• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction

    2023-03-13 09:20:08JiaChen陳佳PeiyueYu于沛玥LeiZhao趙磊YanruLi李彥如MeiyinYang楊美音JingXu許靜JianfengGao高建峰WeibingLiu劉衛(wèi)兵JunfengLi李俊峰WenwuWang王文武JinKang康勁WeihaiBu卜偉海KaiZheng鄭凱BingjunYang楊秉君LeiYue岳磊ChaoZuo左超YanCui崔巖andJunLuo羅軍
    Chinese Physics B 2023年2期
    關(guān)鍵詞:羅軍陳佳趙磊

    Jia Chen(陳佳) Peiyue Yu(于沛玥) Lei Zhao(趙磊) Yanru Li(李彥如) Meiyin Yang(楊美音)Jing Xu(許靜) Jianfeng Gao(高建峰) Weibing Liu(劉衛(wèi)兵) Junfeng Li(李俊峰)Wenwu Wang(王文武) Jin Kang(康勁) Weihai Bu(卜偉海) Kai Zheng(鄭凱)Bingjun Yang(楊秉君) Lei Yue(岳磊) Chao Zuo(左超) Yan Cui(崔巖) and Jun Luo(羅軍)

    1Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    2University of Chinese of Academy Sciences(UCAS),Beijing 100049,China

    3Semiconductor Technology Innovation Center(Beijing)Corporation,Beijing 100176,China

    4ULVAC Research Center Suzhou CO.,Ltd.,Suzhou 215026,China

    Keywords: multiferroic heterojunction,voltage-controlled magnetism,energy barrier

    1.Introduction

    Nowadays, 22-nm/28-nm embedded magneto-resistive random-access memory (eMRAM) is already used in industrial production.For the continuous scaling down, the better performance such as low power consumption and high thermal stability are desired.The energy barrier which separates two stable magnetizations is a crucial factor that decides the power consumption of data writing and thermal stability for MRAM.During the data writing, a lower energy barrier favors lower power consumption.On the other hand, a higher energy barrier means better stability against thermal disturbance, which is beneficial to data retention.

    Voltage-controlled magnetism is an effective method that can modulate magnetic behaviors such as coercivity,magnetization,magnetization switching,etc.[1-4]And it is also a useful way to control the energy barrier of magnetic material.The common forms of the voltage-controlled magnetism include voltage-controlled magnetic anisotropy (VCMA), magnetoionic effect, and multiferroic structure,etc.VCMA is commonly adopted in ferromagnetic/dielectric material system,the accumulation or dissipation of electrons at the interface under different voltages can control magnetic anisotropy and change energy barrier.[5-7]While VCMA effect is volatile, it is hard to modulate thermal stability for a long time.Magnetoionic effect is a method based on ion migration driven by electric field.Though magneto-ionic effect can impact magnetic property remarkably, it often needs long time, higher voltage or thermal assistance, which is not suitable for MRAM.[8-11]Ferroelectric/ferromagnetic composition is one of most studied multiferroic structures.Similarly,accumulation or dissipation of electrons at the interface can be realized due to ferroelectric polarization under different voltages.Unlike VCMA,the state of interfacial electrons can keep stable after the disappearance of voltage, which can achieve the target of lower energy barrier in data writing and higher energy barrier in data retention simultaneously.[12,13]

    In this work, a multiferroic heterojunction comprised of HfO2-based ferroelectric and Co ferromagnetic film is formed.Because of the reasonable design of film stacks and process,the heterojunction possesses both ferroelectricity and perpendicular magnetic anisotropy (PMA).The controllable magnetic behaviors including nucleation field, coercivity by different voltage pulses are found in Hall-bar device with the size of several hundred nanometers.Besides,through the calculation of effective anisotropy energy density under different voltage pulses,an efficient modulation on energy barrier is observed.What is more,all the above voltage-controlled properties are reversible and non-volatile.Considering the ferroelectricity, we attribute the voltage-controlled magnetism of the heterojunction to charge-dependent mechanism at the interface between ferroelectric and ferromagnetic layer.The study of voltage-controlled magnetic behaviors reveals the promising potential application of ferroelectric/ferromagnetic heterojunction in low-power and high-stability MRAM.

    2.Experiment details

    As shown in Fig.1, the film stacks in this work are Si/TiN(10 nm)/Hf0.5Zr0.5O2(10 nm)/Pt(0.5 nm)/Co(1 nm)/Ru(4 nm).The bottom electrode TiN is grown on 8-inch (1 inch=2.54 cm) Si substrate by magnetron sputtering, then the Hf0.5Zr0.5O2(HZO) layer is deposited through atomic layer deposition(ALD)using deionized water,Hf(NCH3C2H5)4and Zr(NCH3CH5)4as precursor,and the Pt,Co,Ru are grown by magnetron sputtering in sequence.After the film deposition, a 30-s annealing of temperature 400°C under N2is performed by rapid thermal annealing(RTA)system.Then, a 50-nm Si3N4is covered on the films as hard mask through plasma enhanced chemical vapor deposition(PECVD).Finally,the film stacks are processed by deep ultraviolet lithography (DUV), inductively coupled plasma (ICP)etching,passivation,interconnection and fabricated into Hallbar device with the size of several hundred nanometers covered by passivation layer of Si3N4.

    The basic magnetic property of films is performed on vibrating sample magnetometer(VSM),and the other measurement including anomalous Hall effect (AHE) test, voltagecontrolled magnetism and ferroelectric property are performed on the Hall-bar device fabricated by 8-inch process.

    Fig.1.(a)The film stacks and(b)the main processes of the film deposition.

    3.Results and discussion

    After the etching of hard mask, the whole morphology of Hall-bar structure is shown in Fig.2(a) obtained by scanning electron microscope (SEM).As presented in Fig.2(b),the width of channel is about 593 nm, the total area of the Hall-bar structure is about 100μm2.In order to get more details and prove the process,transmission electron microscopy(TEM)and related analysis are performed on the finished Hallbar device.Figure 2(c)presents the cross-sectional TEM image of the film stacks, all the layers can be seen clearly and the HZO layer shows polycrystalline morphology which is a typical feature of HfO2-based ferroelectric material.[14,15]Figure 2(d) exhibits the sidewall of Hall-bar structure from which we determine that the etching endpoint is in the HZO layer, which meets our expectation.The energy dispersive x-ray spectroscopy (EDX) is used to analyze distribution of elements, the slight indentations of Zr and Hf demonstrate the etching endpoint again.Obvious element diffusion is not found in the mapping results.Besides,we discover the appearance of some elements such as Hf, Zr, Pt, Ru at the sidewall which is caused by redeposition during etching.[16-19]

    Fig.2.(a)The top view of Hall-bar device obtained by SEM.(b)The channel SEM image of Hall-bar device.(c)The cross-sectional TEM image of film stacks.(d)The sidewall TEM image of Hall-bar device.(e)The distribution map of elements around sidewall.

    The magnetic hysteresis loops of film stacks after RTA implemented by VSM are shown in Fig.3.The magnetization reaches saturation at a smaller magnetic field and presents nearly 100% remanent magnetization under perpendicular magnetic field, while a larger saturation field and almost zero remanent magnetization are exhibited in theM-Hcurve measured under parallel magnetic field.The results indicate the film possesses PMA which mainly originates from the interfacial anisotropy.[20-22]From the measurement, we can get the saturation magnetization with the amplitude of 650 emu/cm3.

    Fig.3.The magnetic hysteresis loops of the film under perpendicular magnetic field (a) and parallel magnetic field (b).The unit 1 Oe=79.5775 A·m-1.

    For the Hall-bar device fabricated by 8-inch process,AHE test is used to detect the kinetic magnetism.During the measurement,the Hall resistance alongyaxis is measured by Keithley 2450 while a 50-μA current generated by Keithley 2602B is applied on thexaxis under perpendicular magnetic field as shown in Fig.4(a).The AHE is an electrical transport measurement method which can be expressed as[23-25]

    the anomalous Hall resistanceRHis comprised by ordinary part(R0B/t)and anomalous part(4πRsM/t),in whichtis the thickness of current channel andBis external magnetic field.Usually,the anomalous Hall coefficientRsis much larger than ordinary Hall coefficientR0, as a result, theRHis directly proportional to the perpendicular component of magnetization(M) which is used to study magnetic property.Like the test of VSM,the result in Fig.4(b)also presents rectangular loop which indicates the PMA keeps stable as the scaling down of the film stacks,proving the reliability of process.

    Fig.4.(a)The diagram of AHE test.(b)The R-H curve of Hall-bar device under perpendicular field.

    In order to investigate the effect on magnetic property caused by voltage,the AHE measurement with different voltage pulses are carried out.As shown in Fig.5(a), the 9-ms voltage pulse supplied by Keithley 2602B is applied on the HZO layer through the top and bottom electrode,after cutting off the voltage pulse,an AHE measurement is performed.Before and after the voltage pulse, the resistance of HZO layer is measured to ensure its intact.The electric field that points from top to bottom electrode is defined as positive andvice versa.An obvious deformation of the AHE curve is observed under different voltage pulses.After a-3-V pulse,the curve around coercivity becomes more sloping,which has a smaller nucleation field (Hn~15 Oe) and coercivity (Hc~160 Oe),while the saturation field is almost unchanged(Hs~254 Oe).On the contrary,when a 3-V pulse is applied on the device,the curve becomes more sharper, which has a larger nucleation field (Hn~172 Oe) and coercivity (Hc~225 Oe), the saturation field still keeps stable.Besides, a slight decrease and increase in saturation Hall resistance under negative and positive voltage pulse also emerges.Figure 5(c)presents involved fields under different voltage pulses, the different slopes of three curves indicate the different responses to voltage pulsethe sensitiveHN, slightly changedHcand stableHs.The various discrete extent of the three fields shows the different switching processes under different voltage pulses.

    The energy barrierEbof magnetic layer can be expressed as the product of effective anisotropy energy densityKuand volumeV.[26,27]We can getKuby the difference in magnetization work between the direction of hard-axis and easy-axis written as follows(for PMA):[28,29]

    in whichMxandMzare in-plane and perpendicular components of magnetization,RNoris the normalized Hall resistance.Figure 5(d) is the in-plane normalizedR-Hcurves under different voltage pulses.Through the above method,theKuunder different voltage pulses is obtained and shown in Fig.5(e).From the results, the voltage pulse has remarkable influence on theKu.TheKuis about 5.2×104erg/cm3(1 erg=10-7J)after a-3-V pulse,which is reduced by 83%compared with initial value (3.2×105erg/cm3), and it is enhanced to 4.1×105erg/cm3after a 3-V pulse, which is increased by 28%.The controlled coefficient calculated from fitting result is about 5.89×10-2erg/(V·cm2).The voltagedependentKuimplies bidirectional change in energy barrier based on the polarity of voltage.As depicted above, there is no voltage on the HZO layer during AHE test, therefore, the effect on magnetic property and energy barrier is non-volatile.In general, a reversible, non-volatile modulation on magnetic property, and energy barrier by voltage pulse can be realized in the HZO/Co heterojunction.

    Fig.5.(a)The test diagram of voltage-controlled magnetism.(b)The R-H curves under perpendicular field with different voltage pulses.(c)The nucleation field, coercivity and saturation field under different voltage pulses.(d) The R-H curves under in-plane field with different voltage pulses.(e) Voltagedependent effective anisotropy energy density.

    Fig.6.The P-V curve of Hall-bar device with the amplitude of 3 V.

    To explore the mechanism of voltage-dependent magnetism,the ferroelectric property is measured on Hall-bar device by ferroelectric tester(TF Analyzer 3000).A 1-kHz triangle wave signal with the amplitude of 3 V is applied on the device through the top and bottom electrode.The voltagedependent polarization is shown in Fig.6, hysteresis loop ofP-Vcurve is a characteristic of ferroelectric property, indicating the reasonable design of film stacks and process.The remanent polarization is about 21μC/cm2which demonstrates the Hall-bar device possesses good ferroelectric property.

    The charge-mediated modulation is a common mechanism which often refers to charge, spin and orbital degrees of freedom at the interface.In ferroelectric/ferromagnetic heterojunction, the change in interfacial electron density at ferromagnetic layer caused by ferroelectric polarization will induce the shift of Fermi level, leading to the change in the state distribution of spin electron, thus modulating magnetic property.[32,33]Duanet al.pointed that the atoms displacement involved in the reversal of ferroelectric polarization changes the chemical bonding at the interface,which has a significant effect on magnetism.[34,35]For some magnetic material systems,the surface magnetic anisotropy is sensitive to variation in interfacial electron density because of the spin-orbit coupling caused by interfacial orbital reconstruction.[36,37]

    As depicted in Fig.7,when a voltage pulse is applied on the Hall-bar device, the HZO ferroelectric layer is polarized and some bound charges are formed at the interface.Because of the Coulomb force, the electrons at metal layer will be attracted or repelled,thus inducing accumulation or dissipation of electrons at the interface.The variation in electron concentration is restricted to several angstroms due to charge screening in metal.In film deposition, a 0.5-nm Pt layer is inserted between HZO and Co layer to construct a Co/Pt interface which can provide interfacial anisotropy and promote PMA.The Pt spacer may weaken the effect on Co layer caused by the change in electron concentration from the view of conventional charge-mediated mechanisms.While Jiaet al.proposed a novel mechanism of interfacial spiral spin density in ferroelectric/ferromagnetic heterojunction, which can affect magnetism with a thickness about tens of nanometers through spin diffusion.[38]Subsequently, the mechanism has been demonstrated experimentally.[39]These results provide a new foundation for works about charge-mediated mechanism in ferroelectric/ferromagnetic heterojunction.In this work,we think a local spiral spin density related to interfacial charges is formed and a spin rearrangement is induced within a larger length which reaches the Co layer through spin diffusion.Therefore,the voltage-controlled magnetism is realized by the change in interfacial electron density across the Pt spacer.

    As shown in Fig.5(c),theHn,Hc,andHspresent different responds to voltage pulses, which may be related to different interactions between magnetic domains and ferroelectric domains.During the process of magnetization, some magnetic domains around the edge switch under larger external magnetic field,which decides the value ofHs.And the ferroelectricity degradation may happen in some ferroelectric domains around the edge of HZO layer caused by etching damage.[40]Therefore,these magnetic domains around the edge are not affected by ferroelectricity and present stableHs.Another possibility is that the defects at the interface have pinning effect on adjacent magnetic domains and ferroelectric domains simultaneously, these pinned magnetic domains need larger external magnetic field (Hs) to switch and the pinned ferroelectric domains are hard to switch during polarization.Thus, there are almost no couplings between these magnetic and ferroelectric domains.The magnetization switching behaviors of other magnetic domains are controlled by ferroelectricity and show voltage-dependentHnandHcas a result of statistics.

    Because the non-volatile characteristic is one of ferroelectric properties, a reversible and non-volatile modulation in magnetic property can be realized in HZO/Co multiferroic heterojunction.Moreover, the voltage-relatedKuis proved above,which means energy barrier is controllable as shown in Fig.7.In MRAM,the lower energy barrier is desired during data writing while a higher energy barrier favors data retention.

    Fig.7.The interfacial charges under different voltage pulses and corresponding energy barrier.

    4.Conclusion

    We investigated the voltage-controlled magnetism in Hall-bar device with the size of several hundred nanometers constructed by HZO/Co multiferroic heterojunction systematically in this work.The nucleation field,coercivity,and saturation field ofR-Hcurve under perpendicular field show different responses to voltage pulse, which is considered to different interactions between magnetic domains and ferroelectric domains.Through ferroelectric test and analysis, we attribute the voltage-dependent magnetism to interfacial charge caused by ferroelectric polarization.Besides, we calculated the effective anisotropy energy density under different voltage pulses.Compared with the initial value,a decrease of 83%under-3 V and increase of 28%under 3 V are observed.All the above variations are non-volatile because of the non-volatile characteristic of ferroelectric property.The controllable effective anisotropy energy density means energy barrier can be modulated by voltage pulse.For MRAM, a lower energy barrier denotes lower power consumption during data writing while a higher energy barrier indicates better stability which is beneficial to data retention.The research in this work shows an effective method to control energy barrier,proposing a scenario for low-power and high-stability MRAM.

    Acknowledgements

    Project supported by Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA18000000), the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015097),and Guangzhou City Research and Development Program in Key Fields(Grant No.202103020001).

    猜你喜歡
    羅軍陳佳趙磊
    揮竿釣魚贏得109萬(wàn)元大獎(jiǎng)
    哭泣的意外好處
    《囍》
    炎黃地理(2021年5期)2021-09-10 01:32:23
    陳佳成為聲雅音響品牌大使
    湖南十六歲少年殺師事件始末
    雜文選刊(2017年12期)2017-12-13 00:19:06
    任時(shí)光匆匆流去,我只在乎你 陳佳《又見鄧麗君》
    羅軍科技造就共享價(jià)值
    Experimental study on the time-dependent dynamic mechanical behaviour of C60 concrete under high-temperatures
    Runge-Kutta Multi-resolution Time-Domain Method for Modeling 3DDielectric Curved Objects
    蘇珊姑媽的妙招
    国产亚洲av嫩草精品影院| 成人精品一区二区免费| 精品熟女少妇av免费看| 国产一区二区三区在线臀色熟女| 看黄色毛片网站| 国产精品久久视频播放| 精品熟女少妇av免费看| 大又大粗又爽又黄少妇毛片口| 九色成人免费人妻av| 天天一区二区日本电影三级| 日韩欧美国产在线观看| 国产男人的电影天堂91| 久久精品人妻少妇| 真人做人爱边吃奶动态| 国产69精品久久久久777片| 欧美在线一区亚洲| 热99在线观看视频| 免费观看在线日韩| 日韩大尺度精品在线看网址| 久久精品久久久久久噜噜老黄 | 亚洲天堂国产精品一区在线| 99久久精品国产国产毛片| 俄罗斯特黄特色一大片| 国产免费男女视频| 麻豆精品久久久久久蜜桃| av在线天堂中文字幕| 国产精品av视频在线免费观看| 寂寞人妻少妇视频99o| 午夜日韩欧美国产| 午夜精品国产一区二区电影 | 三级毛片av免费| 天美传媒精品一区二区| av免费在线看不卡| 久久久久久九九精品二区国产| 黄色欧美视频在线观看| 国产精品伦人一区二区| 一本久久中文字幕| 99在线人妻在线中文字幕| av在线观看视频网站免费| 91狼人影院| 最近最新中文字幕大全电影3| 三级毛片av免费| videossex国产| 欧美性猛交╳xxx乱大交人| 成人国产麻豆网| 日产精品乱码卡一卡2卡三| 在线观看66精品国产| 成人精品一区二区免费| 九九爱精品视频在线观看| 亚洲四区av| 亚洲av熟女| 国产一区二区亚洲精品在线观看| 搡女人真爽免费视频火全软件 | 精华霜和精华液先用哪个| 91久久精品电影网| 国语自产精品视频在线第100页| 久久久久久久亚洲中文字幕| 欧美xxxx性猛交bbbb| 18禁在线无遮挡免费观看视频 | 久久99热6这里只有精品| 精品免费久久久久久久清纯| 欧美bdsm另类| 免费av不卡在线播放| 国产精品不卡视频一区二区| 九九爱精品视频在线观看| 午夜激情欧美在线| 18禁在线无遮挡免费观看视频 | 亚洲天堂国产精品一区在线| 国产69精品久久久久777片| 在现免费观看毛片| 禁无遮挡网站| 最近中文字幕高清免费大全6| 国产欧美日韩精品亚洲av| 久久亚洲精品不卡| 亚洲精品在线观看二区| 欧美绝顶高潮抽搐喷水| 日韩大尺度精品在线看网址| 老司机午夜福利在线观看视频| 国产精品一区www在线观看| 99久久九九国产精品国产免费| 国产大屁股一区二区在线视频| 午夜激情福利司机影院| 最近手机中文字幕大全| 女人十人毛片免费观看3o分钟| АⅤ资源中文在线天堂| 97人妻精品一区二区三区麻豆| 午夜福利高清视频| 黄色一级大片看看| 国内精品久久久久精免费| 亚洲图色成人| 亚洲欧美中文字幕日韩二区| 99久久无色码亚洲精品果冻| 一级毛片电影观看 | 乱人视频在线观看| 免费高清视频大片| 精品国产三级普通话版| 亚洲美女黄片视频| 老熟妇仑乱视频hdxx| 网址你懂的国产日韩在线| 搡老熟女国产l中国老女人| 美女被艹到高潮喷水动态| 亚洲精品乱码久久久v下载方式| 最近的中文字幕免费完整| 俺也久久电影网| 亚洲国产欧美人成| 九九在线视频观看精品| 亚洲在线观看片| 精品久久久久久成人av| 欧美3d第一页| aaaaa片日本免费| 非洲黑人性xxxx精品又粗又长| 日本欧美国产在线视频| 久久韩国三级中文字幕| 日韩强制内射视频| 天堂动漫精品| 国产精品,欧美在线| 18禁黄网站禁片免费观看直播| 日韩精品青青久久久久久| 国产午夜福利久久久久久| 精品不卡国产一区二区三区| 久久久久国产精品人妻aⅴ院| 中国美白少妇内射xxxbb| 99精品在免费线老司机午夜| 精品人妻一区二区三区麻豆 | 晚上一个人看的免费电影| 51国产日韩欧美| 中文字幕精品亚洲无线码一区| 一本一本综合久久| 高清毛片免费观看视频网站| 欧美zozozo另类| 免费看美女性在线毛片视频| 波多野结衣高清作品| 免费不卡的大黄色大毛片视频在线观看 | 国产男靠女视频免费网站| 日韩人妻高清精品专区| 欧美三级亚洲精品| 全区人妻精品视频| 久久精品国产亚洲av涩爱 | 精品久久久噜噜| 真实男女啪啪啪动态图| 成年av动漫网址| 色综合站精品国产| 亚洲精品亚洲一区二区| 成人永久免费在线观看视频| 美女被艹到高潮喷水动态| 国产av麻豆久久久久久久| 国产成人a区在线观看| 男人狂女人下面高潮的视频| 欧美xxxx性猛交bbbb| 人妻少妇偷人精品九色| 好男人在线观看高清免费视频| 亚洲高清免费不卡视频| 久久天躁狠狠躁夜夜2o2o| 亚洲七黄色美女视频| 偷拍熟女少妇极品色| 亚洲国产欧美人成| 欧美zozozo另类| 男人和女人高潮做爰伦理| 久久精品国产99精品国产亚洲性色| 一本精品99久久精品77| 可以在线观看毛片的网站| 国产伦在线观看视频一区| 看十八女毛片水多多多| 色哟哟哟哟哟哟| 午夜福利18| 久久这里只有精品中国| 国产精品人妻久久久影院| 亚洲18禁久久av| 久久久精品94久久精品| av视频在线观看入口| 亚洲欧美日韩高清专用| 校园春色视频在线观看| 亚洲欧美日韩高清在线视频| 国产精品人妻久久久久久| 欧美+日韩+精品| 网址你懂的国产日韩在线| 精品一区二区三区人妻视频| 高清午夜精品一区二区三区 | 国产午夜精品论理片| 免费一级毛片在线播放高清视频| 内地一区二区视频在线| 亚洲图色成人| 成人欧美大片| 尾随美女入室| 精品不卡国产一区二区三区| av.在线天堂| 一区二区三区高清视频在线| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久av不卡| 最近手机中文字幕大全| 美女 人体艺术 gogo| 亚洲美女搞黄在线观看 | 神马国产精品三级电影在线观看| 午夜福利18| 免费av毛片视频| 国产黄a三级三级三级人| 深夜精品福利| av中文乱码字幕在线| 97超视频在线观看视频| 精品久久久久久久久av| 亚洲国产精品久久男人天堂| 亚洲天堂国产精品一区在线| 一级黄片播放器| 简卡轻食公司| 一卡2卡三卡四卡精品乱码亚洲| 日日摸夜夜添夜夜添小说| 一进一出抽搐gif免费好疼| 91av网一区二区| 久久精品影院6| 日本欧美国产在线视频| 中文在线观看免费www的网站| 18+在线观看网站| 国产老妇女一区| 国产精品免费一区二区三区在线| 午夜老司机福利剧场| 啦啦啦啦在线视频资源| 天堂网av新在线| 婷婷亚洲欧美| av中文乱码字幕在线| 国产精品爽爽va在线观看网站| 在线免费观看不下载黄p国产| 成人性生交大片免费视频hd| 精品一区二区三区视频在线| 亚洲第一电影网av| 欧美日本视频| av天堂中文字幕网| 黄片wwwwww| 一级毛片久久久久久久久女| 日本撒尿小便嘘嘘汇集6| 啦啦啦观看免费观看视频高清| 午夜免费男女啪啪视频观看 | 亚洲精品一区av在线观看| 九九久久精品国产亚洲av麻豆| 欧美性猛交黑人性爽| 精品久久久久久久末码| 久99久视频精品免费| 精品日产1卡2卡| 啦啦啦韩国在线观看视频| 黄色一级大片看看| 日日啪夜夜撸| 最好的美女福利视频网| 久久久精品欧美日韩精品| 性插视频无遮挡在线免费观看| 最近2019中文字幕mv第一页| 简卡轻食公司| 日本黄色片子视频| 亚洲天堂国产精品一区在线| 国产成人一区二区在线| 成人亚洲欧美一区二区av| 97碰自拍视频| 久久精品国产亚洲av香蕉五月| 少妇的逼好多水| 国产高清有码在线观看视频| 久久九九热精品免费| 干丝袜人妻中文字幕| 丝袜喷水一区| 国产精品乱码一区二三区的特点| 国产熟女欧美一区二区| 亚洲成人精品中文字幕电影| 97超视频在线观看视频| 超碰av人人做人人爽久久| 高清毛片免费观看视频网站| 日本黄色片子视频| 天堂网av新在线| 人妻制服诱惑在线中文字幕| 在线观看av片永久免费下载| 欧美日韩精品成人综合77777| 九色成人免费人妻av| 免费大片18禁| videossex国产| 亚洲人成网站在线播| 伦理电影大哥的女人| 搡女人真爽免费视频火全软件 | 欧美激情在线99| 能在线免费观看的黄片| 日本在线视频免费播放| 看片在线看免费视频| 两个人的视频大全免费| 十八禁网站免费在线| 久99久视频精品免费| 黄色欧美视频在线观看| 亚洲经典国产精华液单| 亚洲真实伦在线观看| 亚洲av免费在线观看| 舔av片在线| 欧美色视频一区免费| 精品久久久久久久久久免费视频| 亚洲欧美成人精品一区二区| 亚洲欧美成人精品一区二区| 国产精品一区二区三区四区免费观看 | 中文资源天堂在线| 99久久精品一区二区三区| 婷婷亚洲欧美| 国产一级毛片七仙女欲春2| 欧美日韩精品成人综合77777| 99国产精品一区二区蜜桃av| 国产精品伦人一区二区| 尾随美女入室| 又粗又爽又猛毛片免费看| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 成年女人毛片免费观看观看9| 久久亚洲国产成人精品v| 欧美日韩一区二区视频在线观看视频在线 | 久久精品国产自在天天线| eeuss影院久久| 色综合站精品国产| 亚洲欧美中文字幕日韩二区| 天堂av国产一区二区熟女人妻| 精品不卡国产一区二区三区| 国产精品免费一区二区三区在线| 深爱激情五月婷婷| 最近的中文字幕免费完整| 日本在线视频免费播放| 人妻制服诱惑在线中文字幕| 我的老师免费观看完整版| 深夜a级毛片| 露出奶头的视频| 亚洲一区高清亚洲精品| 久久精品国产亚洲av涩爱 | 亚洲专区国产一区二区| 国产爱豆传媒在线观看| 色在线成人网| av在线天堂中文字幕| 国产单亲对白刺激| 国语自产精品视频在线第100页| 亚洲av免费在线观看| 成人av在线播放网站| 国产欧美日韩精品一区二区| 三级经典国产精品| 久久精品久久久久久噜噜老黄 | 国产激情偷乱视频一区二区| 国产精品一区二区性色av| 国产私拍福利视频在线观看| 亚洲精品久久国产高清桃花| 91精品国产九色| 成人高潮视频无遮挡免费网站| 中文字幕久久专区| 中文字幕av在线有码专区| 久久久久久九九精品二区国产| 亚洲av一区综合| 久久久国产成人免费| 国产精品久久电影中文字幕| 国产成人freesex在线 | 麻豆国产av国片精品| 级片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产不卡一卡二| 日本a在线网址| 中出人妻视频一区二区| 日韩大尺度精品在线看网址| 日本-黄色视频高清免费观看| 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 联通29元200g的流量卡| 日本成人三级电影网站| 国产精品三级大全| 亚洲va在线va天堂va国产| 乱系列少妇在线播放| 可以在线观看毛片的网站| 又黄又爽又免费观看的视频| 97碰自拍视频| 亚洲国产精品成人综合色| 日本一本二区三区精品| 国产精品综合久久久久久久免费| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| 97超碰精品成人国产| 99久久久亚洲精品蜜臀av| 久久久精品94久久精品| 男人狂女人下面高潮的视频| 在线a可以看的网站| 国产一区二区在线av高清观看| 亚洲欧美中文字幕日韩二区| 男女那种视频在线观看| 中国美白少妇内射xxxbb| 久久精品人妻少妇| 九色成人免费人妻av| 麻豆av噜噜一区二区三区| 国产精品1区2区在线观看.| 精品久久久久久久久av| 久久草成人影院| 在线天堂最新版资源| 一级毛片电影观看 | 亚洲四区av| 99久久成人亚洲精品观看| 日本免费一区二区三区高清不卡| 国产久久久一区二区三区| 人妻制服诱惑在线中文字幕| 一进一出好大好爽视频| 在线免费十八禁| 看免费成人av毛片| 国产欧美日韩精品亚洲av| 国产亚洲欧美98| 日韩精品中文字幕看吧| 国产成人91sexporn| 成人性生交大片免费视频hd| 国内精品一区二区在线观看| 免费电影在线观看免费观看| 欧美色视频一区免费| 国产欧美日韩精品一区二区| 成人三级黄色视频| 久久久国产成人免费| 免费看光身美女| 床上黄色一级片| 亚洲人成网站在线播| 国产高清视频在线播放一区| 国产精品女同一区二区软件| 国产v大片淫在线免费观看| 欧美人与善性xxx| av在线观看视频网站免费| 嫩草影院新地址| 联通29元200g的流量卡| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 在线观看66精品国产| 俄罗斯特黄特色一大片| 一卡2卡三卡四卡精品乱码亚洲| .国产精品久久| 免费不卡的大黄色大毛片视频在线观看 | 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 美女 人体艺术 gogo| 看免费成人av毛片| 免费av毛片视频| 成人性生交大片免费视频hd| 欧美日韩综合久久久久久| 国产精品爽爽va在线观看网站| 国产69精品久久久久777片| 人妻丰满熟妇av一区二区三区| 日本五十路高清| 性色avwww在线观看| 久久久久精品国产欧美久久久| 日韩欧美 国产精品| 久久久久久大精品| 极品教师在线视频| 国产亚洲精品久久久久久毛片| 高清毛片免费观看视频网站| 中文字幕免费在线视频6| 国产极品精品免费视频能看的| 日韩欧美免费精品| av黄色大香蕉| 一区二区三区高清视频在线| 国产蜜桃级精品一区二区三区| 久久人人爽人人片av| 在线a可以看的网站| 国产一区二区三区在线臀色熟女| 99久久成人亚洲精品观看| 午夜福利在线在线| 成人无遮挡网站| 国产精品一区二区免费欧美| 国产精品综合久久久久久久免费| 深爱激情五月婷婷| 中文字幕久久专区| 久久久成人免费电影| 韩国av在线不卡| 成人特级黄色片久久久久久久| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 五月伊人婷婷丁香| 1024手机看黄色片| 欧美日韩国产亚洲二区| 久久精品国产亚洲av香蕉五月| 乱系列少妇在线播放| 成年版毛片免费区| a级毛片a级免费在线| 精品一区二区三区av网在线观看| 少妇被粗大猛烈的视频| 久久精品国产亚洲网站| 插逼视频在线观看| 俄罗斯特黄特色一大片| 欧美潮喷喷水| 婷婷六月久久综合丁香| 美女 人体艺术 gogo| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av中文av极速乱| 国产精品久久视频播放| 国产在线精品亚洲第一网站| 日本-黄色视频高清免费观看| 狠狠狠狠99中文字幕| 亚洲av中文字字幕乱码综合| 深夜精品福利| 午夜久久久久精精品| 国产不卡一卡二| 女人被狂操c到高潮| 午夜福利高清视频| 亚洲精品影视一区二区三区av| 欧美激情国产日韩精品一区| 国产男人的电影天堂91| 欧美丝袜亚洲另类| 欧美最新免费一区二区三区| av在线天堂中文字幕| 国产在线男女| 亚洲精品色激情综合| 干丝袜人妻中文字幕| 99久久久亚洲精品蜜臀av| 一本久久中文字幕| 精品福利观看| 最新中文字幕久久久久| 少妇人妻精品综合一区二区 | 卡戴珊不雅视频在线播放| 国产色婷婷99| 91av网一区二区| 国产欧美日韩一区二区精品| 一级黄色大片毛片| 91久久精品国产一区二区成人| 中文字幕av在线有码专区| 久久人人爽人人爽人人片va| 中文在线观看免费www的网站| 天天躁夜夜躁狠狠久久av| 亚洲va在线va天堂va国产| 熟妇人妻久久中文字幕3abv| 麻豆国产97在线/欧美| 国产在视频线在精品| 国产熟女欧美一区二区| 日本爱情动作片www.在线观看 | 一区福利在线观看| 美女高潮的动态| 国产精品综合久久久久久久免费| 18禁裸乳无遮挡免费网站照片| 伊人久久精品亚洲午夜| 免费av毛片视频| 亚洲人成网站在线播| 亚洲精品成人久久久久久| 亚洲人与动物交配视频| .国产精品久久| 国产精品精品国产色婷婷| 免费人成在线观看视频色| 久久久久久伊人网av| 又爽又黄无遮挡网站| 天天躁夜夜躁狠狠久久av| 高清毛片免费观看视频网站| 国产精品乱码一区二三区的特点| 一级毛片电影观看 | 国产黄片美女视频| 免费大片18禁| 天堂av国产一区二区熟女人妻| 精品乱码久久久久久99久播| 精品久久久久久成人av| 亚洲美女黄片视频| 一进一出抽搐动态| 国产成人精品久久久久久| 亚洲五月天丁香| 伦精品一区二区三区| 日韩欧美三级三区| 国产久久久一区二区三区| 色在线成人网| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区性色av| 久久久久国内视频| 网址你懂的国产日韩在线| 黄色视频,在线免费观看| 丝袜喷水一区| 高清日韩中文字幕在线| 真实男女啪啪啪动态图| 亚洲av美国av| 亚洲在线观看片| 国产国拍精品亚洲av在线观看| 欧美一级a爱片免费观看看| 亚洲18禁久久av| 中文字幕久久专区| 欧美精品国产亚洲| 可以在线观看毛片的网站| 草草在线视频免费看| 女的被弄到高潮叫床怎么办| avwww免费| 欧美另类亚洲清纯唯美| 亚洲精品亚洲一区二区| 日韩亚洲欧美综合| 国产成人精品久久久久久| 亚洲精品国产av成人精品 | 免费大片18禁| 国产伦在线观看视频一区| 国国产精品蜜臀av免费| 国产在线男女| 欧美性猛交╳xxx乱大交人| 欧美日韩国产亚洲二区| а√天堂www在线а√下载| 国产伦一二天堂av在线观看| 听说在线观看完整版免费高清| 久久久欧美国产精品| 欧美性猛交黑人性爽| 久久久久免费精品人妻一区二区| 国产精品精品国产色婷婷| 亚洲,欧美,日韩| 日韩av在线大香蕉| 欧美最新免费一区二区三区| 一级毛片我不卡| 亚洲人成网站在线播放欧美日韩| 成人无遮挡网站| 高清午夜精品一区二区三区 | 最近视频中文字幕2019在线8| 小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区三区| 久久久久久久久中文| 我要搜黄色片| 大香蕉久久网| 美女内射精品一级片tv| 在线a可以看的网站| 99久久精品国产国产毛片| 国内精品美女久久久久久| 99久久精品国产国产毛片| 不卡一级毛片| 久久久久性生活片| 少妇丰满av| 亚洲在线自拍视频| 嫩草影院精品99| 日韩,欧美,国产一区二区三区 | 久久久色成人| 又粗又爽又猛毛片免费看| 美女 人体艺术 gogo| 不卡一级毛片| 精品无人区乱码1区二区| 午夜福利18| 久久久久久久久久久丰满|