• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface structure modification of ReSe2 nanosheets via carbon ion irradiation

    2023-03-13 09:19:36MeiQiao喬梅TieJunWang王鐵軍YongLiu劉泳TaoLiu劉濤ShanLiu劉珊andShiCaiXu許士才
    Chinese Physics B 2023年2期
    關(guān)鍵詞:劉濤鐵軍

    Mei Qiao(喬梅) Tie-Jun Wang(王鐵軍) Yong Liu(劉泳)Tao Liu(劉濤) Shan Liu(劉珊) and Shi-Cai Xu(許士才)

    1College of Physics and Electronic Information,Shandong Key Laboratory of Biophysics,Dezhou University,Dezhou 253023,China

    2School of Physics,State Key Laboratory of Crystal Materials and Key Laboratory of Particle and Particle Irradiation(MOE),Shandong University,Jinan 250100,China

    3School of Electronic and Information,Qingdao University,Qingdao 266071,China

    Keywords: ion irradiation,microstructure,crystallinity,surface morphology

    1.Introduction

    Owing to the unique optical and electronic properties,transition metal dichalcogenides (TMDs) have been widely studied, showing that TMD has a great potential application in beyond-CMOS devices.[1-8]Among the TMDs,ReSe2crystallizes belong to the triclinic system, and the cluster of Re4units forms a one-dimensional (1D) chain inside each monolayer, with layers held together by van der Waals attraction.[9]Generally, most VI TMDs such as MoS2and WS2show more superior performances due to their monolayer structure,while unlike other two-dimensional(2D)materials,ReSe2shows very weak layer-dependent optical and vibrational properties.[10,11]The stabilization of the extra valence electron in each Re atom can result in inherent lattice distortion in ReSe2, which makes it a suitable candidate for tuning the optical properties via strain engineering.[12]The multilayer ReSe2flakes have been demonstrated as field-effect transistors(FETs), digital inverters, and photodetectors.[13,14]However, the synthesis technology of ReSe2nanosheet is more complicated than those of other TMDs such as MoS2and WS2, due to its properties (like structure, crystal quality, domain size, thickness, and morphology) are difficult to modify accurately.[15,16]Unlike hexagonal layered TMDs such as MoS2and WS2, the ReSe2with anisotropy shows the potential in fabricating versatile devices, and it is essential to develop modification strategy to improve properties of ReSe2for practical applications.[12]In recent years, a large amount of work on ion beam modification of 2D or other film materials has been performed,showing an effective way to modify ReSe2.[17-24]

    In this work, the properties of multilayer ReSe2samples on Al2O3substrates are modified by ion irradiation technique.The irradiated C ions lose energy through two mechanisms:nuclear energy loss (originating from nucleus collision) and electronic energy loss(arising from interaction between irradiated electron and lattice atoms).The micro-structure and related properties of multilayer ReSe2sample are modified through these two energy-losing mechanisms.The surface morphologies, including the size, thickness, microstructure,elemental analysis, bonding configurations, and crystallinity of the multilayer ReSe2samples, are studied after 1.0-MeV C ion irradiation at fluence rates of 5.0×1013ions/cm2and 5.0×1014ions/cm2.The results indicate that the domain sizes,thickness,crystallinities,and morphologies of the ReSe2samples can be effectively controlled by ion irradiation process.

    2.Materials and methods

    The multilayer ReSe2samples were grown on the single crystal Al2O3by the CVD with dimensions of 5.0 mm×5.0 mm×0.5 mm,and irradiated by 1.0-MeV C ions at the fluences of 5.0×1013ions/cm2and 5.0×1014ions/cm2from a 2×1.7-MV tandem accelerator[25]at room temperature(~300 K).The details of the ions irradiated on multilayer ReSe2flakes on crystalline Al2O3are displayed in Table 1.

    Table 1.Details of ion irradiated multilayer ReSe2 flakes on crystalline Al2O3.

    The ion irradiation effects in multilayer ReSe2samples were characterized by utilizing atomic force microscope(AFM), scanning electron microscopy (SEM), micro-Raman spectra, x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD).The thickness of non-irradiated and irradiated ReSe2flakes were characterized by AFM on NT-MDT model BL222 RNTE.The peak force amplitude and scan rate were 150 nm and 0.977 Hz, respectively.Surface morphologies, including the sizes and shapes of the multilayer ReSe2samples, were determined by SEM imaging on a Hitachi S-4800.The imaging resolution and accelerating voltage were 1.0 nm and 5 kV, respectively.The detailed Raman peak positions and a comparison before and after ion irradiation were obtained at room temperature by using a multichannel modular triple Raman system(HORIBA Jobin-Yvon HR800)at 632.8-nm excitation wavelengths.The spot diameters of the focused laser beam on the multilayer ReSe2samples were all about 1.0 μm.The core level elemental analysis and bonding configurations of the multilayer ReSe2samples were performed by XPS on an ESCALAB 250.Monochromatic AlKαx-ray source(1486.6 eV)and hemispherical deflector analyser were used in the XPS spectrometer,working at constant pass energy,and constant energy resolution on the whole spectrum can be maintained with this mode.Intrinsic resolution of the spectrometer was 0.45 eV,which was proved by the the Ag 3d5/2line.The x-ray spot in this experiment was about 150-μm diameter.The XRD experiments were conducted to structurally analyze the samples with CuKαemission(λ=1.54056 °A)on a Rigaku RINT-2500 VHF x-ray diffractometer.The diffraction patterns were recorded between 10°and 30°on a 2θscale in steps of 0.04°.

    3.Results and discussion

    In Fig.1,AFM images of multilayer ReSe2surface nonirradiated and irradiated with 1.0-MeV C ions at fluence of 5.0×1013ions/cm2and 5.0×1014ions/cm2are shown.The typical shape and corresponding height profile of multilayer ReSe2are determined by AFM and the reults are displayed in Figs.1(a)-1(f).The ReSe2flakes on Al2O3substrates display quadrilateral shape before irradiation and then turn into oval shapes after being processed.The change of shape can be attributed to the difference in edge formation energy between the Re edge and Se edge termination before and after being irradiated by C ions.After the irradiation of 1.0-MeV C ions,the specific edge termination effect was destroyed,and oval shapes form in the multilayer ReSe2.Thickness of the monolayer ReSe2flake is approximately in a range of 0.7 nm-0.8 nm.[9]In Fig.1,the observed thickness values of the ReSe2samples are approximately 2.8,6.4,and 9.1 nm corresponding to flakes consisting of 4,9,and 13 layers for samples S0,S1,and S2,respectively.Through the collision cascade,the atoms of ReSe2acquire higher energy than that due to the van der Waals’ forces.Then, the ReSe2flakes continue to grow and the thickness values of the ReSe2flakes increase after the irradiation of 1.0-MeV C ions.

    Fig.1.AFM images for multilayer ReSe2: (a)2D image and(b)height profile for sample S0;(c)2D image and(d)height profile for sample S1;(e)2D image and(f)height profile for sample S2.

    The surface morphologies before and after 1.0-MeV C ions irradiation are determined by using SEM technique and shown in Fig.2.Figure 2(a)shows that the surface profile of the non-irradiated multilayer ReSe2is relatively smooth and uniform.Figure 2(b) displays a magnified view of the nonirradiated multilayer ReSe2.After the irradiation of 1.0-MeV C ions,the morphologies of the samples S1 and S2 are greatly changed.After the irradiation of 1.0-MeV C ions at the fluence rate of 5.0×1013ions/cm2,pores with diameters in a range of 10μm-25μm are evenly located on the multilayer ReSe2sample(as shown in Fig.2(c)).Figure 2(d)shows that the particles of ReSe2are perfectly oval with a uniform size distribution.The long diameter and short diameter of the ReSe2nanoparticles(sample S2)are approximately 3.0μm and 1.0μm, respectively.The average distance between the nanoparticles is approximately 17.0 μm.A higher irradiation fluence causes great damaging effects on the dimensions of the samples.It is an effective way to modify sample size by controlling the irradiation conditions.

    Fig.2.SEM images of multilayer ReSe2 samples under different irradiation conditions: (a) sample S0 (unirradiated), (b) high-magnification for sample S0,(c)sample S1(1.0-MeV C ions at a fluence of 5.0×1013 ions/cm2),and(d)sample S2(1.0-MeV C ions at a fluence of 5.0×1014 ions/cm2).

    The atomic vibrational spectra of multilayer ReSe2flakes after the irradiation of 1.0-MeV C ions at the fluence rates of 5.0×1013ions/cm2and 5.0×1014ions/cm2are detected in a range of 100 cm-1-300 cm-1and are shown in Fig.3.Unlike the Raman spectra of MoX2and WX2(X=S, Se), the Raman spectra of the ReSe2are feature-rich with approximately 18 first-order Raman-active modes in the range of 100 cm-1-300 cm-1, which are nondegenerate due to their low-symmetry triclinic structure.[9]For ReSe2,it is difficult to determine a pure vibration mode because of the complicated crystal lattice.Therefore,we name the Raman modes based on the dominant direction of the phonon vibrations.As shown in Fig.3,the Raman peaks at 121 cm-1results from the in-plane vibrational mode (Eg-like) and at 163 cm-1and 176 cm-1originate from the out-of-plane vibrational mode(Ag-like).[26]

    The thickness values of ReSe2layers after being irradiated by 1.0-MeV C ions are measured from the AFM images and shown in Fig.1.With the increase of sample thickness,most of the peaks for the few-layer ReSe2are red-shifted(Fig.3).Only considering the long-range Coulombic interactions, the Coulombic screening can be increased by the increasing dielectric tensors that augment with the number of layers increasing.This results in a softer Coulombic interaction between atoms, and therefore, the redshift takes place in the corresponding Raman peaks.[27]However, if we consider the van der Waals force, the interaction between the layers tends to suppress the lattice vibrations with the number of layers increasing.Thus,the vibrational energy of each vibration mode can increase,thereby leading to blueshift.[28]We know that the atomic mass of ReSe2is almost equal to that of WSe2.For WSe2,theE2gandA1gmodes show the changes of redshift and blueshift from the monolayer to the bulk,respectively.[29]The strength of Coulombic screening can be measured by the ratio of the long-range coulomb interaction of the monolayer to that of the bulk,

    The details can be found in previous work.[26]From the above equation,we can determine that the long-range Coulombic interactions in WSe2and ReSe2are similar to each other.In addition,the interlayer force constantα∝μωcan be used to measure the van der Waals interaction,wheremandware the atomic mass of the monolayer TMDCs and the Raman frequency, respectively.From Ref.[30], the frequency of the C mode and the LB mode in bilayer WSe2are higher than those in bilayer ReSe2.The calculations show that the interlayer van der Waals interaction of ReSe2is much weaker than that of WSe2.According to the above discussion,with the number of ReSe2layers increasing,the redshifts of the Raman modes after the irradiation of 1.0-MeV C ions as shown in Fig.3 indicate that the interlayer van der Waals interaction is not strong enough to determine the layer dependence of the phonon behavior.

    However,the Raman mode at 163 cm-1mainly involves the atomic displacement of the Re-Re bond.[31]After the irradiation of 1.0-MeV C ions, the Raman mode is located at 162.5 cm-1for sample S1 and at 161.7 cm-1for sample S2.Under the above condition, we can determine that a longer bond length for the Re-Re bond occurs due to the volume expansion induced by irradiation, with the ReSe2layer number increasing.

    Fig.3.Raman spectra obtained at 632.8-nm excitation energy for multilayer ReSe2 flakes irradiated under different conditions.

    Fig.4.XPS spectra of multilayer ReSe2 flakes before and after the irradiations of 1.0-MeV C ions.

    The elemental compositions and bonding configurations of the multilayer ReSe2samples are characterized by XPS.The detailed information regarding the Re signal and Se signal is exhibited in Figs.4(a), 4(c), 4(e) 4(b), 4(d), and 4(f),respectively.As shown in Fig.4(a), two characteristic peaks located at 41.6 eV and 44.1 eV are observed, which correspond to the core 4f7/2and 4f5/2levels of Re4+.Additionally,figure 4(b)shows clearly resolved Se2-3d5/2and 3d3/2peaks at 54.78 eV and 55.61 eV determined via the curve fitting.The two characteristic peaks are consistent with the results reported in Ref.[32],and the curve fitting method is based on the XPS peak code.Additionally, the ratio of Re to Se acquired from XPS is nearly 1:2, which suggests that the CVD-grown ReSe2is reasonably stoichiometric.

    To further analyze the change of multilayer ReSe2after the irradiation of 1.0-MeV C ions , the shift of XPS peak is studied and shown in Figs.4(c)-4(f).The peak position shift of XPS is a combined result of three main factors.First of all,the defects induced by ion irradiation will result in surface energy band bending and the peak value shifts to a higher energy value.Meanwhile,the irradiation-induced defects and latticedisorder will also lead the lattice volume to expand,and further cause longer bond length of the Re-Re bond, with irradiated fluence increasing.The longer Re-Re bond length is apparently corresponding to weaker bond strength,which causes the binding energy to shift to a lower energy value.Furthermore,C ion irradiation will induce partial electron to transfer, and part of Re4+ions are converted into Re2+ions, which leads the binding energy to decrease.

    The XPS result of Re 4f in Fig.1(c)shows two spin-orbit split peaks with a separation of 2.5 eV, which correspond to 4f7/2and 4f5/2respectively.Apparently,the Re 4f7/2peak can be fitted by two peaks,i.e.,the dominant peak at 41.9 eV(the characteristics of n-type doping), which is due to the surface energy band bending effect induced by defect,and the weaker peak at 41.0 eV, which is attributed to the volume expansion of lattice and the presence of Re2+ion.The Re 4f5/2peak can also be fitted by two peaks, out of the same reason.In addition,as shown in Fig.4(e),the Re 4f7/2peak value of sample S2 shifts by 0.7 eV, reasching a lower energy value, which shows that lattice volume expansion and the role of Re2+ion are dominated in sample S2.As a conclusion,the shift of XPS peak shows an oscillatory trend with fluence increasing,which is determined by the joint action of irradiation induced defects,lattice-expansion effect and the role of Re2+ion.

    The XRD is used to evaluate the structural characteristics of multilayer ReSe2flakes under the different irradiation conditions, and the results are shown in Fig.5.For samples S0, S1, and S2, most of significant (001) peaks are observed at 2θ=13.00°, 13.76°, and 13.65°, respectively.The XRD pattern is consistent with the JCPDS card No.89-0340, wihch indicates the presence of the triclinic phase for multilayer ReSe2.The interplanar spacings are approximately 6.8712 °A,6.4306 °A,and 6.4811 °A from Jade 6.0 for samples S0-S2,respectively.Nonirradiated ReSe2flakes(S0)yield a very noisy powder XRD pattern with lines of weak intensity and wide FWHM, indicating poor crystallinity of the sample S0.After the irradiation of 1.0-MeV C ions,which causes the ReSe2to grow,the thickness of the ReSe2layer increases,the intensity of the diffraction peak strengthens, and the FWHM decreases.This indicates that the crystallinity of the ReSe2flake is improved with the number of layers increasing after the irradiation of 1.0-MeV C ions.Comparing with non-irradiated ReSe2flakes(sample S0),the intensity of the diffraction peak is improved by approximately 148%for sample S1 and 180%for sample S2.In addition, the FWHM values of the (001)diffraction peakare approximately 2.15°,0.92°,and 0.87°,for samples S0, S1, and S2 respectively.From the above data,the average crystallite size can be calculated using the Debye-Scherer equation

    The details can be found in Ref.[33].From Eq.(2), we can determine the average crystallite sizeD0=3.67 nm (sample S0),D1=8.65 nm (sample S1), andD2=9.09 nm (sample S2).The increased crystallite size can also reveal that the crystallinity is improved with the increase of the number of layers after the irradiation of ions.As a result, comparing with the data of samples detected by XRD,AFM,and SEM,it is apparent that samples S1 and S2 show almost the same crystalline quality and grain size,which means that the irradiated condition of S1(with lower fluence means cost-effective and lower irradiation effect)is more appropriate for ReSe2samples.

    Fig.5.XRD patterns (θ-2θ) of multilayer ReSe2 flakes before and after being irradiated by 1.0-MeV C ions.

    4.Conclusions

    In this work, the effect of C ion irradiation of multilayer ReSe2flakes has been studied and characterized by utilizing AFM, SEM, micro-Raman spectra, XPS, and XRD.The results confirm that that the domain size,thickness,morphology,and crystallinity for the ReSe2sample can be effectively controlled after the irradiation of 1.0-MeV C ions.Through appropriately regulating the energy and fluence of C ions,multilayer ReSe2samples with high-quality crystallinity,relatively large size and good performance can be obtained.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12105036, 11775135,and 11805108), the Natural Science Foundation of Shandong Province, China (Grant Nos.ZR2020QA088 and ZR2021QA074), the Taishan Scholars Program of Shandong Province, China (Grant No.tsqn201812104), and the State Key Laboratory of Nuclear Physics and Technology at Peking University,China.

    猜你喜歡
    劉濤鐵軍
    助人為樂的劉濤
    助人為樂的劉濤
    鹽城市扛起使命擔當 鍛造應(yīng)急鐵軍
    新昌縣征訂《鐵軍》連續(xù)五年超千份
    鐵軍(2022年12期)2022-12-07 11:51:46
    Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
    鐵軍頌
    心聲歌刊(2022年6期)2022-02-14 13:20:22
    鑄成消防鐵軍
    劉濤:成為更好的自己
    金色年華(2017年7期)2017-06-21 09:27:52
    讀《鐵軍頌》
    大江南北(2016年6期)2016-11-21 21:15:31
    馬鈴薯主糧化
    久久精品人妻少妇| 波多野结衣高清无吗| 日韩精品有码人妻一区| 欧美性感艳星| 青春草国产在线视频| 99热精品在线国产| 午夜福利在线观看免费完整高清在| 久久久久精品久久久久真实原创| 免费观看人在逋| 少妇熟女欧美另类| 麻豆成人av视频| 男女啪啪激烈高潮av片| a级毛片免费高清观看在线播放| 99久国产av精品国产电影| 亚洲国产精品国产精品| 成人亚洲欧美一区二区av| 2022亚洲国产成人精品| 深爱激情五月婷婷| 免费黄色在线免费观看| 麻豆一二三区av精品| 午夜福利网站1000一区二区三区| 爱豆传媒免费全集在线观看| 最近手机中文字幕大全| 一级爰片在线观看| 欧美精品一区二区大全| 久久久久久久午夜电影| 麻豆精品久久久久久蜜桃| 赤兔流量卡办理| 男的添女的下面高潮视频| 国产亚洲91精品色在线| 男女视频在线观看网站免费| 99在线视频只有这里精品首页| 看黄色毛片网站| 麻豆成人av视频| 色网站视频免费| 久久精品人妻少妇| 欧美日韩精品成人综合77777| 草草在线视频免费看| 精品久久久久久久久av| 亚洲国产欧美人成| 岛国在线免费视频观看| 99久久精品国产国产毛片| 国语对白做爰xxxⅹ性视频网站| 一区二区三区乱码不卡18| 国产真实乱freesex| 麻豆av噜噜一区二区三区| 欧美成人精品欧美一级黄| 亚洲国产精品国产精品| 成人欧美大片| 伊人久久精品亚洲午夜| 熟女电影av网| 日韩精品青青久久久久久| 日本色播在线视频| 在线免费观看的www视频| 青青草视频在线视频观看| 成年免费大片在线观看| 久久鲁丝午夜福利片| 亚洲欧美日韩无卡精品| 日韩av在线大香蕉| 国产在线一区二区三区精 | 寂寞人妻少妇视频99o| 爱豆传媒免费全集在线观看| 老司机影院成人| 黄色欧美视频在线观看| 在线观看av片永久免费下载| 免费大片18禁| 亚洲人成网站在线播| 少妇高潮的动态图| 亚洲精品色激情综合| 大香蕉97超碰在线| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠久久av| 成年女人永久免费观看视频| 婷婷色av中文字幕| 女人久久www免费人成看片 | 国产午夜精品一二区理论片| 亚洲欧美日韩无卡精品| 插阴视频在线观看视频| videos熟女内射| 熟女电影av网| 国产一区亚洲一区在线观看| 欧美xxxx性猛交bbbb| 国产激情偷乱视频一区二区| 精品人妻视频免费看| 日本爱情动作片www.在线观看| 亚洲精品456在线播放app| 黄色配什么色好看| 亚洲伊人久久精品综合 | 不卡视频在线观看欧美| 我的女老师完整版在线观看| 久久人人爽人人片av| 日日摸夜夜添夜夜添av毛片| 搡女人真爽免费视频火全软件| 欧美成人a在线观看| 乱码一卡2卡4卡精品| 日本-黄色视频高清免费观看| 国产成年人精品一区二区| 午夜精品在线福利| 天堂av国产一区二区熟女人妻| 亚洲精品乱码久久久久久按摩| 亚洲最大成人av| 国产精品一二三区在线看| 亚洲在久久综合| av国产免费在线观看| 观看美女的网站| 午夜免费激情av| 国产色爽女视频免费观看| 亚洲性久久影院| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| 亚洲精品456在线播放app| 免费无遮挡裸体视频| 久久久久久久久大av| 亚洲最大成人手机在线| 中国美白少妇内射xxxbb| 黄片无遮挡物在线观看| 99国产精品一区二区蜜桃av| 午夜精品一区二区三区免费看| 在线观看av片永久免费下载| 国产免费视频播放在线视频 | 亚洲国产高清在线一区二区三| 久久人人爽人人爽人人片va| 免费看日本二区| 女人久久www免费人成看片 | 精品酒店卫生间| 国产成人91sexporn| 国产精品熟女久久久久浪| 赤兔流量卡办理| 国产真实伦视频高清在线观看| 久久6这里有精品| 亚洲精品一区蜜桃| 精品熟女少妇av免费看| 青青草视频在线视频观看| 成年av动漫网址| 久久久久久久久久久免费av| 亚洲av福利一区| 国产黄色视频一区二区在线观看 | 欧美xxxx黑人xx丫x性爽| 亚洲av成人精品一区久久| 中文字幕av成人在线电影| 深爱激情五月婷婷| 国产在视频线在精品| av在线蜜桃| 亚洲最大成人av| 精品久久久久久成人av| 久久热精品热| 国产精品久久久久久av不卡| 99热这里只有是精品50| 日本与韩国留学比较| 日韩av在线大香蕉| 人人妻人人看人人澡| 亚洲精品成人久久久久久| 18禁裸乳无遮挡免费网站照片| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩在线中文字幕| 亚洲av熟女| videos熟女内射| 久久精品人妻少妇| 一区二区三区乱码不卡18| 久久这里有精品视频免费| 村上凉子中文字幕在线| av国产久精品久网站免费入址| 一级毛片aaaaaa免费看小| 只有这里有精品99| 久久久色成人| 国产精品不卡视频一区二区| 亚洲精品乱久久久久久| 久久99热6这里只有精品| 久久久久久久久久久免费av| 国产一区二区亚洲精品在线观看| 亚洲美女搞黄在线观看| 久久久午夜欧美精品| 岛国在线免费视频观看| 天堂网av新在线| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 日本一本二区三区精品| 精华霜和精华液先用哪个| 午夜福利视频1000在线观看| 国产伦理片在线播放av一区| 长腿黑丝高跟| 别揉我奶头 嗯啊视频| 国产女主播在线喷水免费视频网站 | av卡一久久| av在线老鸭窝| 男女下面进入的视频免费午夜| 亚洲五月天丁香| 亚洲丝袜综合中文字幕| 国产精品av视频在线免费观看| 亚洲最大成人手机在线| 高清在线视频一区二区三区 | 美女内射精品一级片tv| 小蜜桃在线观看免费完整版高清| 国产一区二区在线观看日韩| 国产美女午夜福利| 欧美日韩综合久久久久久| 国产一区二区亚洲精品在线观看| 精品久久久久久成人av| 只有这里有精品99| 亚洲国产精品成人久久小说| 欧美最新免费一区二区三区| 日本猛色少妇xxxxx猛交久久| 欧美成人精品欧美一级黄| 天堂中文最新版在线下载 | 亚洲精品亚洲一区二区| 美女cb高潮喷水在线观看| 欧美高清成人免费视频www| 国产精品av视频在线免费观看| 久99久视频精品免费| 久久鲁丝午夜福利片| 国产亚洲91精品色在线| 久久精品国产鲁丝片午夜精品| 日韩av在线免费看完整版不卡| 免费搜索国产男女视频| 欧美日韩国产亚洲二区| 七月丁香在线播放| 老司机福利观看| 精品一区二区三区人妻视频| 男女视频在线观看网站免费| 亚洲成av人片在线播放无| 亚洲国产精品专区欧美| 国产精品蜜桃在线观看| 亚洲精品日韩在线中文字幕| 久久久久网色| 小说图片视频综合网站| 一夜夜www| 国产免费又黄又爽又色| 亚洲伊人久久精品综合 | 一区二区三区高清视频在线| 国模一区二区三区四区视频| 国产精品国产高清国产av| 长腿黑丝高跟| 欧美另类亚洲清纯唯美| 我的老师免费观看完整版| 搡老妇女老女人老熟妇| 看片在线看免费视频| 欧美bdsm另类| 国产精品嫩草影院av在线观看| 国产精品99久久久久久久久| 99在线人妻在线中文字幕| 国产精品久久久久久久久免| 国产女主播在线喷水免费视频网站 | 七月丁香在线播放| 精品无人区乱码1区二区| 网址你懂的国产日韩在线| 日本猛色少妇xxxxx猛交久久| 亚洲av成人av| av线在线观看网站| 中文欧美无线码| 99久国产av精品国产电影| 成人高潮视频无遮挡免费网站| av又黄又爽大尺度在线免费看 | 午夜日本视频在线| 中文乱码字字幕精品一区二区三区 | 大香蕉久久网| 欧美一区二区亚洲| 少妇的逼水好多| 国产成人免费观看mmmm| 九九爱精品视频在线观看| 久久久午夜欧美精品| 国产亚洲精品久久久com| 国产探花极品一区二区| 国国产精品蜜臀av免费| videos熟女内射| 精华霜和精华液先用哪个| 亚洲成人久久爱视频| 国产精品一区二区在线观看99 | 一区二区三区免费毛片| 国产伦一二天堂av在线观看| 欧美一区二区国产精品久久精品| 成人美女网站在线观看视频| 大话2 男鬼变身卡| 不卡视频在线观看欧美| 免费看光身美女| 国产一区二区三区av在线| 男女国产视频网站| 国产精品美女特级片免费视频播放器| 美女被艹到高潮喷水动态| 中文字幕av成人在线电影| 一级毛片久久久久久久久女| 欧美高清性xxxxhd video| 亚洲中文字幕日韩| 久久精品综合一区二区三区| 亚洲精品456在线播放app| av天堂中文字幕网| 精品午夜福利在线看| 在线免费观看不下载黄p国产| 天天一区二区日本电影三级| 亚洲伊人久久精品综合 | 91精品国产九色| 欧美日韩综合久久久久久| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲网站| 岛国毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 51国产日韩欧美| 欧美激情国产日韩精品一区| 国产一区亚洲一区在线观看| 久久人妻av系列| 精品国产三级普通话版| 晚上一个人看的免费电影| 国产亚洲5aaaaa淫片| 久99久视频精品免费| 天堂中文最新版在线下载 | 亚洲怡红院男人天堂| 又爽又黄无遮挡网站| 久久热精品热| 51国产日韩欧美| 两个人的视频大全免费| 国产淫片久久久久久久久| 夜夜看夜夜爽夜夜摸| 毛片一级片免费看久久久久| h日本视频在线播放| 日日干狠狠操夜夜爽| 国产精品不卡视频一区二区| 听说在线观看完整版免费高清| 秋霞伦理黄片| 国产一区二区在线av高清观看| 十八禁国产超污无遮挡网站| 久久久久久久久久黄片| 真实男女啪啪啪动态图| 97超视频在线观看视频| 久久人妻av系列| 国产成人91sexporn| 成年av动漫网址| 日本午夜av视频| 啦啦啦啦在线视频资源| 亚洲欧美日韩无卡精品| 桃色一区二区三区在线观看| 黄片无遮挡物在线观看| 麻豆av噜噜一区二区三区| 国产极品天堂在线| 免费在线观看成人毛片| 久久欧美精品欧美久久欧美| 麻豆精品久久久久久蜜桃| 亚洲精品自拍成人| 韩国av在线不卡| 日韩精品青青久久久久久| 能在线免费观看的黄片| 边亲边吃奶的免费视频| 国产老妇伦熟女老妇高清| 国产极品精品免费视频能看的| 国模一区二区三区四区视频| 99久久九九国产精品国产免费| 乱人视频在线观看| 看片在线看免费视频| 国产高清视频在线观看网站| 精品久久久噜噜| 黑人高潮一二区| videos熟女内射| 精品一区二区免费观看| 老女人水多毛片| 免费av毛片视频| 99久久人妻综合| 国产精品福利在线免费观看| 国产乱来视频区| 中文天堂在线官网| 中文字幕精品亚洲无线码一区| 欧美精品一区二区大全| 少妇人妻精品综合一区二区| 婷婷色麻豆天堂久久 | 色噜噜av男人的天堂激情| 99久国产av精品| 亚洲成人中文字幕在线播放| 午夜精品国产一区二区电影 | 国产老妇女一区| videossex国产| 在线a可以看的网站| av卡一久久| 亚洲av二区三区四区| 天天躁日日操中文字幕| 老司机影院毛片| 18禁在线无遮挡免费观看视频| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 高清午夜精品一区二区三区| 久久久久网色| 亚洲精品日韩在线中文字幕| 久久久国产成人精品二区| 国产精品福利在线免费观看| 欧美成人免费av一区二区三区| 黄片wwwwww| 嘟嘟电影网在线观看| 日韩欧美精品v在线| 啦啦啦啦在线视频资源| 男人舔女人下体高潮全视频| 直男gayav资源| 国产成人免费观看mmmm| 国产精品麻豆人妻色哟哟久久 | 日韩高清综合在线| 国产av码专区亚洲av| 一本久久精品| 三级国产精品欧美在线观看| 国产精品美女特级片免费视频播放器| 男人舔奶头视频| 热99re8久久精品国产| 男的添女的下面高潮视频| 日本欧美国产在线视频| 麻豆久久精品国产亚洲av| 一本久久精品| 国产爱豆传媒在线观看| 国产视频内射| av国产免费在线观看| 成年av动漫网址| 国产精品久久久久久精品电影| 99久久成人亚洲精品观看| 久久久久久久久大av| 国产色爽女视频免费观看| 国产精品一区二区三区四区久久| 日韩一区二区视频免费看| 欧美一区二区国产精品久久精品| 国产伦一二天堂av在线观看| 少妇猛男粗大的猛烈进出视频 | 日本熟妇午夜| 18禁在线无遮挡免费观看视频| 高清午夜精品一区二区三区| 日韩亚洲欧美综合| 午夜福利网站1000一区二区三区| 麻豆乱淫一区二区| 26uuu在线亚洲综合色| 在线播放国产精品三级| 高清av免费在线| 中文字幕av在线有码专区| 舔av片在线| 国产精品99久久久久久久久| 免费搜索国产男女视频| 天堂中文最新版在线下载 | 国产高清国产精品国产三级 | 大香蕉97超碰在线| 亚洲激情五月婷婷啪啪| 国产精品伦人一区二区| 亚洲综合色惰| 国产精品野战在线观看| 深爱激情五月婷婷| 国产精品1区2区在线观看.| 免费观看的影片在线观看| 成人毛片60女人毛片免费| 午夜激情福利司机影院| 少妇被粗大猛烈的视频| 男女那种视频在线观看| 成年女人永久免费观看视频| 内射极品少妇av片p| 欧美成人a在线观看| 日本-黄色视频高清免费观看| 乱系列少妇在线播放| 国产三级在线视频| 国产精品久久电影中文字幕| 国产欧美另类精品又又久久亚洲欧美| 人人妻人人看人人澡| 久久99热这里只频精品6学生 | 国产黄色小视频在线观看| 九草在线视频观看| 大香蕉97超碰在线| 日韩人妻高清精品专区| 国产精品久久久久久久久免| 免费电影在线观看免费观看| 亚洲欧美日韩无卡精品| 亚洲精品乱码久久久v下载方式| 日日撸夜夜添| 小蜜桃在线观看免费完整版高清| 日日干狠狠操夜夜爽| 九九在线视频观看精品| 精品一区二区三区视频在线| 国产一区二区三区av在线| 99久久人妻综合| 久久人人爽人人爽人人片va| 欧美人与善性xxx| 精品久久久久久久末码| 欧美一区二区精品小视频在线| 国产精品一二三区在线看| 成人国产麻豆网| 成人美女网站在线观看视频| 18禁在线播放成人免费| 小说图片视频综合网站| 三级毛片av免费| 精品人妻视频免费看| 又爽又黄a免费视频| 久久精品影院6| 久久久久免费精品人妻一区二区| 一区二区三区免费毛片| 日韩人妻高清精品专区| 亚洲欧美精品综合久久99| www.色视频.com| 免费观看精品视频网站| 日韩成人av中文字幕在线观看| 小说图片视频综合网站| 51国产日韩欧美| 看非洲黑人一级黄片| 亚洲人成网站高清观看| 国产精品精品国产色婷婷| 亚洲av二区三区四区| av女优亚洲男人天堂| 亚洲欧美日韩无卡精品| 男女那种视频在线观看| 久久久精品欧美日韩精品| 网址你懂的国产日韩在线| 久久久国产成人免费| 深夜a级毛片| 最近最新中文字幕大全电影3| 国产一区二区在线av高清观看| 伊人久久精品亚洲午夜| 久久国内精品自在自线图片| 汤姆久久久久久久影院中文字幕 | av专区在线播放| 69人妻影院| 日本免费在线观看一区| 日本黄色片子视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人漫画全彩无遮挡| 免费无遮挡裸体视频| 99国产精品一区二区蜜桃av| 精品不卡国产一区二区三区| 午夜精品在线福利| 中文欧美无线码| 最近最新中文字幕大全电影3| 嫩草影院精品99| 国产黄片美女视频| 国产麻豆成人av免费视频| 午夜a级毛片| 欧美97在线视频| 我要搜黄色片| 精品熟女少妇av免费看| 久久精品国产99精品国产亚洲性色| 日日撸夜夜添| 久久久久免费精品人妻一区二区| 国产在视频线精品| 国产午夜精品久久久久久一区二区三区| 天堂影院成人在线观看| 91久久精品国产一区二区三区| 一个人看的www免费观看视频| 亚洲欧美一区二区三区国产| 国产精品av视频在线免费观看| 秋霞伦理黄片| 性插视频无遮挡在线免费观看| 日韩一本色道免费dvd| 寂寞人妻少妇视频99o| 女人被狂操c到高潮| 亚洲精品色激情综合| 亚洲在久久综合| 午夜福利视频1000在线观看| 国产极品天堂在线| 久久久a久久爽久久v久久| 免费大片18禁| 三级国产精品欧美在线观看| 欧美成人免费av一区二区三区| 99在线人妻在线中文字幕| 大香蕉久久网| 三级毛片av免费| 99热网站在线观看| 日韩一区二区视频免费看| 一个人观看的视频www高清免费观看| ponron亚洲| 别揉我奶头 嗯啊视频| 国产精品爽爽va在线观看网站| 小说图片视频综合网站| 麻豆av噜噜一区二区三区| 亚洲精品色激情综合| 亚洲最大成人中文| 国产淫片久久久久久久久| 最新中文字幕久久久久| 亚洲av中文字字幕乱码综合| av国产久精品久网站免费入址| 国产精品国产三级专区第一集| 高清毛片免费看| 久久久精品欧美日韩精品| 日本免费在线观看一区| 晚上一个人看的免费电影| 精品久久国产蜜桃| 一级黄色大片毛片| 三级国产精品片| 国产精品人妻久久久影院| 黄色配什么色好看| 51国产日韩欧美| 国产私拍福利视频在线观看| 亚洲在久久综合| 能在线免费观看的黄片| 亚洲综合色惰| 亚洲在久久综合| 午夜爱爱视频在线播放| 国产成人91sexporn| 欧美日韩国产亚洲二区| 中文乱码字字幕精品一区二区三区 | 亚洲精品日韩在线中文字幕| 国产综合懂色| 两个人视频免费观看高清| 天天躁夜夜躁狠狠久久av| 级片在线观看| 嫩草影院新地址| 久久久亚洲精品成人影院| 蜜桃久久精品国产亚洲av| 青春草亚洲视频在线观看| 国内精品美女久久久久久| 欧美高清性xxxxhd video| 国产精品精品国产色婷婷| 国产精品一区二区性色av| 高清毛片免费看| 欧美性猛交╳xxx乱大交人| 麻豆久久精品国产亚洲av| 亚洲精品乱码久久久v下载方式| 欧美性感艳星| 欧美精品一区二区大全| 高清在线视频一区二区三区 | 免费av观看视频| 国产亚洲av嫩草精品影院| 最新中文字幕久久久久| 国产亚洲精品av在线| 99在线视频只有这里精品首页| 99久久精品热视频| 国产精品99久久久久久久久| 亚洲成人久久爱视频| 美女黄网站色视频| 国产午夜精品论理片| 午夜爱爱视频在线播放| 我的女老师完整版在线观看| 久久久久国产网址|