史培瑤 陳麗娟 孫昊杰 程夢豪 肖 進 袁春霞 王秀娥 王海燕
頂芒山羊草特異寡核苷酸探針開發(fā)和oligo-FISH核型構建
史培瑤 陳麗娟 孫昊杰 程夢豪 肖 進 袁春霞 王秀娥 王海燕*
南京農業(yè)大學作物遺傳與種質創(chuàng)新國家重點實驗室 / 細胞遺傳研究所/ 現代作物生產省部共建協同創(chuàng)新中心,江蘇南京 210095
栽培小麥近緣物種頂芒山羊草(, 2=2=14, MM)是小麥改良的三級基因庫。為準確鑒定頂芒山羊草M基因組染色體或染色體區(qū)段, 本研究利用二代測序獲得頂芒山羊草M基因組序列信息, 從中鑒定出16條可能的特異衛(wèi)星重復序列。根據這些序列設計12個寡核苷酸(oligo)探針進行oligo-FISH, 結果表明, 其中10個探針可在頂芒山羊草染色體上產生明顯的雜交信號。對探針特異性分析發(fā)現, 5個探針僅在頂芒山羊草染色體上產生雜交信號, 在小麥染色體上未觀察明顯雜交信號, 可作為頂芒山羊草特異探針鑒定小麥背景中的頂芒山羊草染色體。選擇在頂芒山羊草染色體上信號分布豐富的3個探針(oligo-pAc89、oligo-pAc148、oligo-pAc225)組成探針套ONPS#AC1, 結合利用本實驗室根據小麥D亞基因組開發(fā)的寡核苷酸探針庫, 構建了頂芒山羊草的oligo-FISH核型。本研究構建的FISH核型可以準確識別頂芒山羊草各條染色體, 為挖掘、轉移和利用頂芒山羊草優(yōu)異基因提供了快速準確的鑒定手段。
頂芒山羊草; 二代測序; 衛(wèi)星重復序列; 寡聚核苷酸探針; 熒光原位雜交
頂芒山羊草(, 2=2=14, MM)是山羊草屬二倍體物種, 是小麥的三級基因庫。已有研究表明, 普通小麥D基因組遺傳多樣性最低, 而M基因組和D基因組遺傳關系較近, M基因組導入小麥可以豐富小麥D基因組的遺傳多樣性[1-2]。頂芒山羊草具有抗小麥條銹病[3]、葉銹病和白粉病[4]、抗小麥孢囊線蟲病[5]、小麥癭蚊病、小麥蚜蟲[4]以及耐鹽等優(yōu)良性狀[6], 是小麥遺傳改良的重要基因資源。利用遠緣雜交和染色體工程可以將頂芒山羊草的優(yōu)異基因導入到普通小麥[7]。已有研究報道將M基因組抗稈銹病、條銹病等基因導入了栽培小麥[3]。Zuo等[8]利用四倍體小麥-頂芒山羊草雙二倍體STM4與中國春(CS)、博紫1313 (BZ1313)、川農16 (CN16, 含1BL/1RS易位)進行復合雜交, 選育了兩個高抗白粉病的普通小麥-頂芒山羊草7M(7A)二體代換系, 推測7M染色體攜帶抗小麥白粉病基因。Liu等[7]利用創(chuàng)制的一套小麥-頂芒山羊草的染色體系(其中包括6個2M-7M小麥-頂芒山羊草二體異附加系DA2M-DA7M, 1個小麥-頂芒山羊草二體異代換系DS6M(6A)), 推測頂芒山羊草的2M和7M染色體可能分別攜帶抗小麥條銹病和白粉病基因。
利用染色體工程轉移近緣物種優(yōu)異基因過程中,快速準確的鑒定外源染色質是種質創(chuàng)新的關鍵手段。隨著麥類植物等基因組學的快速發(fā)展, 已經快速發(fā)展出基因組原位雜交(genomichybridization, GISH) 、熒光原位雜交(fluorescencehybridization, FISH)和基于簡單重復序列、單核苷酸多態(tài)性等分子標記的外源染色質鑒定技術[9-13]。例如, 宮文萍等[14]利用oligo-FISH分別對頂芒山羊草、無芒山羊草與普通小麥的雙二倍體進行分析, 結果發(fā)現, (GAA)8重復序列探針可用于鑒定小麥背景中的頂芒山羊草各染色體。Parisod和Badaeva[15]利用重復序列探針pAs1、pSc119.2、pTa535等對部分山羊草屬物種進行分子細胞遺傳學核型分析, 結果表明, pAs1探針可以在頂芒山羊草染色體上產生豐富的信號。Song等[16]利用寡核苷酸探針pSc119.2、pTa71結合(AAC)5, (ACT)7和(CTT)12構建了頂芒山羊草的FISH核型并進行了染色體結構多樣性的分析。目前, 在頂芒山羊草染色體鑒定研究中, 利用的重復序列探針來源于其他物種, 對頂芒山羊草染色體無特異性, 而且目前基于重復序列信息開發(fā)的FISH探針只在染色體一些特定區(qū)域如長短臂的端部或著絲粒區(qū)域產生較為局限的點狀信號, 不能覆蓋整條染色體, 因此, 對染色體重排等的鑒定具有一定局限性[17]。因此, 迫切需要基于頂芒山羊草基因組信息, 開發(fā)頂芒山羊草特異的oligo探針, 提高頂芒山羊草染色質的鑒定精度、特異性和效率。
近年來, 基于單拷貝探針庫的染色體涂染(oligo- painting)技術大大提高了鑒定的效率、準確度和精度。目前, 該技術已成功應用于特定染色體的識別、核型構建等方面[18-20]。Han等[21]基于單拷貝基因序列開發(fā)了黃瓜3號染色體長臂和短臂特異的寡核苷酸探針庫, 利用該套探針對黃瓜及其近緣種的特定染色體進行了涂染。該項技術也在小麥族物種中已經得到應用。本實驗室Song等[22]根據已完成測序的小麥品種中國春的參考基因組序列, 開發(fā)了4D染色體特異的寡核苷酸探針庫, 首次在小麥上建立了染色體涂染技術, 同時發(fā)現4D染色體特異的寡核苷酸探針庫也可以在頂芒山羊草的4M染色體產生信號。Li等[23]基于小麥A、B、D基因組和大麥H基因組序列比較分析(序列相似性>96%), 開發(fā)了一套1~7部分同源群的oligo探針, 可用于小麥族不同屬種間染色體的識別和比較基因組學探究。
本研究利用TAREAN軟件在頂芒山羊草二代測序基因組中, 鑒定特異重復序列, 根據重復序列基序開發(fā)寡核苷酸(oligo)探針, 通過oligo-FISH篩選頂芒山羊草特異oligo-探針; 利用特異oligo-探針和前期開發(fā)的普通小麥D亞基因組特異oligo-painting探針, 構建頂芒山羊草M基因組染色體FISH核型, 完善頂芒山羊草染色體鑒定體系, 為挖掘和利用頂芒山羊草的優(yōu)異基因提供有效的細胞學手段。
頂芒山羊草(, 2=14, 基因組MM, 登錄號為PI551063、PI542176); 小傘山羊草(, 2=14, 基因組UU, 登錄號為PI276994); 單芒山羊草(, 2=14, 基因組NN, 登錄號為PI554418); 節(jié)節(jié)麥(, 2=14, 基因組DD, 登錄號為PI511362); 擬斯卑爾脫山羊草(, 2=14, 基因組SS, 登錄號為PI560750), 大麥(, 2=14, 基因組HH, 登錄號為PI542176); 黑麥(, 2=2=14, 基因組RR, 登錄號為PI542176); 以上小麥野生近緣物種引自美國國家植物種質資源庫(NPGSUSA)。簇毛麥(, 2=14, 基因組VV, 登錄號為91C43), 引自英國劍橋植物園; 普通小麥中國春(Chinese Spring, CS)由南京農業(yè)大學細胞遺傳研究所(CINAU)保存。
采用CTAB法提取頂芒山羊草(PI551063)幼葉基因組DNA[24]。通過DNA片段化、末端修復、連接和PCR擴增構建DNA文庫, 利用Agilent 2100進行DNA文庫質量控制后, 利用雙末端測序法進行BGISEQ-500測序(委托中國深圳BGI公司完成), 獲得的原始序列去除低質量、低復雜度、短于35 bp的reads序列, 得到高質量測序數據用于進一步分析。
重復序列鑒定參照程夢豪等[25]的方法。利用重復序列分析軟件RepeatExplorer 2 (http://www. repeatexplorer.org/)對所有reads進行串聯重復序列分析, 經序列聚類和拼接, 得到M基因組重復序列信息。利用oligo 7寡聚核苷酸探針設計軟件[26], 將鑒定出的上述衛(wèi)星DNA序列設計成(55±4) bp的寡聚核苷酸探針, 每個重復序列開發(fā)1個oligo探針, 設計好的探針序列由擎科生物公司合成, 在探針的5¢末端用6-FAM (綠色熒光)或TAMRA (紅色熒光)熒光基團對設計的寡聚核苷酸探針進行熒光修飾。
衛(wèi)星重復序列和探針命名: 本研究重復序列命名為pAc (p代表探針, Ac代表頂芒山羊草的屬名和種名的首字母)+重復序列聚類簇的編號。例如, 來自M基因組的重復序列cluster89的命名為pAc89; 基于該重復序列開發(fā)的oligo探針相應命名為oligo- pAc89; 用于核型構建的3個探針oligo-pAc89、oligo-pAc148、oligo-pAc225所組成的探針套命名為ONPS#AC1 (oligonucleotide probe set of), 其中3個探針的用量比例為1︰1︰1。
染色體中期同步化處理參照Song等[22]的方法。根尖細胞中期染色體制片使用的滴片法參照Lei等[27]的方法。
oligo-FISH在Lei等[27]的基礎上稍作修改。制片首先在紫外交聯儀中交聯1~4 min, 強度為0.125 J cm–2。然后將交聯后的染色體制片在含0.15 mol L–1NaOH的70%酒精溶液中變性5 min, 隨后依次在70%、90%和100%的酒精中梯度脫水5 min, 晾干備用。將15mL的雜交液滴加在制片上, 雜交液組成: 7.5 μL甲酰胺(Formamide, FA), 1.5 μL緩沖液(20× SSC), 0.5 μL鮭魚精DNA (Salmon sperm DNA, ssDNA), 10 pmol oligo探針, 然后用ddH2O補足至15 μL。蓋上蓋玻片, 置于濕盒, 37℃雜交6 h以上; 雜交后的制片在ddH2O中洗10 min (42℃水浴), 氣干; 滴加7mL含DAPI的H1200 (VECTA)防熒光淬滅劑, 蓋上蓋玻片; 將制片放于Olympus BX51型熒光顯微鏡下暗環(huán)境進行鏡檢, 并用Olympus DP72型CCD相機照相。
染色體涂染實驗所用的探針是本實驗室利用中國春的參考基因組序列開發(fā)的中國春D亞基因組染色體特異oligo-painting探針。oligo-painting參照Song等的方法[22]。交聯后的染色體制片每張滴加100mL的胃蛋白酶稀釋液, 放置于濕盒中處理1 h, 之后用2×SSC緩沖液在室溫下洗滌3次, 每次5 min;接下來分別移至70%、90%和100%的酒精中梯度脫水3 min; 滴加100 μL 70%甲酰胺(dFA)于制片上, 蓋上蓋玻片, 迅速放入88℃雜交儀中變性4 min; 變性后, 分別在–20℃預冷的70%、90%和100%酒精中梯度脫水, 每次5 min, 氣干; 雜交液的配制: 10 μL去離子甲酰胺(100% dFA), 2 μL 20×SSC, 4 μL 50%硫酸葡聚糖(50% DS), 6 μL寡核苷酸探針(200 ng μL–1); 將雜交液滴加在氣干的染色體制片上, 蓋上蓋玻片, Elmers膠封邊緣, 37℃雜交2 d左右。將雜交后的制片放置于2×SSC緩沖液中室溫下洗滌5 min, 移至42℃預熱的2×SSC中洗滌10 min, 之后在1×PBS緩沖液中室溫下洗滌5 min; 配制檢測液: 每張片子準備2 μL Anti-Dig-羅丹明+80 μL TNB用于地高辛標記的紅色探針的信號檢測; 將配好的檢測液充分混勻, 滴加在氣干的染色體制片上, 蓋上蓋片, 37℃孵育2 h, 之后在1×PBS中洗滌3次, 每次5 min, 氣干。滴加6.5 μL每張含DAPI的H1200 (VECTA)防熒光淬滅劑, 蓋上潔凈的蓋玻片, 在Olympus BX53型熒光顯微鏡下鏡檢, Olympus DP81型CCD相機照相。
對利用RepeatExplorer2 (http://www.repeatexplorer.org/)鑒定出頂芒山羊草的串聯重復序列進行聚類和拼接, 共獲得可能的M基因組特異衛(wèi)星重復序列16條, 其中8條高置信度重復序列, 8條低置信度重復序列(表1)。在鑒定的重復序列中, 基序最長的是CL149, 為663 bp, 占M基因組0.1%; 基序最短的是CL225, 為46 bp, 占M基因組0.028%; 其余14條序列的基序長度范圍49~637 bp, 占M基因組的0.03%~0.28%。
將上述重復序列的基序在NCBI數據庫進行BLASTN (Percent Identity≥80%, Query Coverage≥80%)序列比對發(fā)現, 其中4條(CL103、18S、CL133和CL115)基序與已知的重復序列相同, 推測它們是不同物種中較保守的序列; 6條序列可以比對到已知的同源序列, 其中, CL301與小麥的重復序列pTa713、pTa885、pTa551、pTa779相似, CL238與節(jié)節(jié)麥的重復序列4P6-14、4P6-9和4P6-2相似, 另外4條序列(CL89、CL149、CL198、CL225)分別與小麥中的1740-J17、1716-E15、190H5、醇溶蛋白相關、醇溶蛋白相關3B BAC和同源, 均不是典型的串聯重復序列; 6條序列(CL105、CL146、CL148、CL217、CL259、CL263)未比對到已知同源序列, 推測可能是M基因組特異重復序列(表1)。
利用oligo 7寡聚核苷酸設計軟件[27]開發(fā)了基于上述12條衛(wèi)星DNA序列的oligo探針: oligo-pAc89、oligo-pAc105、oligo-pAc146、oligo-pAc148、oligo- pAc149、oligo-pAc198、oligo-pAc217、oligo-pAc225、oligo-pAc238、oligo-pAc259、oligo-pAc263和oligo- pAc301, 基序介于51~59 bp (表1)。
表1 開發(fā)的12個oligo探針的序列信息
利用開發(fā)的探針在頂芒山羊草和小麥品種中國春中進行oligo-FISH, 結果表明, oligo-pAc146和oligo-pAc198在2個材料中均未觀察到明顯雜交信號。oligo-pAc105、oligo-pAc148、oligo-pAc149、oligo-pAc217和oligo-pAc259可在頂芒山羊草染色體上產生明顯雜交信號, 而在中國春染色體上未觀察到明顯信號, 推測這5個探針可作為M基因組特異探針識別小麥背景中的M基因組染色體(圖1)。oligo-pAc149、oligo-pAc217和oligo-pAc259分別在頂芒山羊草的1對染色體上產生雜交信號; oligo- pAc148可在頂芒山羊草的12條染色體上產生雜交信號。oligo-pAc89、oligo-pAc225、oligo-pAc238、oligo-pAc263、oligo-pAc301在頂芒山羊草和中國春染色體上均可產生雜交信號(圖2), 但信號分布和數量存在差異, oligo-pAc89、oligo-pAc301、oligo- pAc225、oligo-pAc238和oligo-pAc263分別在頂芒山羊草的12條、8條、6條、4條、2條染色體上有雜交信號, oligo-pAc301、oligo-pAc89、oligo-pAc238、oligo-pAc225、oligo-pAc263分別在中國春的28條、12條、12條、10條和6條染色體上有雜交信號。oligo-pAc89、oligo-pAc148、oligo-pAc225和oligo- pAc301在頂芒山羊草染色體上產生的雜交信號較豐富, oligo-pAc238在頂芒山羊草的6條染色體上產生信號, 而oligo-pAc105、oligo-pAc149、oligo-pAc217、oligo-pAc263和oligo-pAc259只在頂芒山羊草的2條染色體上產生雜交信號。
圖1 5個oligo探針在頂芒山羊草(PI542176)和中國春有絲分裂中期染色體的oligo-FISH
A1, A2: 探針oligo-pAc105; B1, B2: 探針oligo-pAc259; C1, C2: 探針oligo-pAc149; D1, D2: 探針oligo-pAc217; E1, E2: 探針oligo- pAc148。染色體用DAPI套染(藍色); 5個寡聚核苷酸探針用5′TAMRA修飾(紅色)。標尺為10 μm。
A1, A2: probe oligo-pAc105; B1, B2: probe oligo-pAc259; C1, C2: probe oligo-pAc149; D1, D2: probe oligo-pAc217; E1, E2: probe oligo-pAc148. Chromosomes were counterstained with DAPI (blue); five oligo probes were modified with 5′TAMRA (red). Bar: 10 μm.
A1, A2: 探針oligo-pAc263; B1, B2: 探針oligo-pAc225; C1, C2: 探針oligo-pAc238; D1, D2: 探針oligo-pAc301; E1, E2: 探針oligo- pAc89。染色體用DAPI套染(藍色); 探針oligo-pAc225、oligo-pAc238和oligo-pAc263用5′TAMRA修飾(紅色); 探針oligo-pAc89和oligo-pAc301用5′FAM修飾(綠色)。標尺為10 μm。
A1, A2: probe oligo-pAc263; B1, B2: probe oligo-pAc225; C1, C2: probe oligo-pAc238; D1, D2: probe oligo-pAc301; E1, E2: probe oligo-pAc89. Chromosomes were counterstained with DAPI (blue); oligo probes oligo-pAc225, oligo-pAc238, and oligo-pAc263 were modified with 5′TAMRA (red), and oligo-pAc89 and oligo-pAc301 were modified with 5′FAM (green). Bar: 10 μm.
為驗證這5個oligo探針(oligo-pAc105、oligo- pAc148、oligo-pAc149、oligo-pAc217和oligo-pAc259)對于頂芒山羊草的特異性, 利用B2DSC[28](= 85,= 80)分析了探針序列在中國春參考基因組中的拷貝數和物理位置。分析發(fā)現oligo-pAc105未能搜索到同源序列, 其余4個探針序列可以比對到同源序列, 但數量和位置分布不同。oligo-pAc149和oligo-pAc217同源序列在中國春基因組的不同區(qū)域預測的拷貝數很少, 且散在分布在各條染色體上; oligo-pAc148同源序列僅局限于中國春基因組的小麥4A染色體和4B染色體端部的1 Mb之內; oligo- pAc259同源序列或僅局限于中國春基因組染色體的1 Mb之內, 或雖是集中分布、但平均在每1 Mb內的同源序列數很少。由此可見, 這些探針在中國春基因組中或散在分布且拷貝數較低, 或僅集中分布于1 Mb基因組區(qū)間, 推測由此導致這些探針無法在中國春染色體上產生FISH信號。
利用探針oligo-pAc105、oligo-pAc148、oligo- pAc149、oligo-pAc217和oligo-pAc259在7個二倍體小麥近緣物種進行oligo-FISH, 結果發(fā)現, oligo- pAc217在7個物種中均未產生雜交信號; oligo- pAc148、oligo-pAc105、oligo-pAc149和oligo-pAc259在小傘山羊草U基因組、擬斯卑爾脫山羊草S基因組和大麥H基因組上均無雜交信號, 但可以在其他基因組上產生雜交信號; oligo-pAc148在單芒山羊草N基因組、簇毛麥V基因組、黑麥R基因組產生雜交信號; oligo-pAc105在單芒山羊草N基因組上產生雜交信號; oligo-pAc149和oligo-pAc259在節(jié)節(jié)麥D基因組上產生雜交信號(圖3)。比較5個探針在7個二倍體小麥近緣物種中的oligo-FISH分析結果發(fā)現, 探針oligo-pAc105和oligo-pAc148可在單芒山羊草N基因組的部分染色體產生雜交信號; 探針oligo- pAc149和oligo-pAc259可在節(jié)節(jié)麥D基因組的部分染色體產生雜交信號。據此我們推測頂芒山羊草M基因組與單芒山羊草的N基因組和節(jié)節(jié)麥的D基因組親緣關系較近, 這與已知的頂芒山羊草與節(jié)節(jié)麥和單芒山羊草親緣關系相符合。但我們也發(fā)現, 探針oligo-pAc148在簇毛麥V基因組、黑麥R基因組的部分染色體也產生雜交信號, 這與已知的頂芒山羊草與簇毛麥和黑麥的親緣關系不一致。oligo- pAc217探針的特異性最好, 其余4個探針不僅能鑒定頂芒山羊草M基因組染色體, 也在鑒定單芒山羊草、黑麥、簇毛麥和節(jié)節(jié)麥染色體上有應用潛力。
利用本實驗室開發(fā)的中國春D亞基因組染色體特異oligo-painting探針對頂芒山羊草進行oligo- painting, 根據1D~7D各探針在M基因組雜交信號, 可以區(qū)分1M~7M染色體。利用本研究開發(fā)的3個oligo (oligo-pAc89、oligo-pAc148和oligo-pAc225)探針組合, 用FAM標記組成為綠色熒光探針套ONPS#AC1, 對頂芒山羊草進行oligo-FISH, 獲得1M~7M 7對染色體FISH信號特征, 構建了頂芒山羊草染色體oligo-FISH核型(圖4)。結果表明, 該探針套可以在7對M基因組染色體上分別產生可分辨的FISH信號特征, 可彼此區(qū)分開來。其中, 1M的著絲粒區(qū)域有較強的FISH信號, 長臂頂端有一較弱的FISH信號; 2M的長臂頂端和中部區(qū)域分別有一較弱的和中等強度FISH信號; 3M的短臂和長臂頂端各有一個較弱的FISH信號, 其著絲粒區(qū)域有中等強度FISH信號; 4M的短臂頂端和近頂端、長臂頂端各有較弱的FISH信號, 短臂近著絲粒區(qū)域FISH信號較強; 5M的FISH信號較弱, 僅在長臂近著絲粒區(qū)域和中部分別有較弱的FISH信號; 6M的FISH信號也較弱, 在短臂頂端有較弱的FISH信號, 著絲粒區(qū)域和長臂近著絲粒區(qū)域信號更弱; 7M的短臂近著絲粒區(qū)域的FISH信號強度最大, 著絲粒區(qū)域、長臂近著絲粒區(qū)域和長臂與短臂末端各有較弱的FISH信號。
(圖3)
A1–A7: 探針oligo-pAc105; B1–B7: 探針oligo-pAc148; C1–C7: 探針oligo-pAc149; D1–D7: 探針oligo-pAc217; E1–E7: 探針oligo- pAc259。染色體用DAPI套染(藍色); 5個寡聚核苷酸探針用5′TAMRA修飾(紅色)。標尺為10 μm。
A1–A7: probe oligo-pAc105; B1–B7: probe oligo-pAc148; C1–C7: probe oligo-pAc149; D1–D7: probe oligo-pAc217; E1–E7: probe oligo-pAc259. Chromosomes were counterstained with DAPI (blue); five oligo probes were modified with 5′TAMRA (red). Bar: 10 μm.
(圖4)
A: 1M~7M信號組合圖, 紅色為中國春D亞基因組染色體特異寡核苷酸探針涂染信號, 綠色為ONPS#AC1信號, 白色箭頭示寡核苷酸探針涂染的染色體; B: 圖A中剪切的1M~7M每條染色體的組合圖; C: 從圖B中分離出的1M~7M各染色體的中國春D亞基因組染色體特異寡核苷酸探針涂染信號圖; D: 從圖B中分離出的1M~7M每條染色體的ONPS#AC1信號圖, 標尺為10 μm; E: 頂芒山羊草的核型模式圖。
A: the merged signals of chromosome 1M–7M using oligo-painting of sub-genome D chromosome specific oligo-painting probes (red) and oligo-FISH using ONPS#AC1 (green), white arrow points to the painted chromosome with oligonucleotide probe; B: the merged figures of 1 M–7M cutting from (A); C: the oligo-painting FISH signals digitally separated from (B); D: the oligo-FISH using ONPS#AC1 signals digitally separated from (B); E: the oligo-FISH karyotype of. Bars: 10 μm.
進一步分析了5個探針(oligo-pAc105、oligo- pAc148、oligo-pAc149、oligo-pAc217和oligo-pAc259)在頂芒山羊草各染色體上的分布特征。將探針套ONPS#AC1分別與上述5個探針組合進行oligo- FISH (圖5), 結果發(fā)現, oligo-pAc105和oligo-pAc259探針產生的信號較強, 都位于4M染色體的短臂頂端, 它們可用于特異識別4M染色體; oligo-pAc148在除2M染色體之外的12條染色體長臂和短臂的頂端均產生較強的FISH信號; oligo-pAc149在3M染色體長臂近著絲粒區(qū)域有較強的FISH信號, 在6M染色體短臂頂端信號較弱, 可用于特異的識別3M和6M染色體; oligo-pAc217在7M染色體短臂近著絲粒區(qū)域有較強的信號, 可用于特異識別7M染色體。
染色體分帶技術在經典細胞遺傳學研究中發(fā)揮了重要作用, 但如果外源片段沒有特征帶型或不顯帶或帶型跟受體材料的帶型無明顯差異時, 分帶技術在識別外源染色質方面則很難發(fā)揮較大的作用。另外, 染色體分帶技術操作步驟繁瑣、需要較高的實驗技能, 難以進行高效的篩選和識別染色體的結構變異。
基因組原位雜交和熒光原位雜交是鑒定特定染色體組來源或追蹤外源染色體片段的有效手段。近年來發(fā)展起來的基于寡核苷酸探針的FISH (oligo- FISH) 技術已經成為染色體研究的重要手段。利用合成寡核苷酸探針的oligo-FISH, 不僅在探針開發(fā)和合成方面減少了繁瑣的步驟, 降低了成本, 同時也簡化了原位雜交的程序。在小麥中, 開發(fā)了串聯序列重復(SSR)寡核苷酸探針, 例如oligo- pSc119.2、oligo-pTa535、oligo-k566、oligo-713和oligo-pAs1等常用探針, 用于FISH核型構建和識別小麥染色體[29-33]。在小麥中常用的重復序列探針, 如oligo-pAs1, oligo-pSc119.2, Afa家族, (AAC)5、(GAA)n, oligo-pTa535和oligo-pTa71已被用于二倍體頂芒山羊草物種以及小麥-頂芒山羊草雙二倍體的FISH核型分析, 但這些探針在頂芒山羊草中的信號豐富度較為多變, oligo-pSc119.2、oligo-pTa535和oligo-pTa71均只在頂芒山羊草的某些染色體上產生信號, 不能清楚的區(qū)分7對頂芒山羊草。對于涉及頂芒山羊草與小麥的異染色質材料, (GAA)n不僅在背景小麥染色體上產生豐富的FISH信號, 還可以在頂芒山羊草的染色體產生豐富且與小麥相似的FISH信號, 降低對頂芒山羊草染色質識別的準確度。因此, 開發(fā)頂芒山羊草特異的重復序列探針不但可以識別小麥背景中的外源染色體, 還可以區(qū)分頂芒山羊草的各條染色體; 同時, 將開發(fā)的頂芒山羊草特異探針與其他重復序列探針或基因組探針結合使用, 可大大提高對涉及頂芒山羊草的外源種質材料的鑒定準確性。
圖5 5個oligo探針分別與綠色熒光探針套相結合分別在頂芒山羊草(PI542176)有絲分裂中期染色體的oligo-FISH
A: 探針oligo-pAc105; B: 探針oligo-pAc148; C: 探針oligo-pAc149; D: 探針oligo-pAc217; E: 探針oligo-pAc259; 染色體用DAPI套染(藍色)。5個寡聚核苷酸探針用5’TAMRA修飾(紅色); 綠色為ONPS#AC1信號。標尺為10 μm。
A: probe oligo-pAc105; B: probe oligo-pAc148; C: probe oligo-pAc149; D: probe oligo-pAc217; E: probe oligo-pAc259. Chromosomes were counterstained with DAPI (blue); five oligo probes were modified with 5’TAMRA (red). ONPS#AC1 probewas modified with 5’FAM (green). Bars: 10 μm.
伴隨著基因組測序技術的發(fā)展和越來越多物種全基因組序列發(fā)布, 利用生物信息學分析篩選物種特異重復序列、開發(fā)物種或基因組特異FISH探針成為可能。本研究利用TAREAN從頂芒山羊草的測序數據中鑒定出衛(wèi)星重復序列并開發(fā)成oligo探針, 通過與小麥參考基因組的序列比對結合oligo-FISH,成功開發(fā)了頂芒山羊草特異探針。本實驗室Song等[22]根據普通小麥中國春的參考基因組序列開發(fā)了4D染色體特異的寡核苷酸染色體涂染探針, 這個探針可以成功的識別頂芒山羊草的4M染色體。本實驗室進一步開發(fā)了小麥D亞基因組各染色體特異的寡核苷酸涂染探針, 利用該套探針可以成功的識別頂芒山羊草的1M~7M染色體。因此, 將oligo- painting技術和oligo-FISH技術結合起來, 發(fā)揮兩者各自的優(yōu)勢, 可以準確的構建頂芒山羊草的FISH核型。本研究首先利用oligo-painting探針在染色體準確識別方面的優(yōu)勢, 先識別出頂芒山羊草的各染色體; 然后在此基礎上利用新開發(fā)的頂芒山羊草特異的oligo-FISH探針來構建其核型, 基于此方法構建的核型, 可以提高頂芒山羊草染色體識別的精度, 可以彌補之前利用小麥核型模式圖來識別頂芒山羊草各染色體的缺陷。
本研究基于頂芒山羊草的二代測序數據開發(fā)出10個能在頂芒山羊草上產生信號的寡核苷酸探針, 其中5個探針可用于鑒定小麥背景中特定的頂芒山羊草染色體。選擇3個探針組成探針套與普通小麥D亞基因組特異的染色體涂染探針結合構建了頂芒山羊草的FISH核型, 該核型可以準確識別頂芒山羊草各條染色體。
[1] Molnár I, ?imková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Dole?el J, Molnár-Láng M, Griffiths S. Syntenic relationships between the U and M genomes of, wheat and the model species Brachypodium and rice as revealed by COS markers., 2013, 8: e70844.
[2] Said M, Holu?ová K, Farkas A, Ivanizs L, Gaál E, Cápal P, Abrouk M, Martis-Thiele M M, Kalapos B, Barto? J, Friebe B, Dole?el J, Molnár I. Development of DNA markers from physically mapped loci inandusing single-gene FISH and chromosome sequences., 2021, 12: 689031.
[3] Riley R, Chapman V, Johnson R O Y. Introduction of yellow rust resistance ofinto wheat by genetically induced homoeologous recombination., 1968, 217: 383–384.
[4] Riley R, Chapman V, Johnson R J. The incorporation of alien disease resistance to wheat by genetic interference with regulation of meiotic chromosome synapsis., 1968, 12: 199–219.
[5] Bouhssini M E, Nachit M M, Valkoun J, Abdalla O, Rihawi F. Sources of resistance to Hessian fly (Diptera: Cecidomyiidae) in syria identified amongspecies and synthetic derived bread wheat lines., 2008, 55: 1215–1219.
[6] Xu X, Monneveux P, Damania A B, Zahavieva M. Evaluation for salt tolerance in genetic resources ofandspecies., 1993, 96: 11–16.
[7] Liu C, Gong W, Han R, Guo J, Li G R, Li H S, Song J M, Liu A F, Cao X Y, Zhai S N, Cheng D G, Li G Y, Zhao Z D, Yang Z J, Liu J J, Reader S M. Characterization, identification and evaluation of a set of wheat-chromosome lines., 2019, 9: 4773.
[8] Zuo Y Y, Dai S F, Song Z P, Xiang Q, Li W, J Liu G, Li J, Xu D H, Yan Z H. Identification and characterization of wheat-7M (7A) disomic substitution lines with stripe rust and powdery mildew resistance., 2022, 106: 2663–2671.
[9] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-6VS/6AL translocation lines specifying resistance to powdery mildew., 1995, 91:1125–1128.
[10] Heng Q, Li B, Mu S, Zhou H P, Li Z S. Physical mapping of the blue-grained gene(s) fromby GISH and FISH in a set of translocation lines with different seed colors in wheat., 2006, 49: 1109–1114.
[11] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup D, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat andchromosomes., 2017, 60: 93–103.
[12] 王秀娥, 趙彥, 張清平, 王蘇玲, 周波, 陳佩度, 劉大鈞. 利用PCR技術初步鑒定小麥加州野大麥異染色體系. 南京農業(yè)大學學報, 2004, 27(4): 1–5. Wang X E, Zhao Y, Zhang Q P, Wang S L, Zhou B, Chen P D, Liu D J. Preliminary identification ofL.-alien chromosome lines by PCR technique., 2004, 27(4): 1–5 (in Chinese with English abstract).
[13] Ma H H, Zhang J P, Zhang J, Zhou S H, Han H M, Liu W H, Yang X M, Li X Q, Li L H. Development of P genome-specific SNPs and their application in tracingintrogressions in common wheat., 2019, 2: 151–162.
[14] 宮文萍, 韓冉, 宋健民, 劉建軍, 李豪圣, 劉愛峰, 曹新有, 敦公, 趙振東, 劉成. 頂芒和無芒山羊草育種價值及細胞學標記.核農學報, 2017, 31: 1889–1895. Gong W P, Han R, Song J M, Liu J J, Li H S, Liu A F, Cao X Y, Cheng D G, Zhao Z D, Liu C. Breeding value and cytogenetic markers ofand., 2017, 31: 1889–1895 (in Chinese with English abstract).
[15] Parisod C, Badaeva E D. Chromosome restructuring among hybridizing wild wheats., 2020, 226: 1263–1273.
[16] Song Z P, Dai S F, Bao T Y, Zuo Y Y, Xiang Q, Li J, Liu G, Yan Z H. Analysis of structural genomic diversity in,,, andby fluorescence in situ hybridization karyotyping., 2020, 11: 710.
[17] Yu F, Zhao X W, Chai J, Ding X E, Li X T, Huang Y J, Wang X H, Wu J Y, Zhang M Q, Yang Q H, Deng Z H, Jiang J M. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in thecomplex., 2022, 233: 1953–1965.
[18] He L, Zhao H N, He J, Yang Z J, Guan B, Chen K L, Hong Q B, Wang J H, Liu J J, Jiang J M. Extraordinarily conserved chromosomal synteny ofspecies revealed by chromosome- specific painting., 2020, 103: 2225–2235.
[19] Hou L L, Xu M, Zhang T, Xu Z H, Wang W Y, Zhang J X, Yu M M, Ji W, Zhu C W, Gong Z Y, Gu M H, Jiang J M, Yu H X. Chromosome painting and its applications in cultivated and wild rice., 2018, 18: 110.
[20] Xin H Y, Zhang T, Wu Y F, Zhang W L, Zhang P D, Xi M L, Jiang J M. An extraordinarily stable karyotype of thespecies revealed by chromosome painting., 2020, 101: 253–264.
[21] Han Y H, Zhang T, Thammapichai P, Weng Y Q, Jiang J M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides., 2015, 200: 771–779.
[22] Song X Y, Song R R, Zhou J W, Yan W K, Zhang T, Sun H J, Xiao J, Wu Y F, Xi M L, Lou Q F, Wang H Y, Wang X E. Deve-lopment and application of oligonucleotide-based chromosome painting for chromosome 4D ofL., 2020, 28: 171–182.
[23] Li G R, Zhang T, Yu Z H, Wang H J, Yang E N, Yang Z J. An efficient oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in., 2021, 105: 978–993.
[24] Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X. An efficient protocol for genomic DNA extraction fromspecies., 2003, 21: 177–178.
[25] 程夢豪, Karafiátová M, 孫昊杰, Holu?ová K, Dole?el J, 宋新穎, 王海燕, 王秀娥. 基于纖毛鵝觀草特異的衛(wèi)星重復序列開發(fā)寡核苷酸探針. 南京農業(yè)大學學報, 2022, 45: 1–14. Cheng M H, Karafiátová M, Sun H J, Holu?ová K, Dole?el J, Song X Y, Wang H Y, Wang X E. Development of oligonucleotide probes specific tochromosomes based on satellite repeats., 2022, 45: 1–14 (in Chinese with English abstract).
[26] Rychlik W. OLIGO 7 primer analysis software 402. In: Yuryev A ed. PCR Primer Design. Methods in Molecular Biology, 402, Humana Press, Totowa, New Jersey, USA, 2007. pp 35–59.
[27] Lei J, Zhou J W, Sun H J, Wan W T, Xiao J, Yuan C X, Karafiátová M, Dole?el J, Wang H Y, Wang X E. Development of oligonucleotide probes for FISH karyotyping in, a wild relative of common wheat., 2020, 8: 676–681.
[28] Lang T, Li G R, Wang H J, Yu Z H, Chen Q H, Yang E N, Fu S L, Tang Z X, Yang Z J. Physical location of tandem repeats in the wheat genome and application for chromosome identification., 2019, 249: 663–675.
[29] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup D, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat andchromosomes., 2017, 60: 93–103.
[30] Fu S, Chen L, Wang Y, Li M, Yang Z, Qiu L, Yan B, Ren Z, Tang Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes., 2015, 5: 10552.
[31] Tang S Y, Qiu L, Xiao Z Q, Fu S L, Tang Z X. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes., 2016, 12:118.
[32] Jiang J M. Fluorescence in situ hybridization in plants: recent developments and future applications., 2019, 27: 153–165.
[33] Danilova T V, Friebe B, Gill B S. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the., 2014, 127: 715–730.
Development of specific oligonucleotide probe library ofand construction of oligo-FISH karyotype
SHI Pei-Yao, CHEN Li-Juan, SUN Hao-Jie, CHENG Meng-Hao, XIAO Jin, YUAN Chun-Xia, WANG Xiu-E, and WANG Hai-Yan*
National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / Cytogenetics Institute / Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
(, 2=2=14, MM) is a tertiary gene bank for wheat improvement. In order to accurately identify the chromosomes ofM genome or the chromosome segments transferred into wheat, the next-generation sequencing information ofM genome were obtained. Based on the next-generation sequencing information ofM genome, 12 oligonucleotide probes were designed for oligo-FISH analysis according to the 16 possible specific satellite repeats identified. The oligo-FISH results showed that ten of the probes could produce obvious hybridization signals on the chromosomes of. The probe specificity analysis revealed that the five probes generated hybridization signals on the chromosomes of, but there was no obvious hybridization signal on the chromosomes in wheat, which used as the specific probes to identify the chromosomes or chromosome segments of M genome in wheat background. Three probes (oligo-pAc89, oligo-pAc148, and oligo-pAc225) with abundant signal distribution on the chromosomes ofwere selected to form a probe set named ONPS#AC1. Combined with the oligonucleotide probe library developed according to wheat D sub genome, the oligo-FISH karyotype ofwas constructed, which can accurately identify each chromosome of the M genome, providing an important molecular cytogenetic basis for mining, transferring, and utilizing the excellent genes of.
; second-generation sequencing; satellite repeats; Oligo nucleotide probe; fluorescencehybridization
10.3724/SP.J.1006.2023.21048
本研究由國家重點研發(fā)計劃項目(2020YFE0202900), 中央高?;究蒲袠I(yè)務費(KYZZ2022003), 江蘇省現代農業(yè)產業(yè)技術體系(JATS[2021]463)和江蘇省種業(yè)振興項目(JBGS[2021]006, 013, 047)資助。
This study was supported by the National Key Research and Development Program of China (2020YFE0202900), the Fundamental Research Funds for the Central University (KYZZ2022003), the Jiangsu Province Modern Agricultural Industry Technology System (JATS[2021]463), and the Seed Industry Revitalization Project of Jiangsu Province (JBGS[2021]006, 013, 047).
王海燕, E-mail: hywang@njau.edu.cn
E-mail: 2019101115@njau.edu.cn
2022-07-06;
2022-10-10;
2022-10-21.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20221020.1828.002.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).