• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface structure modification of ReSe2 nanosheets via carbon ion irradiation

    2023-03-13 09:19:36MeiQiao喬梅TieJunWang王鐵軍YongLiu劉泳TaoLiu劉濤ShanLiu劉珊andShiCaiXu許士才
    Chinese Physics B 2023年2期
    關(guān)鍵詞:劉濤鐵軍

    Mei Qiao(喬梅) Tie-Jun Wang(王鐵軍) Yong Liu(劉泳)Tao Liu(劉濤) Shan Liu(劉珊) and Shi-Cai Xu(許士才)

    1College of Physics and Electronic Information,Shandong Key Laboratory of Biophysics,Dezhou University,Dezhou 253023,China

    2School of Physics,State Key Laboratory of Crystal Materials and Key Laboratory of Particle and Particle Irradiation(MOE),Shandong University,Jinan 250100,China

    3School of Electronic and Information,Qingdao University,Qingdao 266071,China

    Keywords: ion irradiation,microstructure,crystallinity,surface morphology

    1.Introduction

    Owing to the unique optical and electronic properties,transition metal dichalcogenides (TMDs) have been widely studied, showing that TMD has a great potential application in beyond-CMOS devices.[1-8]Among the TMDs,ReSe2crystallizes belong to the triclinic system, and the cluster of Re4units forms a one-dimensional (1D) chain inside each monolayer, with layers held together by van der Waals attraction.[9]Generally, most VI TMDs such as MoS2and WS2show more superior performances due to their monolayer structure,while unlike other two-dimensional(2D)materials,ReSe2shows very weak layer-dependent optical and vibrational properties.[10,11]The stabilization of the extra valence electron in each Re atom can result in inherent lattice distortion in ReSe2, which makes it a suitable candidate for tuning the optical properties via strain engineering.[12]The multilayer ReSe2flakes have been demonstrated as field-effect transistors(FETs), digital inverters, and photodetectors.[13,14]However, the synthesis technology of ReSe2nanosheet is more complicated than those of other TMDs such as MoS2and WS2, due to its properties (like structure, crystal quality, domain size, thickness, and morphology) are difficult to modify accurately.[15,16]Unlike hexagonal layered TMDs such as MoS2and WS2, the ReSe2with anisotropy shows the potential in fabricating versatile devices, and it is essential to develop modification strategy to improve properties of ReSe2for practical applications.[12]In recent years, a large amount of work on ion beam modification of 2D or other film materials has been performed,showing an effective way to modify ReSe2.[17-24]

    In this work, the properties of multilayer ReSe2samples on Al2O3substrates are modified by ion irradiation technique.The irradiated C ions lose energy through two mechanisms:nuclear energy loss (originating from nucleus collision) and electronic energy loss(arising from interaction between irradiated electron and lattice atoms).The micro-structure and related properties of multilayer ReSe2sample are modified through these two energy-losing mechanisms.The surface morphologies, including the size, thickness, microstructure,elemental analysis, bonding configurations, and crystallinity of the multilayer ReSe2samples, are studied after 1.0-MeV C ion irradiation at fluence rates of 5.0×1013ions/cm2and 5.0×1014ions/cm2.The results indicate that the domain sizes,thickness,crystallinities,and morphologies of the ReSe2samples can be effectively controlled by ion irradiation process.

    2.Materials and methods

    The multilayer ReSe2samples were grown on the single crystal Al2O3by the CVD with dimensions of 5.0 mm×5.0 mm×0.5 mm,and irradiated by 1.0-MeV C ions at the fluences of 5.0×1013ions/cm2and 5.0×1014ions/cm2from a 2×1.7-MV tandem accelerator[25]at room temperature(~300 K).The details of the ions irradiated on multilayer ReSe2flakes on crystalline Al2O3are displayed in Table 1.

    Table 1.Details of ion irradiated multilayer ReSe2 flakes on crystalline Al2O3.

    The ion irradiation effects in multilayer ReSe2samples were characterized by utilizing atomic force microscope(AFM), scanning electron microscopy (SEM), micro-Raman spectra, x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD).The thickness of non-irradiated and irradiated ReSe2flakes were characterized by AFM on NT-MDT model BL222 RNTE.The peak force amplitude and scan rate were 150 nm and 0.977 Hz, respectively.Surface morphologies, including the sizes and shapes of the multilayer ReSe2samples, were determined by SEM imaging on a Hitachi S-4800.The imaging resolution and accelerating voltage were 1.0 nm and 5 kV, respectively.The detailed Raman peak positions and a comparison before and after ion irradiation were obtained at room temperature by using a multichannel modular triple Raman system(HORIBA Jobin-Yvon HR800)at 632.8-nm excitation wavelengths.The spot diameters of the focused laser beam on the multilayer ReSe2samples were all about 1.0 μm.The core level elemental analysis and bonding configurations of the multilayer ReSe2samples were performed by XPS on an ESCALAB 250.Monochromatic AlKαx-ray source(1486.6 eV)and hemispherical deflector analyser were used in the XPS spectrometer,working at constant pass energy,and constant energy resolution on the whole spectrum can be maintained with this mode.Intrinsic resolution of the spectrometer was 0.45 eV,which was proved by the the Ag 3d5/2line.The x-ray spot in this experiment was about 150-μm diameter.The XRD experiments were conducted to structurally analyze the samples with CuKαemission(λ=1.54056 °A)on a Rigaku RINT-2500 VHF x-ray diffractometer.The diffraction patterns were recorded between 10°and 30°on a 2θscale in steps of 0.04°.

    3.Results and discussion

    In Fig.1,AFM images of multilayer ReSe2surface nonirradiated and irradiated with 1.0-MeV C ions at fluence of 5.0×1013ions/cm2and 5.0×1014ions/cm2are shown.The typical shape and corresponding height profile of multilayer ReSe2are determined by AFM and the reults are displayed in Figs.1(a)-1(f).The ReSe2flakes on Al2O3substrates display quadrilateral shape before irradiation and then turn into oval shapes after being processed.The change of shape can be attributed to the difference in edge formation energy between the Re edge and Se edge termination before and after being irradiated by C ions.After the irradiation of 1.0-MeV C ions,the specific edge termination effect was destroyed,and oval shapes form in the multilayer ReSe2.Thickness of the monolayer ReSe2flake is approximately in a range of 0.7 nm-0.8 nm.[9]In Fig.1,the observed thickness values of the ReSe2samples are approximately 2.8,6.4,and 9.1 nm corresponding to flakes consisting of 4,9,and 13 layers for samples S0,S1,and S2,respectively.Through the collision cascade,the atoms of ReSe2acquire higher energy than that due to the van der Waals’ forces.Then, the ReSe2flakes continue to grow and the thickness values of the ReSe2flakes increase after the irradiation of 1.0-MeV C ions.

    Fig.1.AFM images for multilayer ReSe2: (a)2D image and(b)height profile for sample S0;(c)2D image and(d)height profile for sample S1;(e)2D image and(f)height profile for sample S2.

    The surface morphologies before and after 1.0-MeV C ions irradiation are determined by using SEM technique and shown in Fig.2.Figure 2(a)shows that the surface profile of the non-irradiated multilayer ReSe2is relatively smooth and uniform.Figure 2(b) displays a magnified view of the nonirradiated multilayer ReSe2.After the irradiation of 1.0-MeV C ions,the morphologies of the samples S1 and S2 are greatly changed.After the irradiation of 1.0-MeV C ions at the fluence rate of 5.0×1013ions/cm2,pores with diameters in a range of 10μm-25μm are evenly located on the multilayer ReSe2sample(as shown in Fig.2(c)).Figure 2(d)shows that the particles of ReSe2are perfectly oval with a uniform size distribution.The long diameter and short diameter of the ReSe2nanoparticles(sample S2)are approximately 3.0μm and 1.0μm, respectively.The average distance between the nanoparticles is approximately 17.0 μm.A higher irradiation fluence causes great damaging effects on the dimensions of the samples.It is an effective way to modify sample size by controlling the irradiation conditions.

    Fig.2.SEM images of multilayer ReSe2 samples under different irradiation conditions: (a) sample S0 (unirradiated), (b) high-magnification for sample S0,(c)sample S1(1.0-MeV C ions at a fluence of 5.0×1013 ions/cm2),and(d)sample S2(1.0-MeV C ions at a fluence of 5.0×1014 ions/cm2).

    The atomic vibrational spectra of multilayer ReSe2flakes after the irradiation of 1.0-MeV C ions at the fluence rates of 5.0×1013ions/cm2and 5.0×1014ions/cm2are detected in a range of 100 cm-1-300 cm-1and are shown in Fig.3.Unlike the Raman spectra of MoX2and WX2(X=S, Se), the Raman spectra of the ReSe2are feature-rich with approximately 18 first-order Raman-active modes in the range of 100 cm-1-300 cm-1, which are nondegenerate due to their low-symmetry triclinic structure.[9]For ReSe2,it is difficult to determine a pure vibration mode because of the complicated crystal lattice.Therefore,we name the Raman modes based on the dominant direction of the phonon vibrations.As shown in Fig.3,the Raman peaks at 121 cm-1results from the in-plane vibrational mode (Eg-like) and at 163 cm-1and 176 cm-1originate from the out-of-plane vibrational mode(Ag-like).[26]

    The thickness values of ReSe2layers after being irradiated by 1.0-MeV C ions are measured from the AFM images and shown in Fig.1.With the increase of sample thickness,most of the peaks for the few-layer ReSe2are red-shifted(Fig.3).Only considering the long-range Coulombic interactions, the Coulombic screening can be increased by the increasing dielectric tensors that augment with the number of layers increasing.This results in a softer Coulombic interaction between atoms, and therefore, the redshift takes place in the corresponding Raman peaks.[27]However, if we consider the van der Waals force, the interaction between the layers tends to suppress the lattice vibrations with the number of layers increasing.Thus,the vibrational energy of each vibration mode can increase,thereby leading to blueshift.[28]We know that the atomic mass of ReSe2is almost equal to that of WSe2.For WSe2,theE2gandA1gmodes show the changes of redshift and blueshift from the monolayer to the bulk,respectively.[29]The strength of Coulombic screening can be measured by the ratio of the long-range coulomb interaction of the monolayer to that of the bulk,

    The details can be found in previous work.[26]From the above equation,we can determine that the long-range Coulombic interactions in WSe2and ReSe2are similar to each other.In addition,the interlayer force constantα∝μωcan be used to measure the van der Waals interaction,wheremandware the atomic mass of the monolayer TMDCs and the Raman frequency, respectively.From Ref.[30], the frequency of the C mode and the LB mode in bilayer WSe2are higher than those in bilayer ReSe2.The calculations show that the interlayer van der Waals interaction of ReSe2is much weaker than that of WSe2.According to the above discussion,with the number of ReSe2layers increasing,the redshifts of the Raman modes after the irradiation of 1.0-MeV C ions as shown in Fig.3 indicate that the interlayer van der Waals interaction is not strong enough to determine the layer dependence of the phonon behavior.

    However,the Raman mode at 163 cm-1mainly involves the atomic displacement of the Re-Re bond.[31]After the irradiation of 1.0-MeV C ions, the Raman mode is located at 162.5 cm-1for sample S1 and at 161.7 cm-1for sample S2.Under the above condition, we can determine that a longer bond length for the Re-Re bond occurs due to the volume expansion induced by irradiation, with the ReSe2layer number increasing.

    Fig.3.Raman spectra obtained at 632.8-nm excitation energy for multilayer ReSe2 flakes irradiated under different conditions.

    Fig.4.XPS spectra of multilayer ReSe2 flakes before and after the irradiations of 1.0-MeV C ions.

    The elemental compositions and bonding configurations of the multilayer ReSe2samples are characterized by XPS.The detailed information regarding the Re signal and Se signal is exhibited in Figs.4(a), 4(c), 4(e) 4(b), 4(d), and 4(f),respectively.As shown in Fig.4(a), two characteristic peaks located at 41.6 eV and 44.1 eV are observed, which correspond to the core 4f7/2and 4f5/2levels of Re4+.Additionally,figure 4(b)shows clearly resolved Se2-3d5/2and 3d3/2peaks at 54.78 eV and 55.61 eV determined via the curve fitting.The two characteristic peaks are consistent with the results reported in Ref.[32],and the curve fitting method is based on the XPS peak code.Additionally, the ratio of Re to Se acquired from XPS is nearly 1:2, which suggests that the CVD-grown ReSe2is reasonably stoichiometric.

    To further analyze the change of multilayer ReSe2after the irradiation of 1.0-MeV C ions , the shift of XPS peak is studied and shown in Figs.4(c)-4(f).The peak position shift of XPS is a combined result of three main factors.First of all,the defects induced by ion irradiation will result in surface energy band bending and the peak value shifts to a higher energy value.Meanwhile,the irradiation-induced defects and latticedisorder will also lead the lattice volume to expand,and further cause longer bond length of the Re-Re bond, with irradiated fluence increasing.The longer Re-Re bond length is apparently corresponding to weaker bond strength,which causes the binding energy to shift to a lower energy value.Furthermore,C ion irradiation will induce partial electron to transfer, and part of Re4+ions are converted into Re2+ions, which leads the binding energy to decrease.

    The XPS result of Re 4f in Fig.1(c)shows two spin-orbit split peaks with a separation of 2.5 eV, which correspond to 4f7/2and 4f5/2respectively.Apparently,the Re 4f7/2peak can be fitted by two peaks,i.e.,the dominant peak at 41.9 eV(the characteristics of n-type doping), which is due to the surface energy band bending effect induced by defect,and the weaker peak at 41.0 eV, which is attributed to the volume expansion of lattice and the presence of Re2+ion.The Re 4f5/2peak can also be fitted by two peaks, out of the same reason.In addition,as shown in Fig.4(e),the Re 4f7/2peak value of sample S2 shifts by 0.7 eV, reasching a lower energy value, which shows that lattice volume expansion and the role of Re2+ion are dominated in sample S2.As a conclusion,the shift of XPS peak shows an oscillatory trend with fluence increasing,which is determined by the joint action of irradiation induced defects,lattice-expansion effect and the role of Re2+ion.

    The XRD is used to evaluate the structural characteristics of multilayer ReSe2flakes under the different irradiation conditions, and the results are shown in Fig.5.For samples S0, S1, and S2, most of significant (001) peaks are observed at 2θ=13.00°, 13.76°, and 13.65°, respectively.The XRD pattern is consistent with the JCPDS card No.89-0340, wihch indicates the presence of the triclinic phase for multilayer ReSe2.The interplanar spacings are approximately 6.8712 °A,6.4306 °A,and 6.4811 °A from Jade 6.0 for samples S0-S2,respectively.Nonirradiated ReSe2flakes(S0)yield a very noisy powder XRD pattern with lines of weak intensity and wide FWHM, indicating poor crystallinity of the sample S0.After the irradiation of 1.0-MeV C ions,which causes the ReSe2to grow,the thickness of the ReSe2layer increases,the intensity of the diffraction peak strengthens, and the FWHM decreases.This indicates that the crystallinity of the ReSe2flake is improved with the number of layers increasing after the irradiation of 1.0-MeV C ions.Comparing with non-irradiated ReSe2flakes(sample S0),the intensity of the diffraction peak is improved by approximately 148%for sample S1 and 180%for sample S2.In addition, the FWHM values of the (001)diffraction peakare approximately 2.15°,0.92°,and 0.87°,for samples S0, S1, and S2 respectively.From the above data,the average crystallite size can be calculated using the Debye-Scherer equation

    The details can be found in Ref.[33].From Eq.(2), we can determine the average crystallite sizeD0=3.67 nm (sample S0),D1=8.65 nm (sample S1), andD2=9.09 nm (sample S2).The increased crystallite size can also reveal that the crystallinity is improved with the increase of the number of layers after the irradiation of ions.As a result, comparing with the data of samples detected by XRD,AFM,and SEM,it is apparent that samples S1 and S2 show almost the same crystalline quality and grain size,which means that the irradiated condition of S1(with lower fluence means cost-effective and lower irradiation effect)is more appropriate for ReSe2samples.

    Fig.5.XRD patterns (θ-2θ) of multilayer ReSe2 flakes before and after being irradiated by 1.0-MeV C ions.

    4.Conclusions

    In this work, the effect of C ion irradiation of multilayer ReSe2flakes has been studied and characterized by utilizing AFM, SEM, micro-Raman spectra, XPS, and XRD.The results confirm that that the domain size,thickness,morphology,and crystallinity for the ReSe2sample can be effectively controlled after the irradiation of 1.0-MeV C ions.Through appropriately regulating the energy and fluence of C ions,multilayer ReSe2samples with high-quality crystallinity,relatively large size and good performance can be obtained.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12105036, 11775135,and 11805108), the Natural Science Foundation of Shandong Province, China (Grant Nos.ZR2020QA088 and ZR2021QA074), the Taishan Scholars Program of Shandong Province, China (Grant No.tsqn201812104), and the State Key Laboratory of Nuclear Physics and Technology at Peking University,China.

    猜你喜歡
    劉濤鐵軍
    助人為樂的劉濤
    助人為樂的劉濤
    鹽城市扛起使命擔當 鍛造應(yīng)急鐵軍
    新昌縣征訂《鐵軍》連續(xù)五年超千份
    鐵軍(2022年12期)2022-12-07 11:51:46
    Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
    鐵軍頌
    心聲歌刊(2022年6期)2022-02-14 13:20:22
    鑄成消防鐵軍
    劉濤:成為更好的自己
    金色年華(2017年7期)2017-06-21 09:27:52
    讀《鐵軍頌》
    大江南北(2016年6期)2016-11-21 21:15:31
    馬鈴薯主糧化
    在线观看66精品国产| 十分钟在线观看高清视频www| 日韩欧美一区二区三区在线观看| 国产野战对白在线观看| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边做爽爽视频免费| 少妇熟女aⅴ在线视频| 亚洲专区字幕在线| 99精品在免费线老司机午夜| 欧美中文日本在线观看视频| 日本一区二区免费在线视频| 99riav亚洲国产免费| 亚洲av熟女| 日韩视频一区二区在线观看| 久久久国产精品麻豆| 久久久国产精品麻豆| 女性生殖器流出的白浆| 十八禁网站免费在线| 国产91精品成人一区二区三区| 午夜免费观看网址| 精品一品国产午夜福利视频| av欧美777| 日本 av在线| 国产一区在线观看成人免费| 亚洲国产精品sss在线观看| 久久国产精品男人的天堂亚洲| 欧美一区二区精品小视频在线| 国产亚洲精品综合一区在线观看 | 在线播放国产精品三级| 精品久久蜜臀av无| 国产麻豆69| 久9热在线精品视频| 青草久久国产| 午夜免费激情av| 夜夜爽天天搞| 九色国产91popny在线| 在线观看日韩欧美| 成人手机av| 桃红色精品国产亚洲av| 亚洲精华国产精华精| 色播亚洲综合网| 男女下面插进去视频免费观看| 男女之事视频高清在线观看| 亚洲av电影在线进入| 亚洲av日韩精品久久久久久密| 88av欧美| 久热这里只有精品99| 在线观看一区二区三区| 国产又爽黄色视频| 亚洲伊人色综图| 神马国产精品三级电影在线观看 | 亚洲精华国产精华精| 91av网站免费观看| 天天添夜夜摸| 琪琪午夜伦伦电影理论片6080| 长腿黑丝高跟| 亚洲熟妇中文字幕五十中出| 国产一区二区三区综合在线观看| 免费高清视频大片| 亚洲av美国av| 亚洲成人国产一区在线观看| 久久天堂一区二区三区四区| 一区福利在线观看| 国产高清激情床上av| 午夜福利一区二区在线看| 亚洲国产毛片av蜜桃av| 此物有八面人人有两片| 久久人人97超碰香蕉20202| 天天躁夜夜躁狠狠躁躁| 欧美 亚洲 国产 日韩一| 亚洲av成人一区二区三| 午夜福利影视在线免费观看| 香蕉久久夜色| 丝袜美足系列| 精品卡一卡二卡四卡免费| 亚洲欧美日韩高清在线视频| 91大片在线观看| 91大片在线观看| 50天的宝宝边吃奶边哭怎么回事| 高潮久久久久久久久久久不卡| 国产99久久九九免费精品| xxx96com| 一级毛片女人18水好多| 丁香六月欧美| 精品卡一卡二卡四卡免费| 一级毛片高清免费大全| 日日爽夜夜爽网站| 可以在线观看毛片的网站| 脱女人内裤的视频| 可以在线观看毛片的网站| 真人做人爱边吃奶动态| 国内精品久久久久精免费| 国产成人精品久久二区二区免费| 亚洲国产欧美网| 香蕉久久夜色| 在线十欧美十亚洲十日本专区| 国产精品国产高清国产av| 亚洲午夜精品一区,二区,三区| 亚洲色图av天堂| 一区二区三区激情视频| 欧美亚洲日本最大视频资源| 日韩精品青青久久久久久| 97人妻精品一区二区三区麻豆 | 亚洲欧美日韩高清在线视频| 免费在线观看日本一区| 国产aⅴ精品一区二区三区波| 久久影院123| 国产精品一区二区免费欧美| 亚洲色图综合在线观看| 91在线观看av| 看片在线看免费视频| 热re99久久国产66热| 国产亚洲精品一区二区www| 亚洲自偷自拍图片 自拍| 色综合婷婷激情| 亚洲国产日韩欧美精品在线观看 | 日韩欧美三级三区| 一区二区日韩欧美中文字幕| 一级a爱片免费观看的视频| 美女大奶头视频| 1024香蕉在线观看| 亚洲精品美女久久av网站| 美女高潮喷水抽搐中文字幕| 女生性感内裤真人,穿戴方法视频| 国产黄a三级三级三级人| av在线天堂中文字幕| av网站免费在线观看视频| 亚洲色图 男人天堂 中文字幕| 欧美人与性动交α欧美精品济南到| 日本撒尿小便嘘嘘汇集6| 99在线人妻在线中文字幕| 国产成人系列免费观看| 久久狼人影院| 国产黄a三级三级三级人| 99国产精品一区二区蜜桃av| 亚洲成av人片免费观看| 亚洲人成伊人成综合网2020| 久久久久久亚洲精品国产蜜桃av| 欧美中文综合在线视频| 国产99久久九九免费精品| 亚洲国产欧美网| 又黄又爽又免费观看的视频| 亚洲一区二区三区色噜噜| 国产男靠女视频免费网站| 巨乳人妻的诱惑在线观看| 亚洲av美国av| 成在线人永久免费视频| 欧美日韩乱码在线| 亚洲无线在线观看| 国产精品,欧美在线| 久久久国产精品麻豆| 性色av乱码一区二区三区2| 久久精品91无色码中文字幕| 高清毛片免费观看视频网站| 在线观看免费午夜福利视频| 美女 人体艺术 gogo| 大码成人一级视频| 久久人妻av系列| 免费一级毛片在线播放高清视频 | 天堂√8在线中文| 欧美日韩亚洲综合一区二区三区_| 满18在线观看网站| 亚洲五月婷婷丁香| 无人区码免费观看不卡| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品国产色婷婷电影| 99精品在免费线老司机午夜| 老司机深夜福利视频在线观看| 在线观看免费视频日本深夜| 欧美+亚洲+日韩+国产| 精品久久久久久,| 一区福利在线观看| 99热只有精品国产| 精品久久久久久久毛片微露脸| а√天堂www在线а√下载| 亚洲成av人片免费观看| 国产97色在线日韩免费| 亚洲国产精品久久男人天堂| 国产成人精品久久二区二区免费| 激情在线观看视频在线高清| 黄色成人免费大全| 国产午夜福利久久久久久| 人人妻,人人澡人人爽秒播| 国产私拍福利视频在线观看| 91成年电影在线观看| 日韩av在线大香蕉| 国产精品美女特级片免费视频播放器 | 黄色女人牲交| 亚洲无线在线观看| 男人操女人黄网站| 在线播放国产精品三级| 亚洲自偷自拍图片 自拍| 亚洲成人久久性| 国产精品久久久久久精品电影 | 国产一区二区在线av高清观看| cao死你这个sao货| 中文字幕色久视频| 午夜日韩欧美国产| 国产亚洲精品久久久久久毛片| 亚洲伊人色综图| 国产免费av片在线观看野外av| 99国产综合亚洲精品| 人人妻人人澡人人看| 夜夜躁狠狠躁天天躁| 亚洲最大成人中文| 每晚都被弄得嗷嗷叫到高潮| avwww免费| 日日干狠狠操夜夜爽| 国产国语露脸激情在线看| 精品久久久久久久久久免费视频| 曰老女人黄片| 最好的美女福利视频网| av有码第一页| 男人操女人黄网站| 亚洲在线自拍视频| 一区二区三区激情视频| 国产真人三级小视频在线观看| 90打野战视频偷拍视频| 精品欧美国产一区二区三| 国产成人啪精品午夜网站| 熟妇人妻久久中文字幕3abv| 久久人人97超碰香蕉20202| 亚洲熟妇中文字幕五十中出| av网站免费在线观看视频| 久久草成人影院| 日日夜夜操网爽| 国产精品亚洲一级av第二区| av视频免费观看在线观看| 两个人视频免费观看高清| 国产亚洲欧美98| 成人欧美大片| 麻豆久久精品国产亚洲av| 国产精品二区激情视频| 一边摸一边抽搐一进一小说| 亚洲男人的天堂狠狠| 岛国在线观看网站| 搡老岳熟女国产| 欧美日韩中文字幕国产精品一区二区三区 | 日韩视频一区二区在线观看| 香蕉国产在线看| 亚洲国产中文字幕在线视频| 国产精品乱码一区二三区的特点 | 69精品国产乱码久久久| 国产日韩一区二区三区精品不卡| 又紧又爽又黄一区二区| 国产xxxxx性猛交| 黄色视频,在线免费观看| 午夜免费激情av| 色尼玛亚洲综合影院| 真人做人爱边吃奶动态| 国产伦一二天堂av在线观看| 欧美日韩黄片免| 日韩 欧美 亚洲 中文字幕| 九色亚洲精品在线播放| 久久久国产欧美日韩av| 日韩视频一区二区在线观看| 禁无遮挡网站| √禁漫天堂资源中文www| 制服人妻中文乱码| 俄罗斯特黄特色一大片| 女同久久另类99精品国产91| 欧美精品啪啪一区二区三区| 亚洲精品中文字幕一二三四区| 亚洲精品国产精品久久久不卡| 18美女黄网站色大片免费观看| 久久精品成人免费网站| 亚洲欧美一区二区三区黑人| 村上凉子中文字幕在线| 国产av在哪里看| 亚洲性夜色夜夜综合| 高清在线国产一区| 成人国语在线视频| 中文字幕色久视频| 久久午夜亚洲精品久久| 伦理电影免费视频| 亚洲欧美一区二区三区黑人| 在线观看午夜福利视频| 午夜久久久在线观看| 久久人妻av系列| 99精品在免费线老司机午夜| 黑人巨大精品欧美一区二区mp4| 91字幕亚洲| 久久精品影院6| 日韩有码中文字幕| 成人欧美大片| 老司机靠b影院| 国产欧美日韩精品亚洲av| 国产熟女午夜一区二区三区| 精品国产乱子伦一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 精品高清国产在线一区| 欧美成人午夜精品| 亚洲成av片中文字幕在线观看| 久久久久国内视频| 国内久久婷婷六月综合欲色啪| 免费无遮挡裸体视频| 欧美黑人精品巨大| 69av精品久久久久久| 色av中文字幕| 国产精品一区二区精品视频观看| 午夜免费观看网址| tocl精华| 高潮久久久久久久久久久不卡| 精品少妇一区二区三区视频日本电影| 婷婷六月久久综合丁香| 少妇裸体淫交视频免费看高清 | 国产伦一二天堂av在线观看| 亚洲国产精品999在线| 久久久国产精品麻豆| 免费看十八禁软件| 夜夜躁狠狠躁天天躁| 午夜福利高清视频| 97人妻精品一区二区三区麻豆 | 午夜激情av网站| 男女下面进入的视频免费午夜 | 真人做人爱边吃奶动态| 国产欧美日韩一区二区三区在线| 午夜福利一区二区在线看| 国产精品久久视频播放| 日本vs欧美在线观看视频| 黑人操中国人逼视频| 黑人操中国人逼视频| 涩涩av久久男人的天堂| 亚洲久久久国产精品| 97碰自拍视频| 巨乳人妻的诱惑在线观看| 女性生殖器流出的白浆| 免费在线观看亚洲国产| 黄色a级毛片大全视频| 亚洲精品中文字幕在线视频| 色综合站精品国产| 日韩大码丰满熟妇| 怎么达到女性高潮| 久久国产精品影院| 人人妻人人爽人人添夜夜欢视频| 日本 欧美在线| 最新美女视频免费是黄的| 亚洲欧美精品综合一区二区三区| 亚洲,欧美精品.| 日本a在线网址| av在线播放免费不卡| 国产一区二区三区综合在线观看| 免费看十八禁软件| 欧美最黄视频在线播放免费| 乱人伦中国视频| 亚洲无线在线观看| 性欧美人与动物交配| 一级毛片女人18水好多| 亚洲一区二区三区不卡视频| 美女免费视频网站| 琪琪午夜伦伦电影理论片6080| 久久人妻熟女aⅴ| 狂野欧美激情性xxxx| 免费观看精品视频网站| 悠悠久久av| 久久精品影院6| 午夜老司机福利片| 两个人看的免费小视频| 国产亚洲av高清不卡| 精品一品国产午夜福利视频| 国产精品爽爽va在线观看网站 | 久热爱精品视频在线9| 久久欧美精品欧美久久欧美| 99精品欧美一区二区三区四区| 高清黄色对白视频在线免费看| 最新美女视频免费是黄的| 黄色成人免费大全| 91精品三级在线观看| 国产欧美日韩一区二区精品| 国产1区2区3区精品| 在线观看免费视频日本深夜| 动漫黄色视频在线观看| 黄色女人牲交| 日本 欧美在线| 亚洲avbb在线观看| 亚洲人成电影免费在线| 一区二区日韩欧美中文字幕| 亚洲专区字幕在线| 十分钟在线观看高清视频www| 国产av一区二区精品久久| 丝袜在线中文字幕| 国产又爽黄色视频| 免费人成视频x8x8入口观看| 国产97色在线日韩免费| 久热爱精品视频在线9| 国产精品久久久人人做人人爽| 禁无遮挡网站| xxx96com| av天堂在线播放| 久久精品人人爽人人爽视色| 国产97色在线日韩免费| 精品久久久久久久人妻蜜臀av | 一区二区三区激情视频| 亚洲国产精品999在线| av超薄肉色丝袜交足视频| 女人精品久久久久毛片| 国产精品99久久99久久久不卡| 精品久久久久久,| 久久久精品欧美日韩精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲va日本ⅴa欧美va伊人久久| 亚洲激情在线av| 亚洲aⅴ乱码一区二区在线播放 | 欧美久久黑人一区二区| 一进一出抽搐gif免费好疼| 精品一品国产午夜福利视频| 日本免费a在线| 成人18禁高潮啪啪吃奶动态图| 一级a爱视频在线免费观看| 美女高潮到喷水免费观看| 精品熟女少妇八av免费久了| 欧美 亚洲 国产 日韩一| 丝袜在线中文字幕| 90打野战视频偷拍视频| 精品一区二区三区四区五区乱码| 国产精品野战在线观看| 婷婷六月久久综合丁香| 欧美日韩福利视频一区二区| 亚洲 欧美一区二区三区| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 一二三四社区在线视频社区8| 欧美丝袜亚洲另类 | 亚洲国产精品合色在线| www.自偷自拍.com| 88av欧美| 电影成人av| 久久久久久久久中文| 不卡一级毛片| 亚洲av电影在线进入| 亚洲国产中文字幕在线视频| 中文字幕精品免费在线观看视频| 国产亚洲精品第一综合不卡| 香蕉丝袜av| 很黄的视频免费| 性欧美人与动物交配| 精品国产国语对白av| 国产精品免费一区二区三区在线| 午夜精品在线福利| 曰老女人黄片| 亚洲国产看品久久| 久9热在线精品视频| 黄片播放在线免费| 国产成人系列免费观看| 黄频高清免费视频| 免费在线观看亚洲国产| 女同久久另类99精品国产91| 国产欧美日韩一区二区三| 国产97色在线日韩免费| 激情在线观看视频在线高清| 色综合站精品国产| 极品人妻少妇av视频| 国产一区二区三区视频了| 国产一区二区三区在线臀色熟女| 男女床上黄色一级片免费看| 极品教师在线免费播放| 亚洲情色 制服丝袜| 天天躁夜夜躁狠狠躁躁| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 日本欧美视频一区| 国产成人影院久久av| 国产伦一二天堂av在线观看| 91成人精品电影| tocl精华| 无限看片的www在线观看| 亚洲精品美女久久久久99蜜臀| x7x7x7水蜜桃| 成人特级黄色片久久久久久久| 亚洲久久久国产精品| 色尼玛亚洲综合影院| 欧美成人午夜精品| 日日干狠狠操夜夜爽| 欧美国产日韩亚洲一区| 国产在线观看jvid| 18美女黄网站色大片免费观看| 精品久久久久久久人妻蜜臀av | 精品人妻1区二区| 69精品国产乱码久久久| 国产亚洲精品一区二区www| 国产一区二区三区综合在线观看| 免费在线观看黄色视频的| 欧美日本视频| 亚洲精品粉嫩美女一区| 最新在线观看一区二区三区| 国产成人欧美| 国产一区二区三区在线臀色熟女| 免费久久久久久久精品成人欧美视频| 韩国精品一区二区三区| 国产精品爽爽va在线观看网站 | 欧美日韩黄片免| 天堂√8在线中文| 制服人妻中文乱码| 久久久久久免费高清国产稀缺| 色精品久久人妻99蜜桃| 国产99久久九九免费精品| 在线观看免费视频网站a站| 香蕉国产在线看| 麻豆成人av在线观看| 久久香蕉国产精品| 黑人欧美特级aaaaaa片| 丝袜在线中文字幕| 一本久久中文字幕| 咕卡用的链子| 国产精品日韩av在线免费观看 | 色综合婷婷激情| 久久狼人影院| 夜夜夜夜夜久久久久| 又黄又爽又免费观看的视频| 亚洲国产看品久久| 成年女人毛片免费观看观看9| 在线观看66精品国产| 日日干狠狠操夜夜爽| 脱女人内裤的视频| 日韩欧美三级三区| 日本vs欧美在线观看视频| ponron亚洲| 亚洲国产精品成人综合色| 久久精品亚洲熟妇少妇任你| 18禁国产床啪视频网站| 69精品国产乱码久久久| 日本黄色视频三级网站网址| 一个人免费在线观看的高清视频| 我的亚洲天堂| 婷婷精品国产亚洲av在线| 操出白浆在线播放| 亚洲色图av天堂| 久久精品国产亚洲av高清一级| 久久国产精品人妻蜜桃| 亚洲精品久久成人aⅴ小说| 18禁黄网站禁片午夜丰满| 999精品在线视频| 精品免费久久久久久久清纯| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久亚洲av鲁大| 久99久视频精品免费| 国语自产精品视频在线第100页| 精品国产美女av久久久久小说| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看www视频免费| 亚洲精品中文字幕一二三四区| 淫妇啪啪啪对白视频| 国产免费av片在线观看野外av| 性少妇av在线| 女人高潮潮喷娇喘18禁视频| 18禁裸乳无遮挡免费网站照片 | 岛国视频午夜一区免费看| 国产精品一区二区在线不卡| 婷婷精品国产亚洲av在线| 非洲黑人性xxxx精品又粗又长| www日本在线高清视频| 高清黄色对白视频在线免费看| 亚洲国产精品久久男人天堂| 国产不卡一卡二| 麻豆国产av国片精品| 老司机靠b影院| 夜夜爽天天搞| 日韩精品中文字幕看吧| 长腿黑丝高跟| 久久青草综合色| 国产高清激情床上av| 久久伊人香网站| 成人国产一区最新在线观看| 国产极品粉嫩免费观看在线| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 可以在线观看毛片的网站| 啦啦啦 在线观看视频| 美女 人体艺术 gogo| 韩国精品一区二区三区| 亚洲精品久久国产高清桃花| 少妇 在线观看| 91av网站免费观看| 亚洲一区二区三区不卡视频| 99国产精品免费福利视频| 91国产中文字幕| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 午夜福利视频1000在线观看 | 男女下面进入的视频免费午夜 | 伊人久久大香线蕉亚洲五| 国产精品九九99| 9191精品国产免费久久| 欧美激情高清一区二区三区| 精品高清国产在线一区| 免费人成视频x8x8入口观看| 精品福利观看| 97超级碰碰碰精品色视频在线观看| 国产91精品成人一区二区三区| 国产精品电影一区二区三区| 日本 欧美在线| 亚洲美女黄片视频| 午夜成年电影在线免费观看| 国产av精品麻豆| 亚洲中文字幕一区二区三区有码在线看 | 久久久久九九精品影院| 亚洲成人精品中文字幕电影| 精品国内亚洲2022精品成人| 女性生殖器流出的白浆| 欧美成人午夜精品| a在线观看视频网站| 激情视频va一区二区三区| 欧美另类亚洲清纯唯美| 久久亚洲精品不卡| 亚洲一区二区三区不卡视频| 黄片大片在线免费观看| 久久欧美精品欧美久久欧美| 黑人欧美特级aaaaaa片| 色播亚洲综合网| 久久香蕉精品热| 久久久国产成人精品二区| 女生性感内裤真人,穿戴方法视频| 久久精品国产综合久久久| 麻豆国产av国片精品| 他把我摸到了高潮在线观看|