)分為校正集和預(yù)測(cè)集, 其中校正集96份, 預(yù)測(cè)集48份; 分析和比較不同老化天數(shù)稻種紅外熱差異, 從物理學(xué)和生理學(xué)方面揭示稻種發(fā)芽率與紅外熱圖像間的關(guān)系, 結(jié)合偏最小二乘算法(partial least squares, PLS)、 BP(back propagation, BP)人工神經(jīng)網(wǎng)絡(luò)和廣義回歸神經(jīng)網(wǎng)絡(luò)(general regression neural network, GRNN), 建立稻種發(fā)芽率的紅外熱模型。 結(jié)果表明, 利用GRNN建立的發(fā)芽率預(yù)測(cè)模型效果最優(yōu), 其中校正集的RC(相關(guān)系數(shù))和SEC(標(biāo)準(zhǔn)偏差)分別為0.932 0和2.056 0, 預(yù)測(cè)集RP(相關(guān)系數(shù))和SEP(標(biāo)準(zhǔn)偏差)分別為0.900 3和4.101 2, 相關(guān)性均達(dá)到較高水平且校正集與預(yù)測(cè)集的標(biāo)準(zhǔn)偏差均較小。 實(shí)驗(yàn)結(jié)果表明, 采用紅外熱成像技術(shù)結(jié)合廣義回歸神經(jīng)網(wǎng)絡(luò)研究稻種發(fā)芽率是可行的, 且所建模型在稻種發(fā)芽率快速測(cè)定方面有較高的精度。

    紅外熱成像技術(shù); 稻種; 發(fā)芽率; 無損檢測(cè); GRNN

    2015-04-14,

    2015-08-26)

    2015-04-14; accepted: 2015-08-26

    The National Natural Science Foundation of China(31401610), the Natural Science Foundation of Jiangsu Province(BK20130696), the Fundamental Research Funds for the Central Universities (KYZ201427), Remote Measurement and Control Technology Key Laboratory Open Fund of Jiangsu Province (YCCK201501)

    10.3964/j.issn.1000-0593(2016)08-2692-06

    Biography: FANG Wen-hui, (1994—), female, Undergraduate student in Nanjing Agricultural University e-mail: fwhnjau@126.com *Corresponding author e-mail: njaurobot@njau.edu.cn

    猜你喜歡
    稻種標(biāo)準(zhǔn)偏差廣義
    Rn中的廣義逆Bonnesen型不等式
    傾斜改正在連續(xù)重力數(shù)據(jù)預(yù)處理中的應(yīng)用
    從廣義心腎不交論治慢性心力衰竭
    有限群的廣義交換度
    互感器檢定裝置切換方式研究
    秋收:胭脂米重回京城
    關(guān)于垂準(zhǔn)儀一測(cè)回垂準(zhǔn)測(cè)量標(biāo)準(zhǔn)偏差檢測(cè)方法的探討
    水稻機(jī)插秧育苗催芽器研制成功
    基于FOGRA表格計(jì)算彩色套印標(biāo)準(zhǔn)偏差的研究
    在线播放无遮挡| 国产亚洲av片在线观看秒播厂| 美女cb高潮喷水在线观看| 激情 狠狠 欧美| 国产成人免费观看mmmm| 午夜福利网站1000一区二区三区| 99re6热这里在线精品视频| 精品亚洲乱码少妇综合久久| 久久久色成人| 免费大片18禁| 国产成人免费观看mmmm| freevideosex欧美| 亚洲国产日韩一区二区| 精品一区二区三卡| 美女高潮的动态| 国模一区二区三区四区视频| 国产高清国产精品国产三级 | 在线免费十八禁| 高清不卡的av网站| 99热网站在线观看| 欧美亚洲 丝袜 人妻 在线| 人妻制服诱惑在线中文字幕| 成人美女网站在线观看视频| 国产亚洲一区二区精品| 欧美性感艳星| 看非洲黑人一级黄片| 日韩一本色道免费dvd| 国产在线免费精品| 国产淫语在线视频| 久久久久久久国产电影| 99热这里只有是精品在线观看| 美女福利国产在线 | 毛片一级片免费看久久久久| 午夜免费鲁丝| 亚洲自偷自拍三级| 菩萨蛮人人尽说江南好唐韦庄| 亚洲激情五月婷婷啪啪| 精品酒店卫生间| 成人午夜精彩视频在线观看| 国产在线一区二区三区精| 99热6这里只有精品| 亚洲国产成人一精品久久久| 麻豆精品久久久久久蜜桃| 日韩成人av中文字幕在线观看| 爱豆传媒免费全集在线观看| 3wmmmm亚洲av在线观看| 1000部很黄的大片| 久久久久久久久久久免费av| 国产午夜精品一二区理论片| 老女人水多毛片| 极品教师在线视频| 在线免费十八禁| 97热精品久久久久久| 成人漫画全彩无遮挡| 久久久久视频综合| 日本av免费视频播放| 国产精品一区二区性色av| 亚洲欧美日韩东京热| 国产精品国产av在线观看| 在线观看人妻少妇| 国产一级毛片在线| 午夜激情福利司机影院| 毛片女人毛片| av卡一久久| 日韩成人av中文字幕在线观看| 国产精品三级大全| 高清日韩中文字幕在线| 亚洲精品日韩av片在线观看| 日韩av不卡免费在线播放| 全区人妻精品视频| 麻豆成人av视频| 少妇人妻久久综合中文| 亚洲欧美日韩无卡精品| 久久热精品热| av.在线天堂| 亚洲成色77777| 免费看光身美女| kizo精华| 久热这里只有精品99| 日本欧美视频一区| 99久久人妻综合| 高清毛片免费看| 国产精品蜜桃在线观看| 性色av一级| 国产美女午夜福利| 五月天丁香电影| 国产在视频线精品| 91精品国产国语对白视频| 精品少妇久久久久久888优播| 黑人猛操日本美女一级片| xxx大片免费视频| 丰满人妻一区二区三区视频av| 免费播放大片免费观看视频在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲av欧美aⅴ国产| 成人毛片60女人毛片免费| 夜夜看夜夜爽夜夜摸| av天堂中文字幕网| 免费看光身美女| 欧美激情国产日韩精品一区| 中文字幕久久专区| 国产亚洲av片在线观看秒播厂| 亚洲不卡免费看| 精品99又大又爽又粗少妇毛片| 妹子高潮喷水视频| 免费在线观看成人毛片| 秋霞在线观看毛片| 少妇人妻精品综合一区二区| 亚洲国产色片| 老司机影院成人| 夜夜骑夜夜射夜夜干| 一本久久精品| 久久午夜福利片| 美女福利国产在线 | 国产老妇伦熟女老妇高清| 99久久精品国产国产毛片| 欧美日韩国产mv在线观看视频 | 国产精品国产av在线观看| 成人一区二区视频在线观看| 夜夜爽夜夜爽视频| 一级爰片在线观看| 最近最新中文字幕大全电影3| 日韩 亚洲 欧美在线| 久久久色成人| 久久久久网色| 日韩 亚洲 欧美在线| 水蜜桃什么品种好| 中文乱码字字幕精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲成人手机| av卡一久久| 春色校园在线视频观看| 亚洲va在线va天堂va国产| 亚洲欧美清纯卡通| 2021少妇久久久久久久久久久| 麻豆精品久久久久久蜜桃| 极品少妇高潮喷水抽搐| 亚洲图色成人| 精品99又大又爽又粗少妇毛片| 成年av动漫网址| 欧美高清性xxxxhd video| 国产乱人偷精品视频| 18禁动态无遮挡网站| 久久精品国产亚洲av天美| 亚洲精品一区蜜桃| 国产在线一区二区三区精| 尤物成人国产欧美一区二区三区| 精品人妻一区二区三区麻豆| 老师上课跳d突然被开到最大视频| 国产免费又黄又爽又色| 久久婷婷青草| 小蜜桃在线观看免费完整版高清| 免费看不卡的av| 亚洲无线观看免费| 久久亚洲国产成人精品v| 亚洲性久久影院| 99re6热这里在线精品视频| 看十八女毛片水多多多| 国产白丝娇喘喷水9色精品| 成人亚洲精品一区在线观看 | 久久热精品热| 亚洲av国产av综合av卡| 男女边摸边吃奶| 国产精品偷伦视频观看了| 国产 一区精品| 日韩中字成人| 少妇人妻 视频| 人妻系列 视频| 国语对白做爰xxxⅹ性视频网站| 午夜老司机福利剧场| 国产在视频线精品| 99久久精品国产国产毛片| 亚洲精品第二区| 欧美3d第一页| 99热这里只有精品一区| 日日啪夜夜爽| 欧美一级a爱片免费观看看| a级一级毛片免费在线观看| 亚洲精华国产精华液的使用体验| 日韩成人伦理影院| 五月开心婷婷网| 老司机影院毛片| 免费观看av网站的网址| 在线看a的网站| 免费高清在线观看视频在线观看| 五月伊人婷婷丁香| 国产伦精品一区二区三区视频9| 日韩大片免费观看网站| a级毛片免费高清观看在线播放| 激情五月婷婷亚洲| 国产综合精华液| 亚洲婷婷狠狠爱综合网| 色婷婷久久久亚洲欧美| 人妻系列 视频| 熟妇人妻不卡中文字幕| 丝袜喷水一区| 久久久欧美国产精品| 亚洲国产日韩一区二区| 99视频精品全部免费 在线| 久久久久久九九精品二区国产| 免费人妻精品一区二区三区视频| 成人国产麻豆网| 国产亚洲91精品色在线| 国产综合精华液| 一区二区三区免费毛片| 久久久久久久国产电影| av专区在线播放| 伊人久久精品亚洲午夜| 人人妻人人澡人人爽人人夜夜| 亚洲av日韩在线播放| 2022亚洲国产成人精品| 免费播放大片免费观看视频在线观看| 97超视频在线观看视频| 久久久久人妻精品一区果冻| 精品少妇久久久久久888优播| 亚洲婷婷狠狠爱综合网| 下体分泌物呈黄色| 晚上一个人看的免费电影| 国产色爽女视频免费观看| 国产精品人妻久久久久久| 成人亚洲精品一区在线观看 | 一区二区av电影网| 九色成人免费人妻av| 久久综合国产亚洲精品| av国产久精品久网站免费入址| 乱系列少妇在线播放| 久热久热在线精品观看| 精品久久久噜噜| 内射极品少妇av片p| 一级毛片黄色毛片免费观看视频| 亚洲av中文av极速乱| 一级毛片 在线播放| 成人18禁高潮啪啪吃奶动态图 | 晚上一个人看的免费电影| 在线观看一区二区三区激情| 日韩国内少妇激情av| 久久人妻熟女aⅴ| 国产精品成人在线| 一边亲一边摸免费视频| 在现免费观看毛片| 国产成人a区在线观看| 黄色日韩在线| 亚洲av日韩在线播放| 日本色播在线视频| 一级a做视频免费观看| 亚洲成人手机| 韩国av在线不卡| 国产大屁股一区二区在线视频| 在线播放无遮挡| 高清午夜精品一区二区三区| 久久国产乱子免费精品| 国产亚洲欧美精品永久| 国产av国产精品国产| 亚洲欧美中文字幕日韩二区| 中文字幕免费在线视频6| 午夜视频国产福利| 色网站视频免费| 少妇人妻一区二区三区视频| 国产男人的电影天堂91| 91久久精品国产一区二区成人| 国产 精品1| 亚洲av在线观看美女高潮| 亚洲精品一二三| 肉色欧美久久久久久久蜜桃| 国产黄色免费在线视频| 少妇丰满av| 丰满乱子伦码专区| 美女cb高潮喷水在线观看| 嘟嘟电影网在线观看| 成年女人在线观看亚洲视频| 一个人看的www免费观看视频| 汤姆久久久久久久影院中文字幕| 男女下面进入的视频免费午夜| 一级a做视频免费观看| 毛片一级片免费看久久久久| 婷婷色av中文字幕| 美女中出高潮动态图| 久久影院123| 午夜福利视频精品| 国产视频内射| 男人添女人高潮全过程视频| 成人免费观看视频高清| av网站免费在线观看视频| 午夜福利网站1000一区二区三区| av在线观看视频网站免费| 亚洲精品自拍成人| 国产成人a∨麻豆精品| 在线播放无遮挡| 水蜜桃什么品种好| 精品人妻视频免费看| 国语对白做爰xxxⅹ性视频网站| 日本爱情动作片www.在线观看| 国产高清国产精品国产三级 | 国产美女午夜福利| 国产v大片淫在线免费观看| 日日啪夜夜爽| 亚洲国产精品999| 久久毛片免费看一区二区三区| 亚洲中文av在线| 国产精品福利在线免费观看| 十分钟在线观看高清视频www | www.av在线官网国产| av福利片在线观看| 91aial.com中文字幕在线观看| 99热网站在线观看| 久久人人爽av亚洲精品天堂 | 国产在线免费精品| 欧美精品一区二区大全| 久久99蜜桃精品久久| 欧美一区二区亚洲| 99久久精品国产国产毛片| 中文字幕亚洲精品专区| 少妇的逼水好多| 热re99久久精品国产66热6| 欧美+日韩+精品| 久久99蜜桃精品久久| 日韩成人av中文字幕在线观看| 天天躁日日操中文字幕| 王馨瑶露胸无遮挡在线观看| 色综合色国产| av天堂中文字幕网| 永久网站在线| 日韩三级伦理在线观看| 午夜福利影视在线免费观看| 国产精品久久久久久久久免| 久久精品国产亚洲av涩爱| 欧美xxⅹ黑人| 国产极品天堂在线| 99热国产这里只有精品6| 97在线视频观看| 色婷婷久久久亚洲欧美| 新久久久久国产一级毛片| 高清毛片免费看| av线在线观看网站| 中文在线观看免费www的网站| 亚洲国产成人一精品久久久| a级毛色黄片| 97精品久久久久久久久久精品| 99久国产av精品国产电影| 在线观看免费高清a一片| 亚洲,一卡二卡三卡| 久久影院123| 少妇的逼好多水| 视频区图区小说| 黄片wwwwww| 一区在线观看完整版| 国产亚洲5aaaaa淫片| 日本免费在线观看一区| 亚洲av日韩在线播放| 三级国产精品欧美在线观看| 日本黄大片高清| 91久久精品电影网| 欧美xxⅹ黑人| 久久人妻熟女aⅴ| av福利片在线观看| 亚洲国产av新网站| 久久99热这里只频精品6学生| 丝袜脚勾引网站| 欧美一级a爱片免费观看看| 肉色欧美久久久久久久蜜桃| 午夜激情久久久久久久| 日韩 亚洲 欧美在线| 国产av一区二区精品久久 | 26uuu在线亚洲综合色| 久久97久久精品| 欧美 日韩 精品 国产| 中国美白少妇内射xxxbb| 91aial.com中文字幕在线观看| 成人特级av手机在线观看| 久久精品夜色国产| 在线观看免费视频网站a站| 天天躁夜夜躁狠狠久久av| 自拍欧美九色日韩亚洲蝌蚪91 | 校园人妻丝袜中文字幕| 国产视频内射| 十八禁网站网址无遮挡 | 中文天堂在线官网| 精品一区在线观看国产| 丝袜脚勾引网站| 国产又色又爽无遮挡免| 久久热精品热| 国产精品女同一区二区软件| 久久精品国产亚洲网站| 91狼人影院| 99热国产这里只有精品6| 天美传媒精品一区二区| 国产精品久久久久久久久免| 老司机影院毛片| 日韩三级伦理在线观看| 最近手机中文字幕大全| 免费少妇av软件| 一级毛片黄色毛片免费观看视频| 亚洲精品日韩av片在线观看| 久久影院123| 极品教师在线视频| 黄色配什么色好看| 国产精品秋霞免费鲁丝片| 毛片一级片免费看久久久久| 亚洲精品一区蜜桃| 在线天堂最新版资源| 久久人人爽人人爽人人片va| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频 | 久久国产精品男人的天堂亚洲 | 搡女人真爽免费视频火全软件| 精品国产乱码久久久久久小说| 日本vs欧美在线观看视频 | 黄色配什么色好看| 欧美三级亚洲精品| 91aial.com中文字幕在线观看| 一本色道久久久久久精品综合| 91久久精品国产一区二区三区| 一级毛片我不卡| 免费黄色在线免费观看| 国产日韩欧美亚洲二区| 在线精品无人区一区二区三 | 国产亚洲欧美精品永久| 大香蕉97超碰在线| 免费看不卡的av| 哪个播放器可以免费观看大片| 日韩欧美精品免费久久| 国产伦精品一区二区三区四那| 欧美日韩视频精品一区| 亚洲成人手机| 最近最新中文字幕大全电影3| 亚洲av欧美aⅴ国产| 99九九线精品视频在线观看视频| 美女高潮的动态| 色网站视频免费| 欧美国产精品一级二级三级 | 欧美日韩国产mv在线观看视频 | 少妇丰满av| 国内精品宾馆在线| 在线播放无遮挡| 日日摸夜夜添夜夜添av毛片| 亚洲精品久久久久久婷婷小说| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 精品酒店卫生间| 五月玫瑰六月丁香| 国产精品一二三区在线看| 国产成人一区二区在线| 亚洲综合色惰| 在线免费十八禁| 高清视频免费观看一区二区| 99久久中文字幕三级久久日本| 免费黄色在线免费观看| 黄色日韩在线| 国产男女内射视频| 亚洲精品中文字幕在线视频 | 亚洲精品乱码久久久v下载方式| 边亲边吃奶的免费视频| 卡戴珊不雅视频在线播放| 免费黄频网站在线观看国产| 国产精品福利在线免费观看| 亚洲四区av| 精品酒店卫生间| 成人特级av手机在线观看| 精品人妻一区二区三区麻豆| 男人舔奶头视频| 美女内射精品一级片tv| 成人午夜精彩视频在线观看| 精品国产乱码久久久久久小说| 少妇 在线观看| 精品国产露脸久久av麻豆| a级毛片免费高清观看在线播放| 熟妇人妻不卡中文字幕| 国产高潮美女av| av在线播放精品| 国产午夜精品一二区理论片| 国产精品av视频在线免费观看| 水蜜桃什么品种好| 免费av不卡在线播放| 黑人猛操日本美女一级片| 直男gayav资源| 日本与韩国留学比较| 国内精品宾馆在线| 三级经典国产精品| 舔av片在线| 少妇精品久久久久久久| 美女xxoo啪啪120秒动态图| 精品久久久精品久久久| 久久久久久久久久成人| 97在线视频观看| 日日啪夜夜爽| 精品国产乱码久久久久久小说| 亚洲精品日本国产第一区| 国产黄片美女视频| 一级二级三级毛片免费看| 日韩视频在线欧美| 日本vs欧美在线观看视频 | 99热全是精品| 国产成人精品久久久久久| 国产免费一区二区三区四区乱码| 亚洲精品一二三| 大片电影免费在线观看免费| 九九爱精品视频在线观看| 久久99精品国语久久久| 老司机影院成人| 成人免费观看视频高清| 久久久久人妻精品一区果冻| 日韩视频在线欧美| 色婷婷av一区二区三区视频| 久久99热6这里只有精品| 午夜福利高清视频| 18禁裸乳无遮挡免费网站照片| 久久女婷五月综合色啪小说| 在线观看美女被高潮喷水网站| 欧美变态另类bdsm刘玥| 丰满人妻一区二区三区视频av| 纯流量卡能插随身wifi吗| 国产乱人视频| a 毛片基地| 国产乱人视频| 在线免费十八禁| 欧美xxⅹ黑人| 我要看黄色一级片免费的| 看十八女毛片水多多多| 深爱激情五月婷婷| 久久精品熟女亚洲av麻豆精品| 中国三级夫妇交换| 欧美成人午夜免费资源| 欧美精品一区二区免费开放| 国产精品国产三级国产专区5o| 制服丝袜香蕉在线| 18禁在线无遮挡免费观看视频| 国产在线视频一区二区| 在线观看美女被高潮喷水网站| 国产精品不卡视频一区二区| 亚洲欧洲日产国产| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 尤物成人国产欧美一区二区三区| 亚洲av成人精品一二三区| 在线亚洲精品国产二区图片欧美 | 国产一级毛片在线| 久久久亚洲精品成人影院| 毛片女人毛片| 欧美三级亚洲精品| 插阴视频在线观看视频| 久久久久久久久久人人人人人人| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 久久6这里有精品| 看免费成人av毛片| 亚洲精品久久午夜乱码| 欧美人与善性xxx| 美女xxoo啪啪120秒动态图| 午夜视频国产福利| 一级片'在线观看视频| 男人添女人高潮全过程视频| 在线观看三级黄色| 黄色欧美视频在线观看| 久久久久视频综合| 亚洲第一av免费看| 啦啦啦在线观看免费高清www| 精品一区二区三卡| 久久久国产一区二区| 成人美女网站在线观看视频| 97超视频在线观看视频| 亚洲国产毛片av蜜桃av| 国产精品人妻久久久影院| 中文字幕久久专区| 国产国拍精品亚洲av在线观看| 成人美女网站在线观看视频| 国产男人的电影天堂91| 联通29元200g的流量卡| 亚洲内射少妇av| 国产午夜精品一二区理论片| 久久影院123| 亚洲精品一二三| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 视频中文字幕在线观看| 日本黄色日本黄色录像| 91久久精品国产一区二区成人| 国产在线视频一区二区| 国产免费视频播放在线视频| 三级经典国产精品| 好男人视频免费观看在线| 国产黄片美女视频| 插阴视频在线观看视频| 成人毛片60女人毛片免费| 国产精品嫩草影院av在线观看| 国产爱豆传媒在线观看| 国产中年淑女户外野战色| 亚洲av国产av综合av卡| 成人二区视频| 三级国产精品欧美在线观看| 午夜老司机福利剧场| 欧美最新免费一区二区三区| 99久国产av精品国产电影| 纵有疾风起免费观看全集完整版| 水蜜桃什么品种好| av播播在线观看一区| 久热久热在线精品观看| 菩萨蛮人人尽说江南好唐韦庄| 国产 一区 欧美 日韩| 日本猛色少妇xxxxx猛交久久| 日韩一区二区视频免费看| 激情 狠狠 欧美| 黄色一级大片看看| 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99| 高清欧美精品videossex| 交换朋友夫妻互换小说| 成年免费大片在线观看| 精品人妻视频免费看| 99热这里只有精品一区| 亚洲av男天堂| 日韩电影二区| 久久影院123| 亚洲色图av天堂|