• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton

    2022-10-26 09:46:26HuanJiang蔣歡XiangYuCao曹祥玉TaoLiu劉濤LiaoriJidi吉地遼日andSijiaLi李思佳
    Chinese Physics B 2022年10期
    關(guān)鍵詞:劉濤

    Huan Jiang(蔣歡) Xiang-Yu Cao(曹祥玉) Tao Liu(劉濤)Liaori Jidi(吉地遼日) and Sijia Li(李思佳)

    1Information and Navigation College,Air Force Engineering University,Xi’an 710077,China

    2Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices,Air Force Engineering University,Xi’an 710051,China

    Keywords: spoof surface plasmon polariton(SSPP),leaky wave antenna,wide scanning angle,high scanning rate

    1. Introduction

    Improving sensor detection and determining the accuracy and effectiveness of the target is a perennial challenge in radar applications.[1–5]The scanning-rate(SR)represents the sensitivity of radiation direction with frequency change. We prefer to design a leaky-wave antenna, which takes advantage of a narrower bandwidth to cover a larger scanning range. In recent years,the characteristics of LWAs based on the SSPP TL,with its simple structure, frequency scanning characteristics,and compatibility with planar circuits, have attracted significant attention.

    The surface plasmon polariton (SPP) is a mixed excited state, propagating along the medium-metal interface generated during the interaction of light with a metal, and exhibiting a highly confined surface wave in the medium outside the metal.[6]The spoof surface plasmon polariton (SSPP) is the analogous extension of the SPP concept in the low-frequency band. When electromagnetic (EM) waves interact with the artificial EM medium, a kind of hybrid surface EM mode is generated at the medium interface. Its characteristic subwavelength,enhancement of the local field,and nonlinear dispersion curve offer significant application value in the design of antennas,[7]filters,[8]TLs[9]etc.[10–19]

    The EM wave propagates in the form of a slow wave in the antenna, and the propagation speed of the slow wave is below that of an EM wave in free space. Slow waves cannot radiate into space directly. However,when an EM wave’s propagation speed is higher than that in free space,it radiates in the form of a fast wave. To create this radiation effect in the antenna requires a progression from slow wave to fast wave.However,the conversion of a slow wave confined in the SSPP TL into a fast wave, so as to generate radiation of the frequency scanning beams, represents a technical problem with regard to SSPP-based antennas,which must be resolved. The first method involves periodically modulating the SSPP TL,so that EM waves are released into the fast wave region.[10–12]The maximum scanning angle that can be achieved in this way is 123°.[11]In view of the limitation whereby general SSPP LWAs can only radiate linearly polarized waves,Ref.[12]proposed that the SSPP unit could be rotated 45°,and the surface impedance could be controlled by changing the depth of the groove,creating an antenna adaptable to any type of polarization mode.

    To realize the leaky-wave, the second method introduces periodic perturbations by periodically arranging patches around the TL,which couple the EM waves to the patches to form a fast wave pattern matching the spatial waves for beam scanning in vacuum. In Ref.[13],the antenna was composed of two rows of circular patches placed on both sides of the SSPP TL,covering an angle of 83°from 9.2 GHz to 16 GHz.In Ref.[14],an antenna based on the glide-symmetry Goubau line covers a range of 145°with high-order harmonic radiation within 6.3% bandwidth, and achieves a very high scanning rate. However, this antenna fails to radiate efficiently, with an average radiation efficiency of only 26%. In the design of LWAs with a high scanning rate, there is always a trade-off between scanning rate and efficiency.

    There are other methods of achieving frequency scanning radiation. In Ref. [15], an antenna based on a substrate integrated waveguide(SIW)realizes 35°beam scanning in a narrow band of 3%. However, due to the symmetry of its design structure, this antenna also exhibits the stop-band problem common to traditional LWAs. This inability to realize broadside radiation is a key limitation of continuous wideangle scanning. In Ref. [16], the SSPP-based antenna used periodic holes etched in the CPW to generate waves in the higher-order SSPP mode,capable of covering a wide scanning angle of 129°,while the low scanning rate caused by an operating bandwidth of 11.7–50 GHz is not expected. Therefore,it is necessary to design a compact antenna with a wide scanning angle,a high scanning rate,and high radiation efficiency.

    In this paper, a single beam SSPP-based LWA is proposed, whose compact structure can readily be fabricated for practical applications. The stop-band effect is suppressed,and the scanning range is enlarged.By adjusting the periodic modulation,the frequency band of the antenna tends to be near the cutoff frequency, exhibiting a higher scanning rate. The antenna achieves a high scanning rate of 12.12,and a efficiency of 81.4%. Its scanning angle of 176°represents the largest among antennas of the same type, and its average gain is as much as 10.9 dBi in the working frequency band. This proposed antenna based on SSPP demonstrates outstanding performance.

    2. Antenna structure and design

    The geometrical configuration of the proposed leakywave antenna is shown in Fig.1. The SSPP TL is introduced on the middle layer. A series of circular patches are placed on the top and bottom layer as radiating elements. The layers are filled with F4BM-2, where the dielectric constant isεr=2.65,the loss tangent is tanδ=0.001,and the thickness of the single-layer medium isth=1 mm. The overall size of the antennaL×W=35.6 mm×400 mm.

    Fig.1. Geometry of the proposed LWA.(a)Perspective view. (b)Feeding layer. (c)TL unit. (d)Radiating elements. (e)Multilayer layout.

    In the middle layer, the left-hand end is fed via a coplanar waveguide (CPW) measuringL1=10 mm. The smooth groove gradient structure is connected with TL to match the input impedance,reduce reflections,and increase the efficiency of the antenna radiation.

    The exponential-shaped ground sides are conducive to an efficient matching in broadband asy=f(x) =C1eαx+C2,whereα=0.1,C1=W2/(eαL2-1),C2=-W2/(eαL2-1)+ga+W1/2 and the coordinate origin is set at the beginning of the transition. Reference [17] shows that this tapered structure forms a good bridge with which to connect the CPW,with 50 Ω impedance and SSPP TL in the microwave frequency, converting the guided waves to the slow wave mode bounded in the SSPP TL,and demonstrating high efficiency in the broadband.

    In the SSPP TL section,periodic sub-wavelength grooves are arranged in the metal microstrip lines with a period ofp=2.5 mm, a duty cycle ofdc=a/p=0.6, and a groove depth ofh= 4 mm. The gap,ga= 0.28 mm, and width,W1= 5 mm, of the central strip are designed to achieve a 50 Ω impedance.The antenna adopts a single-port and tapered structure at the end.

    In the radiation section, circular patches are placed near the SSPP TL. The front and rear backplanes are composed of circular patch arrays staggered in front and back. We set the period of single-side patch arrays,D, at 9.38 mm, and the distance between the patch center and the central axis atd1=6 mm. The radiusris set at 4 mm.

    3. Principle and analysis

    3.1. SSPP TL analysis

    We were able to confirm that periodic metallic grooves allow the surface plasmon mode to propagate at microwave frequencies. Figure 2 shows dispersion diagrams of singleand double-layer medium units with varying depths of groove.It is evident that with an increase in the frequency of the dispersion curve,βalso increases, and gradually deviates from the light,whereβrepresents the propagation constant. Closer to the asymptotic frequency, the alteration in the propagation constant is more dramatic. The figure shows that in contrast with the single-layer unit,double-layer units have a lower cutoff frequency, enabling the double-layer SSPP TL to confine EM on the surface more strongly than the single-layer TL.Moreover, the deeper the metal groove, the lower the cutoff frequency of the dispersion curve becomes. The depth,h,and structure of the model represent two important factors affecting the dispersion characteristics of the unit. We selected a dual-layer element withh=4 mm to modulate the cutoff frequency at around 10 GHz.

    Fig.2. Dispersion curves of the unit cell in SSPP TL.

    In order to illustrate the characteristics of the TL,E-field distributions on double-end TLs at different frequency points in thexozplane were simulated, as shown in Figs. 3(a) and 3(b). EM waves were transmitted through the TL at 8 GHz and 9.5 GHz to the other port. When the frequency is set to 10.5 GHz,it is clear that EM waves are strictly confined to the gradient part. TheS-parameter in Fig.3(c)shows that the cutoff frequency of TL is 10 GHz. Beyond the cutoff frequency,energy cannot be transmitted to the other end,clearly demonstrating the low-pass properties of TL.

    Fig.3. Transmission characteristics of the SSPP TL.(a)Structural diagram of transmission line. (b) E-field distributions of the SSPP TL at 8 GHz, 9.5 GHz and 10.5 GHz in the xoz plane. (c) Simulated Sparameters of the SSPPs TL.

    Fig.4.Simulated electric-field distributions of the proposed SSPP LWA at 9 GHz.

    Leaky-wave antenna usually adopts a dual-port structure to ensure that the EM waves transmitted to the end of the antenna can be absorbed,so that the reflected wave cannot affect the direction of radiation. The structure adopts a single-port and a tapered structure at the end,as shown in Fig.1(b). Such a structure causes the SSPP wave mode to shift to the space wave mode, such that a small amount of EM waves reaching the end are radiated to reduce the impact of reflections on the original feeder electric field. In Fig.4,we note that the energy along the TL decreases significantly along thex-direction.

    3.2. Radiation element analysis

    In order to radiate EM waves and form LWAs based on an SSPP TL,we need to disturb propagating surface waves by periodically placing radiating patches near the SSPP TL.If the radiation efficiency is high enough, the matching load can be removed,which not only reduces the antenna size but also decreases the influence of the end on the far field pattern of the patch arrays,and improves the realized gain.

    The radiation element is a circular patch with isotropy,and the resonant frequency of the element is primarily determined by its size.Radiation efficiency can be improved by setting the element resonant frequency within the working bandwidth, so the radiusris set at 4 mm, based on the following expression:

    wherek11represents the eigenvalue of the TM11mode,cis the velocity of the light in vacuum,andfis the center frequency.

    In Fig.1(d),an interleaved array of patches balances the front and rear of the far-field pattern so that the main radiation lobe can scan in thexoyplane of the antenna. Since the distance between front and rear is relatively close,there is no obvious deviation for the periodDof periodic disturbance;placing patches on the upper and lower surface facilitates better coupling with the energy on the TL.

    Methods such as mode balance,[18]impedance matching,[19,20]and loading asymmetric radiators[18,21,22]effectively suppress the open stop-band(OSB)effect.Moreover,as described in Ref.[14],the asymmetrical structure also helps to suppress the stop-band. There is no OSB problem in the antenna structure proposed in this paper. The beam-scanning characteristics of the antenna are realized via the feed phase difference in the SSPP TL. If we wish to realize radiation in the broadside direction, we need the patch to couple energy,and the adjacent phase difference is zero. Since the SSPP TL has different wave numbers at different frequencies,there must be a specific frequency point to realize zero phase difference between two adjacent patches. Once there is no phase difference between the patches,the radiation beam can access the broadside direction.

    The asymmetric structure of the antenna effectively inhibits the generation of the stop-band, thereby removing the discontinuous scanning angle in the broadside,which is common in many other LWAs. The gap,d1, between the patches and the TL only affects the coupling energy from the TL.These radiating patches couple EM waves from the SSPP TL through periodic disturbances, and radiate them into free space.

    3.3. Analysis of beam scanning characteristics

    The propagation constant of EM waves guided by a slowwave structure is larger than that for a free space wave(βx >k0),and does not radiate.The design of the antenna is based on the principle of periodic disturbance,[10]which introduces an infinite number of spatial harmonics into the periodic traveling wave.

    It is assumed that the EM waves propagate in thexdirection. The fundamental mode is a slow wave(β0>k0). However,there is always a certain harmonic(usually the-1stharmonic)producing fast-wave radiation(-k0<βx <k0).

    On this basis, the propagation constant along thex-axis can be expressed as

    whereDis the length of the periodic disturbance, andβ0is the propagation constant in the fundamental mode. In order to achieve efficient frequency scanning, we generally adopt a space harmonic ofn=-1 to realize beam scanning.

    The deflection angle and propagation constant of the antenna satisfy the following relations:

    wherek0is the propagation constant in free space,θis the included angle between beam direction and+zaxis,andβxrepresents the propagation constant of the corresponding space harmonic.

    Figure 5(b) shows the dispersion curves of the periodic element of the antenna along with the distribution of multiple harmonics. In the figure,A1(A2),B1(B2) andC1(C2) represent the backward endfire, broadside radiation and forward endfire of harmonics,respectively:

    whereβ-1(f)represents the dispersion curve of phase change with frequency change in the-1stharmonic mode.

    The dispersion characteristic data obtained via simulation is discrete. When deriving the formula, the fitted continuous curve is more conducive to the operation of the relationship between multiple harmonic dispersion curves. The reference values of key experimental parameters obtained by this operation are conducive to the design of the antenna. The frequency band of the-1stharmonic radiation mode can be controlled by adjusting the size of theDparameter.

    In order to more accurately calculate the disturbance cycleDvalue corresponding to the-1stharmonic radiation mode, MATLAB is used to fit the dispersion curve; the resulting expression is as follows:

    wherea1=1.824×1019,a2=2.474×105,b1=23.61,b2=52.75,c1=2.217,c2=17.76.

    Fig. 5. Simulated results for harmonic dispersion and single-beam radiation conditions. (a)Diagram of fitting results and single-beam radiation conditions. (b)Harmonic dispersion curves of periodic elements.

    The fitting curve in Fig. 5(a) is in good agreement with the simulation curve. Thenstharmonic radiation is expected to concentrate energy in a single lobe,which serves to improve the gain of the main lobe:

    whereβf(A(n+1))represents the propagation constant of the(n+1)stharmonic backward endfire,andβf(C(n+1))represents the propagation constant of the (n+1)stharmonic forward endfire. Here,k0C(n)andk0A(n)represent the corresponding phase constant values ofC(n)andA(n),respectively.

    In Fig.5(a),the radiation condition of the-1stharmonic single beam can be obtained by substituting the fitted expression (D ≤16.8 mm). By substituting the fitting curve expression,the relationship betweenDparameter and operating bandwidth can be calculated,which is also convenient for antenna design. The fitted continuous curve enables a more accurate prediction of the relationship between beam direction and frequency.

    Different frequencies correspond to different propagation constants on the SSPP TL, resulting in different phases between the coupled patch arrays, culminating in the formation of different radiation directions in the far field. The expression obtained via fitting result in a more formulaic calculation,which makes the antenna radiation direction more accurate. By substituting into Eqs.(2),(3),and(7),we obtain frequency points corresponding to the theoretical radiation of the antenna. Theoretically,the frequency of backward,broadside,and forward endfire are 8.3 GHz, 9.1 GHz, and 9.6 GHz, respectively,while the actual results are 8.2 GHz,9.2 GHz,and 9.6 GHz, respectively. The theoretical calculation results are in good agreement with the simulation results,which demonstrate that the dispersion curve expression obtained by the fitting curve can be fitted with the calculation results.As a result,the expression plays a guiding role in adjusting the working bandwidth of the antenna, and predicting the relationship between radiation direction and frequency. The fitting result further validates the feasibility of Eq.(7),and the validity of these equations is convenient in terms of determining the operating band for given structural parameters.

    3.4. Analysis of high-frequency scanning rate implementation

    In Fig. 6, the first shifted dispersion curve has a lower frequency and a larger slope change,while working in a wider bandwidth.The second shift has a higher frequency point with a smaller slope change,and backward to forward scanning can theoretically be realized.

    Fig.6. Scanning rate comparison of two different momentum compensations for leaky-wave radiation.

    Since the scanning rate of leaky-wave antennae is defined as the beam-scanning range divided by the frequency bandwidth(BW),a higher scanning rate can be realized by adjusting the phase shift close to the asymptotic frequency,resulting in a smaller-slope dispersion curve. By adjusting theDvalue,the operating frequency tends to be asymptotic,so that the antenna has the property of realizing wide-scanning-angle in a narrower bandwidth. In this way, the scanning rate (SR) can be improved.

    Fig. 8. Measured results of radiation patterns and simulated total efficiency.(a)Simulated and measured normalized E-plane radiation patterns at different frequencies. (b)Simulated total efficiency of the proposed LWA.

    4. Experimental validation

    The proposed LWA was fabricated using standard printed circuit board (PCB) technology, and verified experimentally in an anechoic chamber. In Fig. 7, the vector network analyzer is used to measure the reflection coefficient,and the radiation mode is measured by the automatic turntable;the results show that the antenna can achieve reflection coefficients below-10 dB in the range of 8.3–9.8 GHz.The experimental results agree well with the simulated results. The frequency offset at the resonant frequency points may be caused by fabrication errors and different relative permittivity of the substrate,but the general trend remains consistent. Figure 7(b)also plots the relationship between realized gain and frequency, showing that the simulated peak gain of 11.6 dBi can be achieved at 9 GHz.

    Fig.7. Photograph of the fabricated antenna and performance parameters of the proposed antenna. (a)Photograph of the fabricated antenna under test. (b)Measured and simulated|S11|and gain.

    Fig.9. Phase distribution of the proposed SSPP LWA and 3D far-field radiation at corresponding frequency points.

    Furthermore,the measured radiation beam can scan from-13°to 162°within the frequency band of 8.2–9.8 GHz,while the simulated radiation beam can scan from-11°to 164°within the frequency band of 8.3–9.6 GHz, as shown in Fig. 8(a). In the experiment, frequency points corresponding to the five directions of backward endfire, backward, broadside, forward and forward maximum radiation angle are extracted and compared. The experimental and simulation results in the same direction can also be accepted for the processing and experimental operation methods, and the overall curves are in good agreement. The frequency scanning characteristics of the antenna radiation beam can be clearly seen from the figure.

    As shown in Fig.8(b),the simulated average efficiency of the antenna is as high as 81.4%within the working bandwidth,and the total radiation efficiency drops significantly in relation to the back and endfire directions.

    Figure 9 shows the phase distribution of the proposed SSPP LWA, and 3D far-field radiation at corresponding frequency points. The antenna uses single-beam radiation in the operating frequency band, and exhibits outstanding radiating performance in both forward and backward directions.

    Our antenna can achieve a large angle at a very high SR,with high radiation efficiency and high gain characteristics,demonstrating superior performance to other types of LWAs in almost all areas,as shown in Table 1.

    Table 1. Comparison of various antennas of the same type.

    5. Conclusion

    In this paper, we have proposed a single-beam leakywave antenna with wide-scanning-angle and high-scanningrate based on an SSPP TL. A series of patches is periodically placed near the SSPP TL to couple the EM energy and radiate to free space. The experimental results are in agreement with the simulation and the proposed antenna can realize a high scanning rate of 12.12 while achieving a wide scanning angle from-12°to 164°. The fitted dispersion curve is conducive to calculate the condition of single beam radiation.The formula obtained by fitting discrete points provides effective guidance in terms of antenna design. Our leaky-wave antenna exhibits superior performance to all those demonstrated in similar works. With its high radiation efficiency,wide scanning angle range,and high scanning rate,the proposed shows great potential for application in radar and wireless communication systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62171460 and 61801508), the Natural Science Basic Research Program of Shaanxi Province,China (Grant Nos. 2020JM-350, 20200108, 20210110, and 2020022), the Postdoctoral Innovative Talents Support Program of China(Grant Nos.BX20180375,2019M653960,and 2021T140111).

    猜你喜歡
    劉濤
    第2講 物質(zhì)構(gòu)成的奧秘
    助人為樂的劉濤
    助人為樂的劉濤
    Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
    劉濤《音調(diào)未定的儒家——2004年以來關(guān)于孔子的論爭·序》
    名作欣賞(2017年25期)2017-11-06 01:40:12
    劉濤:成為更好的自己
    金色年華(2017年7期)2017-06-21 09:27:52
    特殊的攝影集感恩父母
    新天地(2016年11期)2016-12-23 15:07:16
    家里的飯菜不重樣
    椰城(2015年12期)2015-11-18 15:11:04
    馬鈴薯主糧化
    特殊的遺產(chǎn)
    故事林(2015年1期)2015-05-14 17:30:34
    欧美成人一区二区免费高清观看| 欧美丝袜亚洲另类 | 亚洲精品亚洲一区二区| 亚洲成人精品中文字幕电影| 国产精品影院久久| 又粗又爽又猛毛片免费看| 亚洲精品在线美女| 成人国产综合亚洲| 99久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 无人区码免费观看不卡| 日日干狠狠操夜夜爽| 国产野战对白在线观看| 成年女人看的毛片在线观看| 在线国产一区二区在线| 欧美国产日韩亚洲一区| 俺也久久电影网| 久久亚洲真实| 91久久精品国产一区二区成人| 俄罗斯特黄特色一大片| 欧美日韩乱码在线| 美女xxoo啪啪120秒动态图 | 日本一本二区三区精品| 夜夜躁狠狠躁天天躁| 国产色爽女视频免费观看| 美女被艹到高潮喷水动态| 亚洲av成人精品一区久久| 免费一级毛片在线播放高清视频| 亚洲av电影不卡..在线观看| 国产成人影院久久av| 一个人观看的视频www高清免费观看| 亚洲无线在线观看| 久久人人爽人人爽人人片va | 麻豆成人午夜福利视频| 欧美丝袜亚洲另类 | 99热这里只有是精品在线观看 | 欧美一区二区亚洲| 欧美极品一区二区三区四区| av福利片在线观看| 久久精品国产清高在天天线| 在现免费观看毛片| 中文字幕久久专区| 久久精品人妻少妇| 淫秽高清视频在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲av五月六月丁香网| 一进一出好大好爽视频| 久久性视频一级片| 99热这里只有是精品50| 日韩免费av在线播放| 久久精品影院6| 午夜精品在线福利| 波多野结衣巨乳人妻| 久久精品人妻少妇| 制服丝袜大香蕉在线| 欧美3d第一页| 内射极品少妇av片p| 亚洲精品日韩av片在线观看| 夜夜爽天天搞| 日本在线视频免费播放| 三级国产精品欧美在线观看| 免费高清视频大片| 淫秽高清视频在线观看| 国产av一区在线观看免费| 色尼玛亚洲综合影院| 极品教师在线视频| 久久久久精品国产欧美久久久| 夜夜躁狠狠躁天天躁| 国产欧美日韩精品一区二区| 观看免费一级毛片| 国产一区二区三区在线臀色熟女| 有码 亚洲区| 亚洲熟妇熟女久久| 色综合站精品国产| 免费高清视频大片| 国产爱豆传媒在线观看| 国产私拍福利视频在线观看| 51午夜福利影视在线观看| 一进一出抽搐动态| 老女人水多毛片| 国产探花极品一区二区| 久久热精品热| 久久人人爽人人爽人人片va | 亚洲一区高清亚洲精品| 亚洲中文日韩欧美视频| 午夜福利高清视频| 97超视频在线观看视频| 成人无遮挡网站| 亚洲avbb在线观看| 亚洲成av人片在线播放无| 国产一级毛片七仙女欲春2| 少妇被粗大猛烈的视频| 黄片小视频在线播放| 国产精品精品国产色婷婷| 国产成人影院久久av| 欧美另类亚洲清纯唯美| 757午夜福利合集在线观看| 人人妻,人人澡人人爽秒播| 亚洲av日韩精品久久久久久密| 夜夜爽天天搞| 中文字幕免费在线视频6| 国产探花极品一区二区| 亚洲 国产 在线| 亚洲内射少妇av| 日本一二三区视频观看| 亚洲av电影不卡..在线观看| 免费看光身美女| 国产精品综合久久久久久久免费| 亚洲综合色惰| 午夜福利在线观看吧| 色av中文字幕| 国产精品人妻久久久久久| 一个人看的www免费观看视频| 亚洲专区中文字幕在线| 国产91精品成人一区二区三区| 日韩欧美免费精品| 久久天躁狠狠躁夜夜2o2o| 嫩草影院新地址| 午夜福利高清视频| 日韩欧美国产一区二区入口| 国产精品影院久久| 97人妻精品一区二区三区麻豆| 深爱激情五月婷婷| 国产69精品久久久久777片| 99久久99久久久精品蜜桃| 亚洲一区二区三区色噜噜| 久久久久久久久大av| 午夜亚洲福利在线播放| 成人av在线播放网站| 久久草成人影院| 免费人成在线观看视频色| 在线a可以看的网站| 精品久久久久久,| 91麻豆精品激情在线观看国产| or卡值多少钱| 两个人视频免费观看高清| 啪啪无遮挡十八禁网站| 美女cb高潮喷水在线观看| 欧美成人a在线观看| 国产亚洲av嫩草精品影院| 成人性生交大片免费视频hd| 国产真实乱freesex| 日韩亚洲欧美综合| 国产久久久一区二区三区| 99久久精品一区二区三区| 亚洲国产高清在线一区二区三| 五月伊人婷婷丁香| 亚洲精品影视一区二区三区av| 亚洲在线观看片| 神马国产精品三级电影在线观看| 最近中文字幕高清免费大全6 | 国产野战对白在线观看| 国产不卡一卡二| 波多野结衣高清作品| 天美传媒精品一区二区| 久久久久九九精品影院| 在现免费观看毛片| 色综合欧美亚洲国产小说| 天堂网av新在线| 在线a可以看的网站| 十八禁网站免费在线| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av涩爱 | 欧美最黄视频在线播放免费| 自拍偷自拍亚洲精品老妇| 男女视频在线观看网站免费| 最新在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 在线观看av片永久免费下载| 一级a爱片免费观看的视频| 久久中文看片网| 免费大片18禁| 1024手机看黄色片| 亚洲天堂国产精品一区在线| 在线天堂最新版资源| 欧美一区二区国产精品久久精品| 级片在线观看| 亚洲成人精品中文字幕电影| 别揉我奶头~嗯~啊~动态视频| 国产伦一二天堂av在线观看| 哪里可以看免费的av片| 老司机福利观看| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 亚洲自拍偷在线| 午夜免费激情av| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 老司机福利观看| 精品一区二区三区人妻视频| 亚洲精华国产精华精| 亚洲三级黄色毛片| 五月伊人婷婷丁香| 免费在线观看成人毛片| 成年女人看的毛片在线观看| 99久久无色码亚洲精品果冻| 在线播放无遮挡| 久久久成人免费电影| 51国产日韩欧美| 波野结衣二区三区在线| 99国产综合亚洲精品| 又爽又黄a免费视频| 成人国产一区最新在线观看| 欧美成人一区二区免费高清观看| 免费看光身美女| 免费高清视频大片| av黄色大香蕉| 精华霜和精华液先用哪个| 久久午夜亚洲精品久久| 国产精品1区2区在线观看.| www.999成人在线观看| 成年女人毛片免费观看观看9| 日本黄色视频三级网站网址| 老鸭窝网址在线观看| 波多野结衣巨乳人妻| 九九久久精品国产亚洲av麻豆| 熟女人妻精品中文字幕| 亚洲精品在线美女| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片 | 中文字幕熟女人妻在线| 免费在线观看日本一区| www.色视频.com| 在线免费观看不下载黄p国产 | 美女黄网站色视频| 内地一区二区视频在线| 久久国产乱子免费精品| 午夜激情欧美在线| 国产极品精品免费视频能看的| 99国产综合亚洲精品| 亚洲av成人精品一区久久| 精品久久久久久久久亚洲 | 中文字幕高清在线视频| 深夜精品福利| 国产在视频线在精品| 国产精品影院久久| 精品熟女少妇八av免费久了| 欧美三级亚洲精品| а√天堂www在线а√下载| 欧美最黄视频在线播放免费| 99热只有精品国产| 直男gayav资源| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 免费在线观看影片大全网站| 桃红色精品国产亚洲av| 免费无遮挡裸体视频| 国产一区二区三区在线臀色熟女| 免费观看精品视频网站| 国产私拍福利视频在线观看| 成人亚洲精品av一区二区| 嫩草影视91久久| a在线观看视频网站| 国产探花极品一区二区| 国产一区二区亚洲精品在线观看| 成年免费大片在线观看| 久久久久国内视频| 51午夜福利影视在线观看| 国产亚洲欧美98| 欧美绝顶高潮抽搐喷水| 12—13女人毛片做爰片一| 听说在线观看完整版免费高清| 日本黄色片子视频| 国产伦在线观看视频一区| 色噜噜av男人的天堂激情| 欧美色视频一区免费| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| 成年人黄色毛片网站| 麻豆一二三区av精品| 久久香蕉精品热| 欧美在线黄色| 久久6这里有精品| 午夜久久久久精精品| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站 | 在线观看舔阴道视频| 91av网一区二区| 亚洲精品影视一区二区三区av| 日日夜夜操网爽| 国产真实伦视频高清在线观看 | 十八禁人妻一区二区| 国内精品久久久久精免费| 亚洲真实伦在线观看| 日韩欧美精品免费久久 | 久久性视频一级片| 欧美另类亚洲清纯唯美| 一级黄色大片毛片| 国产亚洲欧美在线一区二区| 国产中年淑女户外野战色| 国产又黄又爽又无遮挡在线| 人妻制服诱惑在线中文字幕| 午夜福利高清视频| 久久人人爽人人爽人人片va | 亚洲不卡免费看| h日本视频在线播放| 12—13女人毛片做爰片一| av国产免费在线观看| 欧美性猛交黑人性爽| 18禁裸乳无遮挡免费网站照片| 色视频www国产| 丁香六月欧美| 一区二区三区激情视频| 99久久精品热视频| av视频在线观看入口| 蜜桃亚洲精品一区二区三区| 9191精品国产免费久久| 欧美日本亚洲视频在线播放| 精品久久国产蜜桃| 成人鲁丝片一二三区免费| 国内精品美女久久久久久| 午夜福利免费观看在线| 亚洲国产色片| 亚洲一区二区三区不卡视频| 久久99热这里只有精品18| 成年女人看的毛片在线观看| 国产av不卡久久| 亚洲第一电影网av| 成人av一区二区三区在线看| 成人特级av手机在线观看| 欧美3d第一页| 1000部很黄的大片| 欧美黑人巨大hd| 91在线观看av| 3wmmmm亚洲av在线观看| 亚洲欧美日韩高清专用| 日韩国内少妇激情av| 国产精品三级大全| 国产视频内射| 内射极品少妇av片p| 在线播放无遮挡| 黄色配什么色好看| 国产精品久久久久久亚洲av鲁大| 天天躁日日操中文字幕| 九色国产91popny在线| 一进一出抽搐gif免费好疼| 乱人视频在线观看| 亚洲男人的天堂狠狠| 麻豆成人av在线观看| 欧美一区二区国产精品久久精品| 欧美日韩亚洲国产一区二区在线观看| 身体一侧抽搐| 国产伦人伦偷精品视频| 国产av一区在线观看免费| 大型黄色视频在线免费观看| 99久久无色码亚洲精品果冻| 成人欧美大片| 18禁黄网站禁片免费观看直播| 久久久久九九精品影院| 日日摸夜夜添夜夜添小说| 久久久久亚洲av毛片大全| 亚洲精品粉嫩美女一区| 精品无人区乱码1区二区| 国产精品不卡视频一区二区 | 成年人黄色毛片网站| 窝窝影院91人妻| ponron亚洲| 超碰av人人做人人爽久久| 欧美另类亚洲清纯唯美| 午夜两性在线视频| 有码 亚洲区| 欧美黄色淫秽网站| 国产白丝娇喘喷水9色精品| 久久精品国产亚洲av香蕉五月| 毛片一级片免费看久久久久 | 免费大片18禁| 99热这里只有是精品在线观看 | 偷拍熟女少妇极品色| 婷婷丁香在线五月| 亚洲精品在线美女| 哪里可以看免费的av片| 精品无人区乱码1区二区| 国产伦一二天堂av在线观看| 午夜福利18| 欧美黑人巨大hd| 午夜精品一区二区三区免费看| 91字幕亚洲| 国产伦人伦偷精品视频| 国产精品永久免费网站| 12—13女人毛片做爰片一| 黄色视频,在线免费观看| 精品久久久久久成人av| 999久久久精品免费观看国产| 亚洲性夜色夜夜综合| 校园春色视频在线观看| 国产精品一区二区性色av| 久久久久久久午夜电影| 久久久国产成人精品二区| 黄色日韩在线| 久久婷婷人人爽人人干人人爱| 91久久精品国产一区二区成人| 亚洲天堂国产精品一区在线| 深夜a级毛片| 男人和女人高潮做爰伦理| 国内精品一区二区在线观看| 黄片小视频在线播放| 国产中年淑女户外野战色| 欧美日韩综合久久久久久 | 全区人妻精品视频| 久久久久久国产a免费观看| 国产精品久久久久久久久免 | 九九热线精品视视频播放| av黄色大香蕉| 精华霜和精华液先用哪个| 简卡轻食公司| 国产白丝娇喘喷水9色精品| 黄片小视频在线播放| 日本 av在线| 日韩有码中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一及| 最新在线观看一区二区三区| 亚洲av二区三区四区| 深夜精品福利| 国产精品伦人一区二区| 日韩欧美 国产精品| 99久久无色码亚洲精品果冻| 欧美日本视频| 在线免费观看的www视频| 人妻久久中文字幕网| 搡老岳熟女国产| bbb黄色大片| 2021天堂中文幕一二区在线观| 成年女人毛片免费观看观看9| 少妇丰满av| www.熟女人妻精品国产| 亚洲熟妇中文字幕五十中出| 赤兔流量卡办理| 制服丝袜大香蕉在线| 国产白丝娇喘喷水9色精品| 国产成人影院久久av| 我的老师免费观看完整版| 少妇人妻精品综合一区二区 | 丰满人妻一区二区三区视频av| 午夜精品一区二区三区免费看| 欧美一区二区国产精品久久精品| 国产探花极品一区二区| 日韩欧美精品免费久久 | 女人被狂操c到高潮| 国产不卡一卡二| 国内久久婷婷六月综合欲色啪| 88av欧美| 91在线观看av| 免费搜索国产男女视频| 亚洲电影在线观看av| 国产成人aa在线观看| 无遮挡黄片免费观看| 日韩欧美在线二视频| 美女高潮喷水抽搐中文字幕| 免费av观看视频| 亚洲av熟女| 久久国产精品影院| 日韩有码中文字幕| 美女免费视频网站| 一本精品99久久精品77| 欧美性猛交黑人性爽| 搞女人的毛片| 97热精品久久久久久| 免费在线观看影片大全网站| 国模一区二区三区四区视频| 亚洲精品一卡2卡三卡4卡5卡| 国产伦精品一区二区三区视频9| 久久久久久久午夜电影| 别揉我奶头 嗯啊视频| 亚洲成人精品中文字幕电影| 日韩 亚洲 欧美在线| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩高清专用| 听说在线观看完整版免费高清| 可以在线观看毛片的网站| 成年女人永久免费观看视频| 在线国产一区二区在线| 俄罗斯特黄特色一大片| 欧美激情国产日韩精品一区| 黄色视频,在线免费观看| 欧美+日韩+精品| 91在线精品国自产拍蜜月| 成人高潮视频无遮挡免费网站| 岛国在线免费视频观看| 免费无遮挡裸体视频| 91久久精品国产一区二区成人| 黄色配什么色好看| 两个人视频免费观看高清| 黄色配什么色好看| 最近最新免费中文字幕在线| 亚洲成人免费电影在线观看| 国产成人影院久久av| 亚洲 欧美 日韩 在线 免费| 亚洲欧美清纯卡通| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 精品一区二区三区视频在线观看免费| 国产亚洲精品久久久com| 国内精品美女久久久久久| 精品人妻熟女av久视频| 国产亚洲精品久久久久久毛片| 午夜免费激情av| 欧美三级亚洲精品| 亚洲欧美日韩高清专用| 国产免费一级a男人的天堂| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 1024手机看黄色片| 欧美一区二区精品小视频在线| 国产成人aa在线观看| 亚洲精品一区av在线观看| 一级黄片播放器| 国产野战对白在线观看| 老司机午夜福利在线观看视频| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| 色噜噜av男人的天堂激情| 欧美国产日韩亚洲一区| 亚洲av免费在线观看| 亚洲在线观看片| 色在线成人网| 观看美女的网站| 欧美不卡视频在线免费观看| 岛国在线免费视频观看| 亚洲av二区三区四区| 男人的好看免费观看在线视频| 12—13女人毛片做爰片一| 亚洲欧美日韩高清专用| 欧美+亚洲+日韩+国产| 欧美黄色淫秽网站| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美在线二视频| 日韩欧美三级三区| 亚洲av中文字字幕乱码综合| 乱人视频在线观看| 欧美日韩瑟瑟在线播放| 午夜福利在线观看吧| 国产极品精品免费视频能看的| 麻豆国产av国片精品| 1000部很黄的大片| 午夜免费激情av| 成人av一区二区三区在线看| 可以在线观看的亚洲视频| 久久欧美精品欧美久久欧美| 成年女人毛片免费观看观看9| 午夜a级毛片| 午夜久久久久精精品| 国产私拍福利视频在线观看| 国产精品一区二区免费欧美| 日本精品一区二区三区蜜桃| 成人欧美大片| 欧美性猛交黑人性爽| 欧美绝顶高潮抽搐喷水| 亚洲七黄色美女视频| 亚洲最大成人中文| 我的女老师完整版在线观看| 91在线精品国自产拍蜜月| 好看av亚洲va欧美ⅴa在| 免费看美女性在线毛片视频| 91在线观看av| 日日干狠狠操夜夜爽| 变态另类成人亚洲欧美熟女| 精品久久久久久久末码| 网址你懂的国产日韩在线| 性色avwww在线观看| 国产探花极品一区二区| 亚洲精华国产精华精| h日本视频在线播放| 国产精品久久视频播放| 成年版毛片免费区| 最近最新免费中文字幕在线| 国产黄片美女视频| 国产精华一区二区三区| 麻豆成人av在线观看| 午夜福利视频1000在线观看| 国产极品精品免费视频能看的| 亚洲最大成人手机在线| 一进一出抽搐gif免费好疼| 97超级碰碰碰精品色视频在线观看| 色噜噜av男人的天堂激情| 久久99热6这里只有精品| 日韩成人在线观看一区二区三区| 色综合欧美亚洲国产小说| 草草在线视频免费看| av黄色大香蕉| 亚洲国产欧洲综合997久久,| 国内精品久久久久精免费| 十八禁网站免费在线| 国产亚洲精品综合一区在线观看| 国产黄色小视频在线观看| 在线观看66精品国产| 久久午夜亚洲精品久久| 大型黄色视频在线免费观看| 色视频www国产| 一区福利在线观看| 日本一本二区三区精品| 国产三级黄色录像| a级一级毛片免费在线观看| 51午夜福利影视在线观看| 亚洲人成网站在线播放欧美日韩| 成人av在线播放网站| 久久欧美精品欧美久久欧美| 女人被狂操c到高潮| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产在线观看| 亚洲精品色激情综合| 成人精品一区二区免费| 18禁在线播放成人免费| 人妻制服诱惑在线中文字幕| 嫩草影院入口| 精品一区二区三区视频在线观看免费| 成人性生交大片免费视频hd| 亚洲乱码一区二区免费版| 精品午夜福利视频在线观看一区| 草草在线视频免费看| 夜夜躁狠狠躁天天躁| 90打野战视频偷拍视频| 亚洲最大成人中文| 久久久久九九精品影院|