• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface structure modification of ReSe2 nanosheets via carbon ion irradiation

    2023-03-13 09:19:36MeiQiao喬梅TieJunWang王鐵軍YongLiu劉泳TaoLiu劉濤ShanLiu劉珊andShiCaiXu許士才
    Chinese Physics B 2023年2期
    關(guān)鍵詞:劉濤鐵軍

    Mei Qiao(喬梅) Tie-Jun Wang(王鐵軍) Yong Liu(劉泳)Tao Liu(劉濤) Shan Liu(劉珊) and Shi-Cai Xu(許士才)

    1College of Physics and Electronic Information,Shandong Key Laboratory of Biophysics,Dezhou University,Dezhou 253023,China

    2School of Physics,State Key Laboratory of Crystal Materials and Key Laboratory of Particle and Particle Irradiation(MOE),Shandong University,Jinan 250100,China

    3School of Electronic and Information,Qingdao University,Qingdao 266071,China

    Keywords: ion irradiation,microstructure,crystallinity,surface morphology

    1.Introduction

    Owing to the unique optical and electronic properties,transition metal dichalcogenides (TMDs) have been widely studied, showing that TMD has a great potential application in beyond-CMOS devices.[1-8]Among the TMDs,ReSe2crystallizes belong to the triclinic system, and the cluster of Re4units forms a one-dimensional (1D) chain inside each monolayer, with layers held together by van der Waals attraction.[9]Generally, most VI TMDs such as MoS2and WS2show more superior performances due to their monolayer structure,while unlike other two-dimensional(2D)materials,ReSe2shows very weak layer-dependent optical and vibrational properties.[10,11]The stabilization of the extra valence electron in each Re atom can result in inherent lattice distortion in ReSe2, which makes it a suitable candidate for tuning the optical properties via strain engineering.[12]The multilayer ReSe2flakes have been demonstrated as field-effect transistors(FETs), digital inverters, and photodetectors.[13,14]However, the synthesis technology of ReSe2nanosheet is more complicated than those of other TMDs such as MoS2and WS2, due to its properties (like structure, crystal quality, domain size, thickness, and morphology) are difficult to modify accurately.[15,16]Unlike hexagonal layered TMDs such as MoS2and WS2, the ReSe2with anisotropy shows the potential in fabricating versatile devices, and it is essential to develop modification strategy to improve properties of ReSe2for practical applications.[12]In recent years, a large amount of work on ion beam modification of 2D or other film materials has been performed,showing an effective way to modify ReSe2.[17-24]

    In this work, the properties of multilayer ReSe2samples on Al2O3substrates are modified by ion irradiation technique.The irradiated C ions lose energy through two mechanisms:nuclear energy loss (originating from nucleus collision) and electronic energy loss(arising from interaction between irradiated electron and lattice atoms).The micro-structure and related properties of multilayer ReSe2sample are modified through these two energy-losing mechanisms.The surface morphologies, including the size, thickness, microstructure,elemental analysis, bonding configurations, and crystallinity of the multilayer ReSe2samples, are studied after 1.0-MeV C ion irradiation at fluence rates of 5.0×1013ions/cm2and 5.0×1014ions/cm2.The results indicate that the domain sizes,thickness,crystallinities,and morphologies of the ReSe2samples can be effectively controlled by ion irradiation process.

    2.Materials and methods

    The multilayer ReSe2samples were grown on the single crystal Al2O3by the CVD with dimensions of 5.0 mm×5.0 mm×0.5 mm,and irradiated by 1.0-MeV C ions at the fluences of 5.0×1013ions/cm2and 5.0×1014ions/cm2from a 2×1.7-MV tandem accelerator[25]at room temperature(~300 K).The details of the ions irradiated on multilayer ReSe2flakes on crystalline Al2O3are displayed in Table 1.

    Table 1.Details of ion irradiated multilayer ReSe2 flakes on crystalline Al2O3.

    The ion irradiation effects in multilayer ReSe2samples were characterized by utilizing atomic force microscope(AFM), scanning electron microscopy (SEM), micro-Raman spectra, x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD).The thickness of non-irradiated and irradiated ReSe2flakes were characterized by AFM on NT-MDT model BL222 RNTE.The peak force amplitude and scan rate were 150 nm and 0.977 Hz, respectively.Surface morphologies, including the sizes and shapes of the multilayer ReSe2samples, were determined by SEM imaging on a Hitachi S-4800.The imaging resolution and accelerating voltage were 1.0 nm and 5 kV, respectively.The detailed Raman peak positions and a comparison before and after ion irradiation were obtained at room temperature by using a multichannel modular triple Raman system(HORIBA Jobin-Yvon HR800)at 632.8-nm excitation wavelengths.The spot diameters of the focused laser beam on the multilayer ReSe2samples were all about 1.0 μm.The core level elemental analysis and bonding configurations of the multilayer ReSe2samples were performed by XPS on an ESCALAB 250.Monochromatic AlKαx-ray source(1486.6 eV)and hemispherical deflector analyser were used in the XPS spectrometer,working at constant pass energy,and constant energy resolution on the whole spectrum can be maintained with this mode.Intrinsic resolution of the spectrometer was 0.45 eV,which was proved by the the Ag 3d5/2line.The x-ray spot in this experiment was about 150-μm diameter.The XRD experiments were conducted to structurally analyze the samples with CuKαemission(λ=1.54056 °A)on a Rigaku RINT-2500 VHF x-ray diffractometer.The diffraction patterns were recorded between 10°and 30°on a 2θscale in steps of 0.04°.

    3.Results and discussion

    In Fig.1,AFM images of multilayer ReSe2surface nonirradiated and irradiated with 1.0-MeV C ions at fluence of 5.0×1013ions/cm2and 5.0×1014ions/cm2are shown.The typical shape and corresponding height profile of multilayer ReSe2are determined by AFM and the reults are displayed in Figs.1(a)-1(f).The ReSe2flakes on Al2O3substrates display quadrilateral shape before irradiation and then turn into oval shapes after being processed.The change of shape can be attributed to the difference in edge formation energy between the Re edge and Se edge termination before and after being irradiated by C ions.After the irradiation of 1.0-MeV C ions,the specific edge termination effect was destroyed,and oval shapes form in the multilayer ReSe2.Thickness of the monolayer ReSe2flake is approximately in a range of 0.7 nm-0.8 nm.[9]In Fig.1,the observed thickness values of the ReSe2samples are approximately 2.8,6.4,and 9.1 nm corresponding to flakes consisting of 4,9,and 13 layers for samples S0,S1,and S2,respectively.Through the collision cascade,the atoms of ReSe2acquire higher energy than that due to the van der Waals’ forces.Then, the ReSe2flakes continue to grow and the thickness values of the ReSe2flakes increase after the irradiation of 1.0-MeV C ions.

    Fig.1.AFM images for multilayer ReSe2: (a)2D image and(b)height profile for sample S0;(c)2D image and(d)height profile for sample S1;(e)2D image and(f)height profile for sample S2.

    The surface morphologies before and after 1.0-MeV C ions irradiation are determined by using SEM technique and shown in Fig.2.Figure 2(a)shows that the surface profile of the non-irradiated multilayer ReSe2is relatively smooth and uniform.Figure 2(b) displays a magnified view of the nonirradiated multilayer ReSe2.After the irradiation of 1.0-MeV C ions,the morphologies of the samples S1 and S2 are greatly changed.After the irradiation of 1.0-MeV C ions at the fluence rate of 5.0×1013ions/cm2,pores with diameters in a range of 10μm-25μm are evenly located on the multilayer ReSe2sample(as shown in Fig.2(c)).Figure 2(d)shows that the particles of ReSe2are perfectly oval with a uniform size distribution.The long diameter and short diameter of the ReSe2nanoparticles(sample S2)are approximately 3.0μm and 1.0μm, respectively.The average distance between the nanoparticles is approximately 17.0 μm.A higher irradiation fluence causes great damaging effects on the dimensions of the samples.It is an effective way to modify sample size by controlling the irradiation conditions.

    Fig.2.SEM images of multilayer ReSe2 samples under different irradiation conditions: (a) sample S0 (unirradiated), (b) high-magnification for sample S0,(c)sample S1(1.0-MeV C ions at a fluence of 5.0×1013 ions/cm2),and(d)sample S2(1.0-MeV C ions at a fluence of 5.0×1014 ions/cm2).

    The atomic vibrational spectra of multilayer ReSe2flakes after the irradiation of 1.0-MeV C ions at the fluence rates of 5.0×1013ions/cm2and 5.0×1014ions/cm2are detected in a range of 100 cm-1-300 cm-1and are shown in Fig.3.Unlike the Raman spectra of MoX2and WX2(X=S, Se), the Raman spectra of the ReSe2are feature-rich with approximately 18 first-order Raman-active modes in the range of 100 cm-1-300 cm-1, which are nondegenerate due to their low-symmetry triclinic structure.[9]For ReSe2,it is difficult to determine a pure vibration mode because of the complicated crystal lattice.Therefore,we name the Raman modes based on the dominant direction of the phonon vibrations.As shown in Fig.3,the Raman peaks at 121 cm-1results from the in-plane vibrational mode (Eg-like) and at 163 cm-1and 176 cm-1originate from the out-of-plane vibrational mode(Ag-like).[26]

    The thickness values of ReSe2layers after being irradiated by 1.0-MeV C ions are measured from the AFM images and shown in Fig.1.With the increase of sample thickness,most of the peaks for the few-layer ReSe2are red-shifted(Fig.3).Only considering the long-range Coulombic interactions, the Coulombic screening can be increased by the increasing dielectric tensors that augment with the number of layers increasing.This results in a softer Coulombic interaction between atoms, and therefore, the redshift takes place in the corresponding Raman peaks.[27]However, if we consider the van der Waals force, the interaction between the layers tends to suppress the lattice vibrations with the number of layers increasing.Thus,the vibrational energy of each vibration mode can increase,thereby leading to blueshift.[28]We know that the atomic mass of ReSe2is almost equal to that of WSe2.For WSe2,theE2gandA1gmodes show the changes of redshift and blueshift from the monolayer to the bulk,respectively.[29]The strength of Coulombic screening can be measured by the ratio of the long-range coulomb interaction of the monolayer to that of the bulk,

    The details can be found in previous work.[26]From the above equation,we can determine that the long-range Coulombic interactions in WSe2and ReSe2are similar to each other.In addition,the interlayer force constantα∝μωcan be used to measure the van der Waals interaction,wheremandware the atomic mass of the monolayer TMDCs and the Raman frequency, respectively.From Ref.[30], the frequency of the C mode and the LB mode in bilayer WSe2are higher than those in bilayer ReSe2.The calculations show that the interlayer van der Waals interaction of ReSe2is much weaker than that of WSe2.According to the above discussion,with the number of ReSe2layers increasing,the redshifts of the Raman modes after the irradiation of 1.0-MeV C ions as shown in Fig.3 indicate that the interlayer van der Waals interaction is not strong enough to determine the layer dependence of the phonon behavior.

    However,the Raman mode at 163 cm-1mainly involves the atomic displacement of the Re-Re bond.[31]After the irradiation of 1.0-MeV C ions, the Raman mode is located at 162.5 cm-1for sample S1 and at 161.7 cm-1for sample S2.Under the above condition, we can determine that a longer bond length for the Re-Re bond occurs due to the volume expansion induced by irradiation, with the ReSe2layer number increasing.

    Fig.3.Raman spectra obtained at 632.8-nm excitation energy for multilayer ReSe2 flakes irradiated under different conditions.

    Fig.4.XPS spectra of multilayer ReSe2 flakes before and after the irradiations of 1.0-MeV C ions.

    The elemental compositions and bonding configurations of the multilayer ReSe2samples are characterized by XPS.The detailed information regarding the Re signal and Se signal is exhibited in Figs.4(a), 4(c), 4(e) 4(b), 4(d), and 4(f),respectively.As shown in Fig.4(a), two characteristic peaks located at 41.6 eV and 44.1 eV are observed, which correspond to the core 4f7/2and 4f5/2levels of Re4+.Additionally,figure 4(b)shows clearly resolved Se2-3d5/2and 3d3/2peaks at 54.78 eV and 55.61 eV determined via the curve fitting.The two characteristic peaks are consistent with the results reported in Ref.[32],and the curve fitting method is based on the XPS peak code.Additionally, the ratio of Re to Se acquired from XPS is nearly 1:2, which suggests that the CVD-grown ReSe2is reasonably stoichiometric.

    To further analyze the change of multilayer ReSe2after the irradiation of 1.0-MeV C ions , the shift of XPS peak is studied and shown in Figs.4(c)-4(f).The peak position shift of XPS is a combined result of three main factors.First of all,the defects induced by ion irradiation will result in surface energy band bending and the peak value shifts to a higher energy value.Meanwhile,the irradiation-induced defects and latticedisorder will also lead the lattice volume to expand,and further cause longer bond length of the Re-Re bond, with irradiated fluence increasing.The longer Re-Re bond length is apparently corresponding to weaker bond strength,which causes the binding energy to shift to a lower energy value.Furthermore,C ion irradiation will induce partial electron to transfer, and part of Re4+ions are converted into Re2+ions, which leads the binding energy to decrease.

    The XPS result of Re 4f in Fig.1(c)shows two spin-orbit split peaks with a separation of 2.5 eV, which correspond to 4f7/2and 4f5/2respectively.Apparently,the Re 4f7/2peak can be fitted by two peaks,i.e.,the dominant peak at 41.9 eV(the characteristics of n-type doping), which is due to the surface energy band bending effect induced by defect,and the weaker peak at 41.0 eV, which is attributed to the volume expansion of lattice and the presence of Re2+ion.The Re 4f5/2peak can also be fitted by two peaks, out of the same reason.In addition,as shown in Fig.4(e),the Re 4f7/2peak value of sample S2 shifts by 0.7 eV, reasching a lower energy value, which shows that lattice volume expansion and the role of Re2+ion are dominated in sample S2.As a conclusion,the shift of XPS peak shows an oscillatory trend with fluence increasing,which is determined by the joint action of irradiation induced defects,lattice-expansion effect and the role of Re2+ion.

    The XRD is used to evaluate the structural characteristics of multilayer ReSe2flakes under the different irradiation conditions, and the results are shown in Fig.5.For samples S0, S1, and S2, most of significant (001) peaks are observed at 2θ=13.00°, 13.76°, and 13.65°, respectively.The XRD pattern is consistent with the JCPDS card No.89-0340, wihch indicates the presence of the triclinic phase for multilayer ReSe2.The interplanar spacings are approximately 6.8712 °A,6.4306 °A,and 6.4811 °A from Jade 6.0 for samples S0-S2,respectively.Nonirradiated ReSe2flakes(S0)yield a very noisy powder XRD pattern with lines of weak intensity and wide FWHM, indicating poor crystallinity of the sample S0.After the irradiation of 1.0-MeV C ions,which causes the ReSe2to grow,the thickness of the ReSe2layer increases,the intensity of the diffraction peak strengthens, and the FWHM decreases.This indicates that the crystallinity of the ReSe2flake is improved with the number of layers increasing after the irradiation of 1.0-MeV C ions.Comparing with non-irradiated ReSe2flakes(sample S0),the intensity of the diffraction peak is improved by approximately 148%for sample S1 and 180%for sample S2.In addition, the FWHM values of the (001)diffraction peakare approximately 2.15°,0.92°,and 0.87°,for samples S0, S1, and S2 respectively.From the above data,the average crystallite size can be calculated using the Debye-Scherer equation

    The details can be found in Ref.[33].From Eq.(2), we can determine the average crystallite sizeD0=3.67 nm (sample S0),D1=8.65 nm (sample S1), andD2=9.09 nm (sample S2).The increased crystallite size can also reveal that the crystallinity is improved with the increase of the number of layers after the irradiation of ions.As a result, comparing with the data of samples detected by XRD,AFM,and SEM,it is apparent that samples S1 and S2 show almost the same crystalline quality and grain size,which means that the irradiated condition of S1(with lower fluence means cost-effective and lower irradiation effect)is more appropriate for ReSe2samples.

    Fig.5.XRD patterns (θ-2θ) of multilayer ReSe2 flakes before and after being irradiated by 1.0-MeV C ions.

    4.Conclusions

    In this work, the effect of C ion irradiation of multilayer ReSe2flakes has been studied and characterized by utilizing AFM, SEM, micro-Raman spectra, XPS, and XRD.The results confirm that that the domain size,thickness,morphology,and crystallinity for the ReSe2sample can be effectively controlled after the irradiation of 1.0-MeV C ions.Through appropriately regulating the energy and fluence of C ions,multilayer ReSe2samples with high-quality crystallinity,relatively large size and good performance can be obtained.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12105036, 11775135,and 11805108), the Natural Science Foundation of Shandong Province, China (Grant Nos.ZR2020QA088 and ZR2021QA074), the Taishan Scholars Program of Shandong Province, China (Grant No.tsqn201812104), and the State Key Laboratory of Nuclear Physics and Technology at Peking University,China.

    猜你喜歡
    劉濤鐵軍
    助人為樂的劉濤
    助人為樂的劉濤
    鹽城市扛起使命擔當 鍛造應(yīng)急鐵軍
    新昌縣征訂《鐵軍》連續(xù)五年超千份
    鐵軍(2022年12期)2022-12-07 11:51:46
    Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
    鐵軍頌
    心聲歌刊(2022年6期)2022-02-14 13:20:22
    鑄成消防鐵軍
    劉濤:成為更好的自己
    金色年華(2017年7期)2017-06-21 09:27:52
    讀《鐵軍頌》
    大江南北(2016年6期)2016-11-21 21:15:31
    馬鈴薯主糧化
    国产亚洲5aaaaa淫片| 精品不卡国产一区二区三区| 婷婷色综合大香蕉| 精品久久久久久久久av| 最近手机中文字幕大全| 一卡2卡三卡四卡精品乱码亚洲| 欧美变态另类bdsm刘玥| 日本免费一区二区三区高清不卡| 国产男人的电影天堂91| 国产精品久久视频播放| 亚洲久久久久久中文字幕| 精品少妇黑人巨大在线播放 | 寂寞人妻少妇视频99o| 少妇被粗大猛烈的视频| 我要搜黄色片| 国产69精品久久久久777片| 国产av麻豆久久久久久久| 小说图片视频综合网站| 久久精品国产亚洲av香蕉五月| 在线观看美女被高潮喷水网站| 少妇人妻精品综合一区二区 | 精品国产三级普通话版| 成人午夜高清在线视频| 特大巨黑吊av在线直播| 国产免费男女视频| 日本与韩国留学比较| 久久久久久久午夜电影| 熟女人妻精品中文字幕| 日韩大尺度精品在线看网址| 国内精品美女久久久久久| 亚洲av.av天堂| 亚洲精品影视一区二区三区av| 晚上一个人看的免费电影| 国产精品不卡视频一区二区| av天堂在线播放| 一级毛片电影观看 | 干丝袜人妻中文字幕| 午夜免费男女啪啪视频观看| 亚洲激情五月婷婷啪啪| 国产一区二区三区在线臀色熟女| 一级黄片播放器| 精品久久久久久久人妻蜜臀av| 99久久久亚洲精品蜜臀av| 色吧在线观看| 久久九九热精品免费| av黄色大香蕉| 亚洲中文字幕日韩| 国产一区亚洲一区在线观看| 久久午夜亚洲精品久久| 美女被艹到高潮喷水动态| 国产成人精品久久久久久| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| 丝袜喷水一区| 亚洲中文字幕一区二区三区有码在线看| 国产成人91sexporn| 久久韩国三级中文字幕| 国产在视频线在精品| 变态另类成人亚洲欧美熟女| 国产私拍福利视频在线观看| 久久国内精品自在自线图片| 成人欧美大片| 亚洲精品日韩在线中文字幕 | 三级经典国产精品| 国产伦精品一区二区三区视频9| 欧美激情在线99| 99久国产av精品| 伊人久久精品亚洲午夜| 亚洲美女视频黄频| 插阴视频在线观看视频| 免费观看精品视频网站| 午夜福利高清视频| 久久久久久国产a免费观看| 国产人妻一区二区三区在| 一级毛片aaaaaa免费看小| 一区二区三区高清视频在线| 国产一区二区亚洲精品在线观看| 麻豆乱淫一区二区| 内射极品少妇av片p| 日韩欧美精品v在线| 国产黄色小视频在线观看| 女人被狂操c到高潮| 欧美人与善性xxx| 亚洲成人精品中文字幕电影| 卡戴珊不雅视频在线播放| 亚洲久久久久久中文字幕| 欧美最新免费一区二区三区| 久久久久久久久久黄片| 男人和女人高潮做爰伦理| 成人综合一区亚洲| 日韩av不卡免费在线播放| 亚洲无线在线观看| 99热6这里只有精品| 国产精品人妻久久久久久| 人人妻人人澡欧美一区二区| 一区二区三区四区激情视频 | 长腿黑丝高跟| 人妻系列 视频| 日日摸夜夜添夜夜添av毛片| 国产一区二区在线观看日韩| 美女cb高潮喷水在线观看| 又黄又爽又刺激的免费视频.| 亚洲第一区二区三区不卡| 精品人妻视频免费看| 色综合亚洲欧美另类图片| 一级av片app| 国产精品电影一区二区三区| 久久这里有精品视频免费| 欧美日韩一区二区视频在线观看视频在线 | 中文精品一卡2卡3卡4更新| 欧美一区二区亚洲| 岛国在线免费视频观看| 老师上课跳d突然被开到最大视频| 国产精品久久久久久久电影| 又粗又硬又长又爽又黄的视频 | 你懂的网址亚洲精品在线观看 | 成人av在线播放网站| 国产在线男女| 欧美日韩在线观看h| 一区二区三区四区激情视频 | 欧美一区二区国产精品久久精品| 久久人人爽人人片av| 伊人久久精品亚洲午夜| 在线免费观看的www视频| 好男人在线观看高清免费视频| 国产欧美日韩精品一区二区| 五月伊人婷婷丁香| 最近手机中文字幕大全| 日韩在线高清观看一区二区三区| 婷婷色综合大香蕉| 男人和女人高潮做爰伦理| 小蜜桃在线观看免费完整版高清| 日本色播在线视频| 亚洲精品国产av成人精品| 免费观看精品视频网站| 哪个播放器可以免费观看大片| 性插视频无遮挡在线免费观看| 国产综合懂色| 国产精品久久久久久亚洲av鲁大| 色播亚洲综合网| 日韩欧美国产在线观看| 12—13女人毛片做爰片一| 久久久精品欧美日韩精品| 人妻久久中文字幕网| 国产精品久久久久久久电影| 一级二级三级毛片免费看| 午夜精品国产一区二区电影 | 国产成人a∨麻豆精品| 观看免费一级毛片| 免费看a级黄色片| 卡戴珊不雅视频在线播放| 99热这里只有是精品50| 人人妻人人澡欧美一区二区| 午夜免费激情av| 一级毛片aaaaaa免费看小| 黄片无遮挡物在线观看| 成人无遮挡网站| 国产探花在线观看一区二区| 美女大奶头视频| 99riav亚洲国产免费| 国产精品电影一区二区三区| av国产免费在线观看| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 少妇丰满av| 春色校园在线视频观看| 久久亚洲国产成人精品v| av国产免费在线观看| 日本一二三区视频观看| 日日摸夜夜添夜夜添av毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久成人亚洲精品观看| 夫妻性生交免费视频一级片| 97在线视频观看| 99久国产av精品| 高清午夜精品一区二区三区 | www.av在线官网国产| 久久久久久久久久黄片| 久久草成人影院| 九九在线视频观看精品| 不卡一级毛片| 观看美女的网站| 在线播放国产精品三级| 午夜福利在线在线| 插阴视频在线观看视频| 亚洲在久久综合| 日韩欧美三级三区| 免费看av在线观看网站| 国产一级毛片七仙女欲春2| 欧美一区二区亚洲| 成人美女网站在线观看视频| 欧美日韩精品成人综合77777| 一本久久中文字幕| 国产伦理片在线播放av一区 | 女的被弄到高潮叫床怎么办| 边亲边吃奶的免费视频| 女人十人毛片免费观看3o分钟| 成人综合一区亚洲| 亚洲精品成人久久久久久| 男插女下体视频免费在线播放| 中文资源天堂在线| 黑人高潮一二区| 麻豆av噜噜一区二区三区| 免费av不卡在线播放| 成人特级av手机在线观看| 日本三级黄在线观看| 午夜福利高清视频| 性色avwww在线观看| 少妇的逼水好多| 久久精品久久久久久噜噜老黄 | 看片在线看免费视频| 看非洲黑人一级黄片| 好男人在线观看高清免费视频| 免费看光身美女| 国产一区亚洲一区在线观看| 欧美高清性xxxxhd video| 国产爱豆传媒在线观看| 男女视频在线观看网站免费| 尾随美女入室| 国产av不卡久久| 中文字幕制服av| 成人毛片a级毛片在线播放| 日日干狠狠操夜夜爽| 可以在线观看毛片的网站| 少妇被粗大猛烈的视频| 99热这里只有是精品在线观看| 国产亚洲精品久久久久久毛片| 深爱激情五月婷婷| 联通29元200g的流量卡| 国产伦精品一区二区三区视频9| 在线免费观看不下载黄p国产| 婷婷精品国产亚洲av| 亚洲精品国产成人久久av| 亚洲天堂国产精品一区在线| av免费观看日本| 亚洲国产精品成人久久小说 | 国产淫片久久久久久久久| 婷婷亚洲欧美| 欧美性猛交╳xxx乱大交人| 亚洲人成网站高清观看| 免费观看a级毛片全部| 精品一区二区三区视频在线| 高清午夜精品一区二区三区 | 欧美三级亚洲精品| 日本免费a在线| 成人美女网站在线观看视频| 久久精品久久久久久噜噜老黄 | 国产成人一区二区在线| 国产一区二区激情短视频| 欧美高清性xxxxhd video| 欧美又色又爽又黄视频| 久久九九热精品免费| 国产毛片a区久久久久| 久久久久久大精品| 午夜精品一区二区三区免费看| 久久精品久久久久久噜噜老黄 | 欧美日韩国产亚洲二区| 国产精品日韩av在线免费观看| 色尼玛亚洲综合影院| 久久人人精品亚洲av| 国产片特级美女逼逼视频| 久久久久久久久久久免费av| 一级毛片久久久久久久久女| 午夜免费男女啪啪视频观看| 精品久久久久久久久av| 国产日韩欧美在线精品| 国产高清激情床上av| 久久久久性生活片| 欧美精品一区二区大全| 亚洲最大成人手机在线| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交╳xxx乱大交人| 黄色欧美视频在线观看| 高清日韩中文字幕在线| 免费黄网站久久成人精品| 午夜福利在线在线| 国产精品美女特级片免费视频播放器| 国内精品美女久久久久久| 亚洲精品影视一区二区三区av| 亚洲,欧美,日韩| 亚洲精品粉嫩美女一区| 国产在线精品亚洲第一网站| 色综合亚洲欧美另类图片| 久久草成人影院| 久久精品人妻少妇| 国产片特级美女逼逼视频| 成人亚洲欧美一区二区av| 最近中文字幕高清免费大全6| 国产在线男女| 成年女人永久免费观看视频| 精品久久久噜噜| 国产精品久久久久久精品电影| 婷婷色av中文字幕| 只有这里有精品99| 国产麻豆成人av免费视频| 全区人妻精品视频| 欧美成人一区二区免费高清观看| 国产精品一区二区三区四区免费观看| 69人妻影院| 亚洲国产日韩欧美精品在线观看| 久久精品综合一区二区三区| 99热精品在线国产| 国产男人的电影天堂91| 国产色婷婷99| 五月玫瑰六月丁香| 亚洲天堂国产精品一区在线| 日日撸夜夜添| 午夜久久久久精精品| 国内揄拍国产精品人妻在线| 内地一区二区视频在线| 深夜a级毛片| av女优亚洲男人天堂| 99视频精品全部免费 在线| 亚洲av第一区精品v没综合| 赤兔流量卡办理| 天堂√8在线中文| 国产又黄又爽又无遮挡在线| 丰满的人妻完整版| 日本三级黄在线观看| 欧美日韩精品成人综合77777| 久久精品久久久久久久性| 精品人妻偷拍中文字幕| 人妻少妇偷人精品九色| 中文字幕av成人在线电影| 久久九九热精品免费| 熟女电影av网| 国产亚洲精品久久久com| 婷婷精品国产亚洲av| 日日干狠狠操夜夜爽| 欧美+日韩+精品| a级毛片a级免费在线| 国产探花在线观看一区二区| 床上黄色一级片| 男女那种视频在线观看| 国产男人的电影天堂91| 99热精品在线国产| 久久久久久国产a免费观看| 青春草视频在线免费观看| 国产精品免费一区二区三区在线| 免费黄网站久久成人精品| av国产免费在线观看| 男人狂女人下面高潮的视频| 中文欧美无线码| 非洲黑人性xxxx精品又粗又长| 国产高潮美女av| 给我免费播放毛片高清在线观看| 天堂中文最新版在线下载 | 免费av毛片视频| 中文字幕制服av| av国产免费在线观看| 嘟嘟电影网在线观看| 亚洲欧美日韩无卡精品| 国产一级毛片在线| 亚洲精品成人久久久久久| 99久国产av精品| 哪个播放器可以免费观看大片| 久久久国产成人精品二区| 国产精品福利在线免费观看| 干丝袜人妻中文字幕| 亚洲自拍偷在线| 欧美丝袜亚洲另类| 中文字幕av成人在线电影| 国产美女午夜福利| 在线观看av片永久免费下载| 热99re8久久精品国产| 91午夜精品亚洲一区二区三区| 国产美女午夜福利| 亚洲真实伦在线观看| 国产日本99.免费观看| 亚洲精品日韩在线中文字幕 | 亚洲欧美成人综合另类久久久 | h日本视频在线播放| 国产成人a∨麻豆精品| 一个人看的www免费观看视频| 日日摸夜夜添夜夜爱| 白带黄色成豆腐渣| 性色avwww在线观看| 在线天堂最新版资源| 亚洲精品久久国产高清桃花| 欧美日韩一区二区视频在线观看视频在线 | 国产久久久一区二区三区| 草草在线视频免费看| 亚洲第一电影网av| 国产一区亚洲一区在线观看| 99久久精品一区二区三区| 国产一区二区在线av高清观看| 成人欧美大片| 欧美性猛交╳xxx乱大交人| 国产成人一区二区在线| 丝袜美腿在线中文| 国产亚洲精品久久久久久毛片| 男人的好看免费观看在线视频| 日本黄色视频三级网站网址| 国产精品久久久久久精品电影小说 | 久久99蜜桃精品久久| 女人被狂操c到高潮| 18禁黄网站禁片免费观看直播| 晚上一个人看的免费电影| 一区福利在线观看| 级片在线观看| 深夜精品福利| 麻豆一二三区av精品| or卡值多少钱| 久久久久国产网址| 亚洲婷婷狠狠爱综合网| 日本黄色视频三级网站网址| 国产成人aa在线观看| 亚洲av中文av极速乱| 啦啦啦啦在线视频资源| 亚洲欧美成人综合另类久久久 | 欧美三级亚洲精品| 国产成人aa在线观看| 国产亚洲5aaaaa淫片| 婷婷色av中文字幕| 日韩制服骚丝袜av| 啦啦啦观看免费观看视频高清| 99在线人妻在线中文字幕| 久久这里有精品视频免费| 舔av片在线| 不卡视频在线观看欧美| 一边摸一边抽搐一进一小说| 99久久久亚洲精品蜜臀av| 中文字幕精品亚洲无线码一区| 蜜臀久久99精品久久宅男| 成人二区视频| 男女做爰动态图高潮gif福利片| 国产在视频线在精品| 国产亚洲91精品色在线| 午夜免费男女啪啪视频观看| 两个人视频免费观看高清| 亚洲经典国产精华液单| 老司机影院成人| 久久热精品热| 国产免费一级a男人的天堂| 中文字幕久久专区| 亚洲欧美成人综合另类久久久 | 秋霞在线观看毛片| 悠悠久久av| 男人和女人高潮做爰伦理| 国产精品久久久久久久电影| 一边摸一边抽搐一进一小说| 国产黄片美女视频| 欧美日韩乱码在线| 午夜视频国产福利| 亚洲精品色激情综合| 中文字幕免费在线视频6| 日本五十路高清| 精品一区二区三区视频在线| 色哟哟哟哟哟哟| 春色校园在线视频观看| 黄色日韩在线| 日韩成人av中文字幕在线观看| 少妇的逼水好多| 国产av不卡久久| 国产又黄又爽又无遮挡在线| 成人国产麻豆网| 韩国av在线不卡| 一区二区三区高清视频在线| 久久精品夜色国产| 波多野结衣高清无吗| 国产成人影院久久av| 亚洲最大成人中文| 综合色丁香网| 欧美人与善性xxx| 深爱激情五月婷婷| 观看免费一级毛片| 亚洲18禁久久av| 午夜精品一区二区三区免费看| 高清日韩中文字幕在线| 国产精品久久电影中文字幕| 精品国产三级普通话版| 99久国产av精品| 久久欧美精品欧美久久欧美| 中文字幕精品亚洲无线码一区| 日本与韩国留学比较| 久久精品国产亚洲网站| 2022亚洲国产成人精品| 三级毛片av免费| 日韩av不卡免费在线播放| 久久精品夜色国产| 男的添女的下面高潮视频| 国产精品久久视频播放| 在线a可以看的网站| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 我要搜黄色片| 色5月婷婷丁香| 听说在线观看完整版免费高清| 99热这里只有是精品50| 国产一区二区激情短视频| 午夜免费男女啪啪视频观看| 国产成人福利小说| 日本一本二区三区精品| 又粗又硬又长又爽又黄的视频 | 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 国产真实乱freesex| 国产一级毛片七仙女欲春2| 男人的好看免费观看在线视频| 亚洲成人av在线免费| 好男人视频免费观看在线| 免费av不卡在线播放| 国产精品嫩草影院av在线观看| a级一级毛片免费在线观看| 色哟哟·www| 少妇的逼水好多| a级毛片a级免费在线| 亚洲成av人片在线播放无| 偷拍熟女少妇极品色| 欧美人与善性xxx| a级一级毛片免费在线观看| 国产高清视频在线观看网站| 精品久久久噜噜| 免费电影在线观看免费观看| 亚洲第一电影网av| 久久中文看片网| 成人一区二区视频在线观看| 色综合站精品国产| 国产av麻豆久久久久久久| 变态另类丝袜制服| 97超碰精品成人国产| 久久久久久久久大av| 午夜精品一区二区三区免费看| 国产亚洲91精品色在线| 亚洲人成网站在线观看播放| 99在线人妻在线中文字幕| 成人欧美大片| 国产一区二区三区在线臀色熟女| 国产亚洲av片在线观看秒播厂 | 国产亚洲精品久久久com| 亚洲电影在线观看av| 欧美成人一区二区免费高清观看| 国产极品精品免费视频能看的| av女优亚洲男人天堂| 91久久精品电影网| 国产成人aa在线观看| 中文字幕av成人在线电影| 亚洲成a人片在线一区二区| 日日啪夜夜撸| 国产中年淑女户外野战色| 男的添女的下面高潮视频| 麻豆av噜噜一区二区三区| 婷婷六月久久综合丁香| 又爽又黄a免费视频| 色吧在线观看| 联通29元200g的流量卡| 麻豆国产97在线/欧美| 国产精品麻豆人妻色哟哟久久 | 看免费成人av毛片| 久久久色成人| 色噜噜av男人的天堂激情| 国产精品野战在线观看| 亚洲国产精品成人综合色| 一进一出抽搐gif免费好疼| 亚洲久久久久久中文字幕| 欧美一区二区国产精品久久精品| av天堂中文字幕网| 午夜激情欧美在线| 国产精品一及| 久久精品国产亚洲av涩爱 | 欧美日韩在线观看h| 国产日韩欧美在线精品| 亚洲欧美日韩卡通动漫| 日韩一本色道免费dvd| 在线播放国产精品三级| 美女xxoo啪啪120秒动态图| 天堂中文最新版在线下载 | 国产av在哪里看| 最近最新中文字幕大全电影3| 欧美性感艳星| 不卡一级毛片| 99热这里只有精品一区| 亚洲最大成人av| 成人特级黄色片久久久久久久| 免费看av在线观看网站| 哪里可以看免费的av片| 黄色日韩在线| 啦啦啦啦在线视频资源| 哪里可以看免费的av片| 波野结衣二区三区在线| 久久精品久久久久久久性| 亚洲国产欧洲综合997久久,| 色综合色国产| 日本撒尿小便嘘嘘汇集6| 五月玫瑰六月丁香| 老熟妇乱子伦视频在线观看| 少妇熟女欧美另类| 久久久久久久久久黄片| 大香蕉久久网| 99热全是精品| 亚洲精品色激情综合| 少妇高潮的动态图| 久久精品夜色国产| 免费不卡的大黄色大毛片视频在线观看 | 韩国av在线不卡| 国产精品人妻久久久影院| 99久久九九国产精品国产免费| 少妇熟女欧美另类| 国产精品一区二区三区四区久久| 国产白丝娇喘喷水9色精品| 一级黄片播放器| 深夜精品福利| 国语自产精品视频在线第100页| 夜夜夜夜夜久久久久| 国产精品一区二区三区四区久久| 国语自产精品视频在线第100页| 成年免费大片在线观看| 亚洲内射少妇av| 99视频精品全部免费 在线| 国产精品蜜桃在线观看 | 免费观看精品视频网站| 18禁在线无遮挡免费观看视频| 91aial.com中文字幕在线观看| 国产激情偷乱视频一区二区|