• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectroscopic Properties of Energy Transfer Effect in Sm3+/Eu3+ Doped LaF3 Nanocrystals

    2016-06-15 16:40:58FUZhenxingLIUBiruiYANGBingxiong
    光譜學(xué)與光譜分析 2016年8期
    關(guān)鍵詞:光譜學(xué)激發(fā)態(tài)晶體

    FU Zhen-xing, LIU Bi-rui, YANG Bing-xiong

    1. School of Physics and Electronic Information Engineering, Ningxia Normal University, Guyuan 756000, China

    2. School of Physics Electrical Information Engineering, Ningxia University, Yinchuan 750021, China

    Spectroscopic Properties of Energy Transfer Effect in Sm3+/Eu3+Doped LaF3Nanocrystals

    FU Zhen-xing1, LIU Bi-rui1, YANG Bing-xiong2

    1. School of Physics and Electronic Information Engineering, Ningxia Normal University, Guyuan 756000, China

    2. School of Physics Electrical Information Engineering, Ningxia University, Yinchuan 750021, China

    The samples of LaF3∶Sm3+, LaF3∶Eu3+and LaF3∶Sm3+/Eu3+nanocrystals with high quality mono-disperse and uniform sizes were synthesized with hydrothermal method. The crystallographic phase, surface morphology, crystalline sizes and fluorescence properties of Sm3+/Eu3+sole- and co-doped nanocrystals were characterized with X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopic technique, respectively. The results of XRD and TEM show that the microstructure of the nanocrystals is hexagonal, with the average size about 40 nm. Using 442 nm He-Cd continuous wave (CW) laser to pump the Sm3+ions doped in the LaF3∶Sm3+/Eu3+nanocrystals, the typical fluorescence emissions originating from the Eu3+ions were observed in the emission spectra, and that the energy transfer from Sm3+ions to Eu3+ions was completed. The mechanism and efficiency of the energy transfer from Sm3+ions to Eu3+ions were investigated and discussed systematically based on the spectroscopic method. It is shown that the energy transfer of Sm3+→Eu3+is attributed to the cross-relaxation between the excited state4G5/2of Sm3+ion and the5D1and5D0states of Eu3+ion. Meanwhile, the intensities of the characteristic fluorescence emissions of Eu3+ions become stronger and stronger with the increase of the Eu3+doping concentration, which suggest that the efficiency of energy transfer from Sm3+ions to Eu3+ions can be effectively improved by increasing the doping concentration of Eu3+acceptor.

    Fluorescence spectrum; LaF3nanocrystals; Sm3+/Eu3+; Energy transfer

    Introduction

    Trivalent samarium (Sm3+) and europium (Eu3+) ions are two important red-light activators among Rare-earth ions[1-2]. The4G7/2,4F3/2and4G5/2states of Sm3+ion can produce excellent red/orange fluorescence emissions with high quantum efficiency, which can be widely used in LED, color display, optical apparatus and information communication, etc[3-5]. While Eu3+ion can also give off excellent red/orange fluorescence emissions in the region of 550~750 nm since its energy level structure is similar to that of Sm3+ion. Additionally, the electric-dipole transition due to5D0→7F2emission of Eu3+ion is hypersensitive to the local crystal field, which can be used as “fluorescence probe” to explore the site symmetry of the doping Eu3+ion[6-7]. Many researchers have introduced a large quantity of literature investigating the spectroscopic properties of Sm3+, Eu3+sole-doped systems. Recently, there are some reports on the energy transfer and fluorescence properties of Sm3+/Eu3+co-doped systems, and the investigation of the energy transfers of Sm3+/Eu3+in various hosts is much favorable by many researchers[8-12]. With the rising of the demand for visible laser and light, LED, optical information transfer and red phosphors, Sm3+and Eu3+ions as two representative red-light activators have played more and more important roles in the development of luminescent materials[13-15].

    Lanthanum fluoride (LaF3) crystals is a sort of excellent fluorescent matrix material and has broad applications in materials science, medicine, organic/inorganic synthesis and other fields due to its low phonon energy, high quantum efficiency, small probability of no-radiation and so on. However, to the best of our knowledge, there are no reports on the energy transfer effect of Sm3+/Eu3+ions in LaF3host. In this paper, LaF3∶Sm3+, LaF3∶Eu3+and LaF3∶Sm3+/Eu3+nanocrystals were synthesized with the hydrothermal method at low temperature. Using 442 nm CW laser to excite Sm3+ions doped in Sm3+/Eu3+co-doped LaF3nanocrystals, the strong characteristic fluorescence emissions of Eu3+ion originating from the5D0state were observed. It suggests that the energy transfer from Sm3+to Eu3+ions occurs in LaF3∶Sm3+/Eu3+nanocrystals. The mechanism and dynamical process of energy transfer were investigated systematically based on photoluminescence (PL) spectroscopic technique. The influence of the doping concentration of Eu3+acceptor on the energy transfer efficiency was also discussed in detail.

    1 Experimental

    1.1 Preparation of samples

    The LaF3∶Sm3+, LaF3∶Eu3+and LaF3∶Sm3+/Eu3+nanocrystals were synthesized with the hydrothermal method at low temperature. Chemicals used for preparing the samples included sodium fluoride (NaF, Xi’an Chemical Reagent Factory, China, chemical pure, 98%), nitric acid (HNO3, Xi’an Sanpu Fine Chemical Reagent Factory, China, analytical reagent, 65%~68%), europium oxide (Eu2O3, Tongji Microelement Research Center in China, analytical reagent, 99.99%), samarium oxide (Sm2O3, Tongji Microelement Research Center in China, analytical reagent, 99.99%) and lanthanum nitric hexahydrate (La(NO3)3·6H2O, Sinopharm Chemical Reagent Co., Ltd, China, analytical reagent, 44%).

    The Sm(NO3)3and Eu(NO3)3deionized water solution were obtained by reacting Sm2O3and Eu2O3with nitric acid, respectively. Initially, the Sm2O3and Eu2O3was dissolved in nitric acid and formed Sm(NO3)3and Eu(NO3)3aqueous solution (0.01 mol·L-1). Then the appropriate amount of La(NO3)3·6H2O was weighted to move to a beaker, and added 20 mL deionized water to this beaker. Stirring the mixture in the beaker for 5~10 min until La(NO3)3·6H2O was completely dissolved and a clear solution of La(NO3)3was obtained, the corresponding amount of Sm(NO3)3and/or Eu(NO3)3solution was added into the beaker according to the Sm3+, Eu3+sole- and/or co-doping concentration. Ensuring the mixture was homogeneous by stirring for 8~10 min, the appropriate amount of NaF was added into the beaker according to the molar ratio of La3+and F-ions. After stirring for 60 min, the mixture was transferred into a Teflon-lined autoclave and added deionized water into the autoclave to 80% of the total volume. Then the autoclave was put into an electric blast drying oven to conduct the reaction at 200 ℃ for 16 hours. After the reaction, air cooled the autoclave to room temperature. The autoclave was pulled out of the oven and the solution in the autoclave was transferred to centrifuge tubes. Centrifuging the solution at 5 000 r·m-1for several times, the white product was obtained. Finally, the nanocrystals of LaF3∶Sm3+/Eu3+, LaF3∶Sm3+, LaF3∶Eu3+were obtained by parching the white product at 60 ℃ for 12 hours.

    1.2 Sample characterization

    The XRD patterns of the samples was conducted with an X-ray powder diffractometer (D/Max2550VB+/PC) with Cu Kα (λ=0.154 06 nm) radiation to identify the crystal structure of the samples. The surface morphology, crystalline size and dispersity of the samples were performed by a Tecnai-10 (Philip, Holland) transmission electron microscope (TEM). Figure 1 shows the XRD patterns of Sm3+/Eu3+co-doped LaF3nanocrystals with the doping concentration of Sm3+and Eu3+ions are 0.5 mol% and 1.0 mol%. It can be seen that the diffractive peaks of the as-prepared samples are sharp and their positions are in good agreement with the JCPDS Card No.06-0281, which indicates the crystallographic phase of the as-prepared LaF3nanocrystals is hexagonal. No dopant peaks or other products are noticed, which implies that the slight amount of Sm3+/Eu3+dopant has almost no effect on the LaF3phase composition. Scherrer formula is applied to diffraction peaks (111). It is found that the mean particle sizes are about 40 nm.

    Fig.1 XRD patterns of the LaF3∶Sm3+/Eu3+ nanocrystals

    The surface morphology, crystalline size and dispersity of the as-prepared LaF3samples were observed with TEM. Figure 2 presents two TEM images of LaF3samples with different magnification ratio. It can be seen that the samples have similar surface morphology with high quality mono-disperse and uniform sizes. The mean particle sizes are about 40 nm, which is consistent with what has calculated through Scherrer formula.

    Fig.2 TEM images of LaF3∶Sm3+/Eu3+ nanocrystals

    1.3 PL spectroscopic measurements

    As to PL spectroscopic measurements, the fluorescence signal was collected with a spectrometer (SP2750i, focus 0.75 m) equipped with a CCD system (Princeton Instrument, PIXIS:100B). A 442 nm He-Cd laser (IK5451R-E-SP, CW, Japan) and a 532 nm Nd3+∶YAG pulsed laser (Quanta Ray Lab-170, pulse widths 2 ns, repetition rate 10 Hz) were used as the excitation source. All of the measurements were conducted at room temperature.

    2 Results and discussion

    2.1 Spectroscopic measurement of energy transfer

    The PL spectroscopic properties of energy transfer effect from Sm3+to Eu3+are much different in different hosts. In order to investigate the spectroscopic properties of energy transfer effect from Sm3+to Eu3+in LaF3host, the LaF3∶Eu3+, LaF3∶Sm3+sole-doped and LaF3∶Sm3+/Eu3+co-doped nanocrystals were excited with the 532 and 442 nm lasers, respectively, and the emission spectra of the samples were observed and recorded. The results of the experimental measurements show that the Sm3+ions doped in LaF3host can effectively be excited with 442 nm laser, while the Eu3+ions in LaF3host can only be excited with 532 nm laser. The fluorescence emission spectra of LaF3∶Sm3+sole-doped (curvea) and LaF3∶Sm3+/Eu3+co-doped (curvec) nanocrystals are given in Fig.3. It can be clearly seen that there are four dominating emission bands located at around 558, 592, 638 and 701 nm, respectively. Combining the emission bands with the energy level structure of Sm3+ions, one can confirm that the four dominating fluorescence emissions arise from the4G5/2→6H5/2,4G5/2→6H7/2,4G5/2→6H9/2and4G5/2→6H11/2transitions, where the highest emission band is located at 592 nm corresponding to the4G5/2→6H7/2transition, which is plotted by curveain Fig.3. However, for LaF3∶Sm3+/Eu3+co-doped samples, besides the four emission bands mentioned above, there are five new emission bands occurred in the emission spectra. The central wavelengths of the five emission bands are 612, 616, 679, 688 and 690 nm, as can be seen from the curvecin Fig.3. The central wavelengths of the new emission bands are in agreement with the typical positions of Eu3+fluorescence emissions under the excitation at 532 nm. The emission bands locate at 612 nm and 616 nm due to the transition of5D0→7F2, while the 679, 688 and 690 nm fluorescence emissions originates from the transition of5D0→7F4, which is presented by curveband curvecin Fig.3. Additionally, it is noticed that little changes have been occurred in the profile of emission band that locates at 592 nm. A further research reveals that the emission band is composed of four sub-bands, where the three stronger sub-bands located at 587, 589 and 591 nm originate from the5D0→7F1transition of Eu3+ions in LaF3host, while the weak band located at 586 nm derives from the4G5/2→6H7/2transition of Sm3+ions in LaF3host. This result can be observed more clearly by the enlarged graph shown in the inset of Fig.3. Considered that the 442 nm laser can not effectively excite the Eu3+ions doped in LaF3host, it can be concluded that the characteristic Eu3+-emissions of LaF3∶Sm3+/Eu3+nanocrystals originate from the energy transfer from Sm3+to Eu3+ions. The emission spectrum of LaF3∶Eu3+sample under the excitation at 532 nm is shown by curvebin Fig.3. Combined curvebwith the curvec, it can be seen that the positions of fluorescence emissions of Eu3+sole-doped nanocrystals and Sm3+/Eu3+co-doped ones are coincident with each other very well. The experimental results mentioned above confirm that the characteristic fluorescence emissions of Eu3+ion in LaF3∶Sm3+/Eu3+samples are attributed to the energy transfer from Sm3+to Eu3+ions.

    Fig.3 Emission spectra of Sm3+/Eu3+

    2.2 Analysis on energy transfer mechanism

    The new fluorescence bands in the emission spectrum of LaF3∶Sm3+/Eu3+nanocrystals under the excitation at 442 nm is attributed to the transition from the excited state5D0to the ground state7FJ(J=0~6). The mechanism of the energy transfer and related relaxation process can be obtained through the analysis on the specific energy level structures and the transition processes of Sm3+and Eu3+ions. Initially, the Sm3+ions populated at the ground state are pumped to the excited4G9/2state when the LaF3∶Sm3+/Eu3+nanocrystals are excited by the 442 nm CW laser. The Sm3+ions at the4G9/2state will relax quickly to populate at the lower level4G5/2through a nonradiative way due to the small energy space between4F3/2state and other adjacent ones. Then part of ions at4G5/2state will relax to the6HJ(J=5/2, 7/2, 9/2, 11/2, 13/2, 15/2) lower states to give off the fluorescence emissions of Sm3+ion. Four fluorescence emission bands of Sm3+ions were measured and recorded in the experimental measurements. The central wavelengths of the four bands are located at 558, 592, 638 and 701 nm corresponding to the transition of4G5/2→6H5/2,4G5/2→6H7/2,4G5/2→6H9/2and4G5/2→6H11/2, respectively. Meanwhile, the effect of energy transfer will occur in LaF3∶Sm3+/Eu3+co-doped nano-system. Because the4G5/2state of Sm3+ion is very closed to the5D1,5D0states of Eu3+ion, the other Sm3+ions will be induced to transfer energy from Sm3+ion4G5/2state to Eu3+ion5D1and5D0states. Then the Eu3+ions at5D0states relax to the lower states7FJ(J=0~6) to produce 581, 589, 616, 648, 680 and 705 nm fluorescence emissions due to the transitions of5D0→7F0,5D0→7F1,5D0→7F2,5D0→7F3,5D0→7F4and5D0→7F5, respectively. It is noticed that the strongest fluorescence emission band is around 589 nm arising from the transition of5D0→7F1of Eu3+ions. Two stronger fluorescence emission bands locate at around 612 and 680 nm due to the transitions of5D0→7F2and5D0→7F4, respectively. The fluorescence emission bands of 581 nm (5D0→7F0) measured in Eu3+sole-doped LaF3nanocrystals can not be observed in the emission spectrum of LaF3∶Sm3+/Eu3+nanocrystals, which are plotted by curveband curvecin Fig.3. This phenomenon suggests that the transition of5D0→7F0of Eu3+ion is restrained by introducing the co-doping Sm3+ion. The mechanism of energy transfer and related transitions in LaF3∶Sm3+/Eu3+co-doped system is shown in Fig.4.

    2.3 Concentration effect of spectroscopic properties

    It is known that the efficiency of energy transfer base on donor and acceptor is more dependent on the doping concentration of the acceptor ion. Therefore, the influence of Eu3+doping concentration on the energy transfer effect is only investigated in this section because it has much greater advantage than that of Sm3+ion in LaF3∶Sm3+/Eu3+nanocrystals. Keeping the doping concentration of Sm3+-donor fixed at 0.5 mol%, the fluorescence emission spectra of LaF3∶Sm3+/Eu3+nanocrystals with various Eu3+doping concentration were observed and recorded, where the doping concentrations of Eu3+-acceptor are 1.0 mol%, 1.5 mol% and 2.0 mol%, respectively. The fluorescence emission spectra of LaF3∶Sm3+/Eu3+nanocrystals with different Eu3+doping concentrations under the excitation at 442 nm laser is shown in Fig.5. The fluorescence emission bands located at 589, 616 and 680 nm arising from the transitions of5D0→7F1,5D0→7F2and5D0→7F4were selected to investigate, as plotted by curvea,bandcin Fig.5. It can be seen that the intensities of the fluorescence emissions at 589, 616 and 680 nm become more stronger with the increase of the Eu3+doping concentration. Therefore, the efficiency of the energy transfer can be effectively improved by increasing the doping concentration of Eu3+acceptor. The reason may be that the amount of the Eu3+ions around Sm3+ion increases with the increase of Eu3+doping concentration, which enhances the possibility of energy transfer from Sm3+to Eu3+because there are more Eu3+ions that can accept the energy from Sm3+donor in LaF3∶Sm3+/Eu3+sample. Some literatures have reports that the quenching concentration of Eu3+ion in LaF3host is more than 2.0 mol%[16-17]. Consequently, the enhancement of the energy transfer possibility will lead to the increase of the intensity of Eu3+fluorescence emission when the Eu3+doping concentration is less than its quenching concentration. Additionally, for observing more clearly, the enlarged graph of the 589 nm emission bands are shown in the inset of Fig.5.

    Fig.4 Mechanism of energy transfer from Sm3+ to Eu3+ ions

    Fig.5 Relation of fluorescence spectra

    3 Conclusions

    Sm3+, Eu3+sole- and co-doped LaF3nanocrystal samples has been achieved with the hydrothermal method and their crystallographic phase, surface morphology and spectroscopic properties have been characterized by XRD, TEM and PL techniques. With a 442 nm CW laser as the excitation source to pump the Sm3+ions doped in LaF3∶Sm3+/Eu3+nanocrystals, the characteristic fluorescence emissions of Eu3+ions was observed, which is the results of the energy transfer from Sm3+to Eu3+ions. The mechanism and dynamical process of the energy transfer in LaF3∶Sm3+/Eu3+nanocrystals are investigated and analyzed. The results show that the observed energy transfer from Sm3+to Eu3+ions in LaF3∶Sm3+/Eu3+nano-system is attributed to the cross-relaxation between the4G5/2state of Sm3+ions and the5D1and5D0states of Eu3+ions. The further spectroscopic research reveals that the intensities of the characteristic fluorescence emissions originating from the energy transfer effect increase with the increase of the doping concentration of Eu3+acceptor.

    [1] Yang Fu, Liu Yufeng, Tian Xiaodong, et al. Journal of Solid State Chemistry, 2015, 225: 19.

    [2] Xie Mubiao, Zeng Lihua, Zhou Xiaoping, et al. Solid State Sciences, 2015, 39: 6.

    [3] Sun Jiayue, Di Qiumei, Cui Dianpeng. Materials Research Bulletin, 2014, 60: 201.

    [4] Zhu Daoyun, Mu Zhongfei. Displays, 2014, 35(5): 261.

    [5] Ratnam B V, Jayasimhadri M, Jang Kiwan. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 132(11): 563.

    [6] Tong Yiping, Yan Jiayan. Spectroscopy and Spectral Analysis, 2014, 34(12): 3210.

    [7] Zhang Xinguo, Chen Yibo, Zeng Suiwen, et al. Ceramics International Part A, 2014, 40(9): 14537.

    [8] Yan Fan, Yihua Hu, Li Chen, et al. Physica B: Condensed Matter, 2014, 450: 99.

    [9] Naresh V, Rudramadevi B H, Buddhudu S. Journal of Alloys and Compounds, 2015, 632.

    [10] Zhang Feng, Zhang Weifeng, Zhang Zhiya, et al. Journal of Luminescence, 2014, 152: 160.

    [11] Hachani S, Moine B, El-akrmi A, et al. Journal of Luminescence, 2010, 130(10): 1774.

    [12] Min Xin, Fang Minghao, Huang Zhaohui, et al. Optical Materials, 2014, 37: 110.

    [13] Fu Zhenxing, Ma Lun, Sahi Sunil, et al. Journal of Luminescence, 2013, 143: 657.

    [14] Wang G Q, Gong X H, Lin Y F, et al. Optical Materials, 2014, 37: 229.

    [15] Wang Zhijun, Li Panlai, Yang Zhiping, et al. Journal of Luminescence, 2014, 151: 170.

    [16] Pi Daibo, Wang Feng, Fan Xianping, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(11-12): 2455.

    [17] Meng Jianxin, Zhang Maofeng, Liu Yingliang, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(1): 81.

    O482.3

    A

    LaF3納米晶體中Sm3+/Eu3+能量傳遞效應(yīng)的光譜學(xué)特性

    伏振興1, 劉碧蕊1, 楊秉雄2

    1. 寧夏師范學(xué)院物理與電子信息工程學(xué)院, 寧夏 固原 756000

    2. 寧夏大學(xué)物理電氣信息學(xué)院, 寧夏 銀川 750021

    采用水熱合成法, 在較低的溫度下制備了分散性, 均勻性良好的LaF3∶Sm3+, LaF3:Eu3+和LaF3∶Sm3+/Eu3+納米晶體樣品。 通過X射線衍射(XRD), 透射電子顯微鏡(TEM)和光致發(fā)光(PL)等手段, 分別對Sm3+/Eu3+單摻和共摻LaF3納米晶體的物相, 表面形貌, 晶粒尺寸和熒光特性進行了表征。 XRD和TEM檢測結(jié)果顯示, 所制備的LaF3納米晶體呈六方晶體相, 平均粒徑在40 nm左右。 當采用波長為442 nm的He-Cd連續(xù)激光器激發(fā)Sm3+/Eu3+共摻LaF3樣品中的Sm3+時, 在樣品發(fā)射光譜中觀測到了Eu3+的特征熒光發(fā)射譜線, 實現(xiàn)了Sm3+向Eu3+的能量傳遞。 采用光譜學(xué)研究方法討論了能量傳遞的機理和效率。 結(jié)果表明, 能量傳遞過程是Sm3+的4G5/2激發(fā)態(tài)與Eu3+的5D1和5D0激發(fā)態(tài)之間的交叉馳豫所致, 并且隨著Eu3+的摻雜濃度的增大, 共摻LaF3∶Sm3+/Eu3+樣品的發(fā)射譜中的Eu3+的特征熒光發(fā)射強度也隨之增強, 這說明增加受主Eu3+的摻雜濃度能夠有效地提高Sm3+→Eu3+能量傳遞的效率。

    熒光光譜; LaF3納米晶體; Sm3+/Eu3+; 能量傳遞

    2015-03-06,

    2015-07-19)

    2015-03-06; accepted: 2015-07-19

    National Natural Science Foundation of China (11174190), Natural Science Foundation of Ningxia Province (NZ13208), Scientific Research in C&U (NGY2013112) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars (2014-486-4) of Ningxia Province, and the Project of Scientific Research of Ningxia Normal University (NXSFZD1513)

    10.3964/j.issn.1000-0593(2016)08-2686-06

    Biography: FU Zhen-xing, (1972—), Professor, Ph. D., Ningxia Normal University e-mail: zxfuo@sohu.com

    猜你喜歡
    光譜學(xué)激發(fā)態(tài)晶體
    “輻射探測晶體”專題
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    更 正
    敬告讀者
    ——《光譜學(xué)與光譜分析》已全文上網(wǎng)
    敬告讀者
    ——《光譜學(xué)與光譜分析》已全文上網(wǎng)
    敬告讀者
    ——《光譜學(xué)與光譜分析》已全文上網(wǎng)
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    UF6振動激發(fā)態(tài)分子的振動-振動馳豫
    計算物理(2014年2期)2014-03-11 17:01:44
    光子晶體在兼容隱身中的應(yīng)用概述
    婷婷色麻豆天堂久久| 久久久久精品性色| 中文字幕制服av| 欧美潮喷喷水| 国产女主播在线喷水免费视频网站 | 欧美最新免费一区二区三区| 日本wwww免费看| 搡老乐熟女国产| 好男人在线观看高清免费视频| 天堂俺去俺来也www色官网 | 精华霜和精华液先用哪个| 精品久久久久久久久av| 水蜜桃什么品种好| 亚洲美女搞黄在线观看| av福利片在线观看| 婷婷六月久久综合丁香| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区国产| 赤兔流量卡办理| 亚洲av日韩在线播放| 亚洲av.av天堂| 一个人观看的视频www高清免费观看| 欧美xxxx性猛交bbbb| 日本一本二区三区精品| 九草在线视频观看| 26uuu在线亚洲综合色| 听说在线观看完整版免费高清| 日本一二三区视频观看| 十八禁国产超污无遮挡网站| 成年女人看的毛片在线观看| 高清日韩中文字幕在线| 最后的刺客免费高清国语| 亚洲久久久久久中文字幕| 特级一级黄色大片| 精品人妻视频免费看| av又黄又爽大尺度在线免费看| 黑人高潮一二区| 亚洲综合精品二区| 精品一区二区三卡| 午夜福利在线在线| 听说在线观看完整版免费高清| 人妻少妇偷人精品九色| 真实男女啪啪啪动态图| 久久久久免费精品人妻一区二区| 欧美高清成人免费视频www| 国产av国产精品国产| 观看美女的网站| 18禁在线无遮挡免费观看视频| 国产亚洲精品久久久com| 一区二区三区四区激情视频| 三级经典国产精品| 国产av码专区亚洲av| 国产av码专区亚洲av| 亚洲电影在线观看av| 成人亚洲精品一区在线观看 | 麻豆国产97在线/欧美| 国产精品嫩草影院av在线观看| 99久久人妻综合| 三级经典国产精品| 日韩欧美三级三区| 麻豆成人午夜福利视频| av专区在线播放| ponron亚洲| 国产成人福利小说| 国产精品一二三区在线看| 中文资源天堂在线| 街头女战士在线观看网站| 青春草亚洲视频在线观看| 少妇人妻精品综合一区二区| 十八禁网站网址无遮挡 | 亚洲精品一区蜜桃| 免费观看av网站的网址| 丰满乱子伦码专区| 天堂俺去俺来也www色官网 | av一本久久久久| 免费黄色在线免费观看| 一个人看视频在线观看www免费| av网站免费在线观看视频 | 91精品国产九色| 国产成人freesex在线| 一区二区三区高清视频在线| 久久国产乱子免费精品| 色哟哟·www| 国产黄色小视频在线观看| 欧美激情在线99| 男插女下体视频免费在线播放| 日本欧美国产在线视频| 亚洲精品国产av蜜桃| 真实男女啪啪啪动态图| 日本免费在线观看一区| 国产极品天堂在线| 婷婷六月久久综合丁香| 亚洲国产欧美人成| 日本爱情动作片www.在线观看| 69人妻影院| 男插女下体视频免费在线播放| 在现免费观看毛片| 久热久热在线精品观看| 日韩欧美一区视频在线观看 | 久久久久久九九精品二区国产| 久久久久久九九精品二区国产| 精品熟女少妇av免费看| 成年版毛片免费区| 亚洲最大成人av| 亚洲怡红院男人天堂| 日日撸夜夜添| 一级毛片久久久久久久久女| videossex国产| 一级黄片播放器| 亚洲av在线观看美女高潮| 久久久久免费精品人妻一区二区| 人人妻人人澡欧美一区二区| 亚洲精品久久午夜乱码| 伊人久久国产一区二区| 亚洲欧美一区二区三区黑人 | 高清毛片免费看| 在线a可以看的网站| 久久这里只有精品中国| 男人和女人高潮做爰伦理| 日韩电影二区| 免费看a级黄色片| 日本av手机在线免费观看| 欧美日韩亚洲高清精品| 你懂的网址亚洲精品在线观看| 国产精品av视频在线免费观看| 69人妻影院| 99久久人妻综合| 国产精品久久久久久久电影| 一级毛片电影观看| 18禁动态无遮挡网站| 亚洲最大成人中文| 丰满人妻一区二区三区视频av| 六月丁香七月| 成人欧美大片| 黄片无遮挡物在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美日韩东京热| 婷婷色麻豆天堂久久| 搡老妇女老女人老熟妇| 久久久久久久大尺度免费视频| 久久亚洲国产成人精品v| 日韩欧美精品v在线| 日本免费a在线| 亚洲国产成人一精品久久久| 国产成人精品久久久久久| 丰满乱子伦码专区| 午夜福利成人在线免费观看| 亚洲成人av在线免费| 亚洲18禁久久av| 最近手机中文字幕大全| 中国美白少妇内射xxxbb| av免费观看日本| 好男人视频免费观看在线| 国产精品麻豆人妻色哟哟久久 | 色综合站精品国产| 国产69精品久久久久777片| 国产毛片a区久久久久| 色吧在线观看| 美女高潮的动态| 欧美不卡视频在线免费观看| 国产av不卡久久| 在现免费观看毛片| 99re6热这里在线精品视频| 久久这里只有精品中国| 美女cb高潮喷水在线观看| 日韩一区二区视频免费看| 久久99蜜桃精品久久| 国产成人a∨麻豆精品| 成人美女网站在线观看视频| 3wmmmm亚洲av在线观看| 国产精品熟女久久久久浪| 中文字幕av在线有码专区| 午夜福利在线在线| 好男人视频免费观看在线| 亚洲在线观看片| 成人毛片a级毛片在线播放| 一级二级三级毛片免费看| 免费黄网站久久成人精品| 免费观看在线日韩| 一个人免费在线观看电影| 亚洲国产精品国产精品| 成人毛片60女人毛片免费| 久久综合国产亚洲精品| 国产大屁股一区二区在线视频| 亚洲国产高清在线一区二区三| 亚洲内射少妇av| 三级国产精品片| 亚洲色图av天堂| 亚洲自偷自拍三级| 免费看日本二区| 色综合色国产| 最近视频中文字幕2019在线8| 久久精品夜色国产| 亚洲成人av在线免费| 男女国产视频网站| 乱码一卡2卡4卡精品| 国产精品综合久久久久久久免费| 亚洲精品久久午夜乱码| 秋霞伦理黄片| 99热网站在线观看| 干丝袜人妻中文字幕| 在线a可以看的网站| 国产精品一区二区三区四区久久| 亚洲精品第二区| 看十八女毛片水多多多| 18禁在线播放成人免费| 在线观看人妻少妇| 看非洲黑人一级黄片| 五月天丁香电影| 天天一区二区日本电影三级| 久久精品久久久久久噜噜老黄| 国语对白做爰xxxⅹ性视频网站| 成人欧美大片| 日韩不卡一区二区三区视频在线| 精品一区二区三区视频在线| 成人亚洲欧美一区二区av| 男女边吃奶边做爰视频| 又爽又黄a免费视频| 精品国产一区二区三区久久久樱花 | 国产成人a区在线观看| 亚洲激情五月婷婷啪啪| 一区二区三区乱码不卡18| 亚洲人成网站在线观看播放| 精品久久久久久久久亚洲| 国产精品熟女久久久久浪| 精品少妇黑人巨大在线播放| 亚洲精品乱久久久久久| 国产91av在线免费观看| 国产精品国产三级专区第一集| 亚洲aⅴ乱码一区二区在线播放| 免费黄频网站在线观看国产| 91av网一区二区| 亚洲四区av| 特级一级黄色大片| 日本猛色少妇xxxxx猛交久久| 国产乱来视频区| 大陆偷拍与自拍| 搡老乐熟女国产| 亚洲精品国产av蜜桃| 免费av不卡在线播放| 国产一区二区三区av在线| 国产综合精华液| av女优亚洲男人天堂| 成人美女网站在线观看视频| 日本免费在线观看一区| 久久久成人免费电影| 日韩av在线大香蕉| 熟女人妻精品中文字幕| 联通29元200g的流量卡| 两个人的视频大全免费| 精品久久久久久电影网| 精品久久久久久久末码| 精品久久久久久成人av| 尾随美女入室| 日本与韩国留学比较| 99九九线精品视频在线观看视频| 国产成人a区在线观看| 国产真实伦视频高清在线观看| 国模一区二区三区四区视频| 久久久久国产网址| 一级毛片久久久久久久久女| 国产欧美日韩精品一区二区| 国产 亚洲一区二区三区 | 一区二区三区乱码不卡18| 人妻一区二区av| 777米奇影视久久| 中文字幕免费在线视频6| 国内少妇人妻偷人精品xxx网站| 最近中文字幕高清免费大全6| 国产色婷婷99| 高清日韩中文字幕在线| 超碰97精品在线观看| 大话2 男鬼变身卡| 日本一二三区视频观看| 熟妇人妻久久中文字幕3abv| 麻豆国产97在线/欧美| 国产在视频线在精品| 黄片无遮挡物在线观看| a级毛色黄片| 精品熟女少妇av免费看| videossex国产| 精品少妇黑人巨大在线播放| 国产精品精品国产色婷婷| 精品久久久久久久久久久久久| 亚洲激情五月婷婷啪啪| 能在线免费观看的黄片| 国产精品一区二区性色av| 国产免费视频播放在线视频 | 日韩成人av中文字幕在线观看| 高清在线视频一区二区三区| 26uuu在线亚洲综合色| 久久久久性生活片| 亚洲欧美一区二区三区黑人 | 国产午夜精品一二区理论片| 亚洲美女视频黄频| 免费看日本二区| 久久久久久九九精品二区国产| 国产精品久久久久久av不卡| 欧美不卡视频在线免费观看| 国产av国产精品国产| 中文资源天堂在线| 2018国产大陆天天弄谢| 亚洲在线观看片| 免费av毛片视频| 麻豆av噜噜一区二区三区| 日韩人妻高清精品专区| 成人性生交大片免费视频hd| 成人毛片a级毛片在线播放| 免费观看的影片在线观看| 免费av不卡在线播放| 国产高清有码在线观看视频| 国产成人一区二区在线| 深爱激情五月婷婷| 日日摸夜夜添夜夜添av毛片| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 精品国产三级普通话版| 中文字幕亚洲精品专区| av国产免费在线观看| 男人爽女人下面视频在线观看| 亚洲色图av天堂| 免费观看性生交大片5| 中文资源天堂在线| or卡值多少钱| 波多野结衣巨乳人妻| 日韩三级伦理在线观看| 免费少妇av软件| 国产精品久久久久久精品电影| 成人二区视频| 国产 一区精品| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕 | 亚洲经典国产精华液单| 少妇猛男粗大的猛烈进出视频 | 国产精品综合久久久久久久免费| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区 | 日韩欧美一区视频在线观看 | 青春草视频在线免费观看| 97超视频在线观看视频| 99热这里只有是精品50| 22中文网久久字幕| 国产精品久久久久久精品电影小说 | 久久精品国产自在天天线| 午夜日本视频在线| 国产免费视频播放在线视频 | 精品国内亚洲2022精品成人| 国产一级毛片七仙女欲春2| 中文精品一卡2卡3卡4更新| 最近的中文字幕免费完整| 国产伦在线观看视频一区| 日本与韩国留学比较| 久久午夜福利片| 日韩电影二区| 精品久久久久久久久亚洲| 国内精品宾馆在线| 内射极品少妇av片p| 亚洲自偷自拍三级| 国产亚洲一区二区精品| 日韩国内少妇激情av| 免费观看精品视频网站| eeuss影院久久| 91久久精品国产一区二区三区| 日韩av在线免费看完整版不卡| 久久综合国产亚洲精品| 午夜免费观看性视频| 亚洲怡红院男人天堂| 在线免费观看不下载黄p国产| 人妻制服诱惑在线中文字幕| 久久久国产一区二区| 国产片特级美女逼逼视频| av专区在线播放| 又大又黄又爽视频免费| 熟女人妻精品中文字幕| 精品国内亚洲2022精品成人| 久久精品国产亚洲av涩爱| 色哟哟·www| 国产精品美女特级片免费视频播放器| 联通29元200g的流量卡| 亚洲国产av新网站| 麻豆乱淫一区二区| 亚洲av二区三区四区| 亚洲国产欧美在线一区| 国产精品伦人一区二区| 美女脱内裤让男人舔精品视频| 一级片'在线观看视频| 成人亚洲精品av一区二区| 三级经典国产精品| 亚洲精品国产成人久久av| 国产乱人偷精品视频| 久久久午夜欧美精品| 性色avwww在线观看| 国产精品99久久久久久久久| 欧美精品国产亚洲| 91精品国产九色| 国产爱豆传媒在线观看| 校园人妻丝袜中文字幕| 午夜精品一区二区三区免费看| 国产精品福利在线免费观看| 亚洲四区av| 一本一本综合久久| 国产乱人偷精品视频| 日韩精品青青久久久久久| 久久97久久精品| 天堂av国产一区二区熟女人妻| 亚洲自拍偷在线| av国产久精品久网站免费入址| 免费黄频网站在线观看国产| 黄片无遮挡物在线观看| 日本一二三区视频观看| 久久久久久久久中文| 国产真实伦视频高清在线观看| 成人无遮挡网站| 免费看不卡的av| 国产成人免费观看mmmm| 日韩一区二区三区影片| 天堂中文最新版在线下载 | 国产熟女欧美一区二区| 青春草亚洲视频在线观看| 精品久久久久久久久久久久久| 亚洲精品自拍成人| 婷婷色av中文字幕| 日韩制服骚丝袜av| 国产日韩欧美在线精品| 久久久久久久午夜电影| 日韩成人伦理影院| av在线播放精品| .国产精品久久| 禁无遮挡网站| 纵有疾风起免费观看全集完整版 | 精品国产一区二区三区久久久樱花 | 永久网站在线| 久久人人爽人人片av| 精品人妻视频免费看| 免费黄网站久久成人精品| 国产精品一及| 中文字幕久久专区| 一级a做视频免费观看| 18+在线观看网站| 欧美性感艳星| 国产精品一区二区在线观看99 | 十八禁网站网址无遮挡 | 午夜福利网站1000一区二区三区| 最近2019中文字幕mv第一页| 91av网一区二区| 亚洲图色成人| 九色成人免费人妻av| 成年女人在线观看亚洲视频 | 亚洲国产精品成人久久小说| 2021天堂中文幕一二区在线观| 久久99热6这里只有精品| 国产一区二区在线观看日韩| 大片免费播放器 马上看| 看十八女毛片水多多多| 一本一本综合久久| 久久久亚洲精品成人影院| 麻豆精品久久久久久蜜桃| 97人妻精品一区二区三区麻豆| 亚洲成人一二三区av| 亚洲怡红院男人天堂| 午夜精品一区二区三区免费看| 麻豆国产97在线/欧美| 人妻一区二区av| 男女视频在线观看网站免费| 麻豆久久精品国产亚洲av| 日韩 亚洲 欧美在线| 亚洲第一区二区三区不卡| 精品久久久精品久久久| 在线免费十八禁| 国产白丝娇喘喷水9色精品| 男女边摸边吃奶| 99久久精品国产国产毛片| h日本视频在线播放| 观看美女的网站| 免费av观看视频| 床上黄色一级片| 亚洲国产成人一精品久久久| 国产真实伦视频高清在线观看| 国产美女午夜福利| 午夜福利网站1000一区二区三区| videossex国产| 国产精品.久久久| 国产成人a∨麻豆精品| 九九在线视频观看精品| 美女内射精品一级片tv| 97超碰精品成人国产| 亚洲欧洲日产国产| 少妇的逼水好多| 七月丁香在线播放| 国产精品久久久久久久久免| 亚洲国产精品sss在线观看| 天堂俺去俺来也www色官网 | 久久久久精品久久久久真实原创| 三级毛片av免费| 国产精品综合久久久久久久免费| 嫩草影院入口| 人人妻人人看人人澡| 国产精品久久久久久精品电影| 欧美成人午夜免费资源| 男女下面进入的视频免费午夜| 日韩一区二区三区影片| 免费高清在线观看视频在线观看| 久99久视频精品免费| 九九在线视频观看精品| 日韩强制内射视频| 波多野结衣巨乳人妻| 大话2 男鬼变身卡| 最近2019中文字幕mv第一页| 2022亚洲国产成人精品| 久久久久性生活片| 国产爱豆传媒在线观看| 午夜激情福利司机影院| 国内少妇人妻偷人精品xxx网站| 99久国产av精品国产电影| 亚洲成人av在线免费| 亚洲精品国产av成人精品| 日本免费在线观看一区| 国内精品宾馆在线| 日日撸夜夜添| 别揉我奶头 嗯啊视频| 亚洲美女视频黄频| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩av片在线观看| 嘟嘟电影网在线观看| 国产一区二区在线观看日韩| 成年av动漫网址| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人成网站在线播| 国产精品无大码| 成人亚洲精品av一区二区| av免费观看日本| 亚洲人成网站在线播| 亚洲国产av新网站| 亚洲天堂国产精品一区在线| 最新中文字幕久久久久| 色尼玛亚洲综合影院| 久久久久久久久大av| 亚洲av成人精品一区久久| 亚洲av免费在线观看| 啦啦啦韩国在线观看视频| 又粗又硬又长又爽又黄的视频| 国产成人a区在线观看| 日韩av免费高清视频| 久久久久久久久中文| or卡值多少钱| 91精品一卡2卡3卡4卡| 在线观看美女被高潮喷水网站| 日韩成人伦理影院| 免费观看性生交大片5| 精品酒店卫生间| 一级毛片我不卡| 亚洲第一区二区三区不卡| 成人av在线播放网站| 男的添女的下面高潮视频| 能在线免费观看的黄片| 国产av在哪里看| 亚洲精品成人av观看孕妇| 欧美日韩在线观看h| 99热这里只有精品一区| 日本wwww免费看| av在线老鸭窝| 夫妻午夜视频| 亚洲性久久影院| 91久久精品国产一区二区成人| 国产精品.久久久| 精品久久久精品久久久| 国产成人精品久久久久久| 日韩 亚洲 欧美在线| 亚洲成人精品中文字幕电影| 久久草成人影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线免费十八禁| 国产黄色免费在线视频| 亚洲成人一二三区av| 精品一区二区免费观看| 黄色欧美视频在线观看| 欧美性猛交╳xxx乱大交人| 91狼人影院| 卡戴珊不雅视频在线播放| 欧美三级亚洲精品| 国产精品久久久久久精品电影小说 | 国精品久久久久久国模美| 亚洲成人av在线免费| 男人爽女人下面视频在线观看| 国内少妇人妻偷人精品xxx网站| 午夜激情福利司机影院| 亚洲乱码一区二区免费版| 99热全是精品| 26uuu在线亚洲综合色| 国产精品麻豆人妻色哟哟久久 | 成人午夜精彩视频在线观看| 天美传媒精品一区二区| 亚洲成色77777| 精品欧美国产一区二区三| 国产精品一区二区性色av| a级毛色黄片| 亚洲欧美成人综合另类久久久| av黄色大香蕉| 亚洲欧洲日产国产| 十八禁网站网址无遮挡 | 国产久久久一区二区三区| 国产成人免费观看mmmm| 日韩一区二区视频免费看| 综合色丁香网| 国产av码专区亚洲av| 51国产日韩欧美| 26uuu在线亚洲综合色| 国产日韩欧美在线精品| 一级二级三级毛片免费看| 亚洲成色77777| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 伊人久久国产一区二区| 亚洲欧洲日产国产| 不卡视频在线观看欧美|