• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on the time-dependent dynamic mechanical behaviour of C60 concrete under high-temperatures

    2015-04-22 07:24:52LIHongchao李洪超LIUDianshu劉殿書ZHAOLei趙磊GregYOULIANGShufeng梁書鋒WANGYutao王宇濤
    關鍵詞:梁書趙磊

    LI Hong-chao(李洪超), LIU Dian-shu(劉殿書) ZHAO Lei(趙磊),Greg YOU, LIANG Shu-feng(梁書鋒) WANG Yu-tao(王宇濤)

    (1.School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;2.Faculty of Science and Technology, Federation University Australia, University Drive, Mt Helen, Ballarat,Victoria 3353, Australia)

    ?

    Experimental study on the time-dependent dynamic mechanical behaviour of C60 concrete under high-temperatures

    LI Hong-chao(李洪超), LIU Dian-shu(劉殿書)1, ZHAO Lei(趙磊)2,Greg YOU2, LIANG Shu-feng(梁書鋒)1, WANG Yu-tao(王宇濤)1

    (1.School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;2.Faculty of Science and Technology, Federation University Australia, University Drive, Mt Helen, Ballarat,Victoria 3353, Australia)

    To study the dynamic mechanical behavior of C60 concrete at high temperatures, impact tests under different steady-state temperature fields (100, 200, 300, 400 and 500 ℃) were conducted under a variety of durations at the corresponding constant high temperature, namely 0, 30, 60, 90 and 120 min, employing split Hopkinson pressure bar (SHPB) system. In addition, the impact tests were also conducted on the specimens cooled from the high temperature to the room temperature and the specimen under room temperature. From the analysis, it is found that C60 concrete has a time-dependent behavior under high-temperature environment. Under 100, 200, 300, 400 and 500 ℃ steady-state temperature fields respectively, as the duration at the corresponding constant high temperature increases, the dynamic compressive strength and the elastic modulus decrease but the peak strain generally ascends. After cooling to the room temperature, the dynamic compressive strength and the elastic modulus descend as well, but the peak strain increases first and then decreases slightly, when the duration increases. For specimens under and cooled from the high-temperature, as the temperature increases, the dynamic compressive strength and the peak strain raise first and then reduce gradually,and the dynamic compressive strength of specimen under high temperature is higher than that of the specimen cooled from the same high temperature.

    concrete; SHPB; high temperature; dynamic mechanical behavior

    Concrete-like material has been widely used in the construction industry as one of the most important building materials. Buildings collapse frequently due to fire hazards[1-3]. Moreover, fire disaster has become more dangerous in urban area due to high-density zones and high-rise buildings. Furthermore, progressive structure collapse could occur accompanied with explosion and fire caused by unexpected events, such as accidents in chemical plants or terrorists’ attacks[4]. It has been realised that steel structures have a low thermo tolerance, especially since the 9/11 Attacks, and concrete has been attracting more and more attentions for its superior thermo tolerance[5].

    Numerous studies on mechanical properties of concrete have been done in the world, and split Hopkinson pressure bar (SHPB) technique has been used widely to measure the dynamic strength of concrete-like materials at high strain-rate between 10-1and 10-3s-1[6]. Wang et al.[7]fabricated three types of steel fiber reinforced concrete (SFRC) specimens with 0, 3.0% and 6.0% (percentage by volume) of ultrashort steel fiberand employed the SHPB system to impacted the specimens, and found that both the volume fraction of steel-fiber and strain-rate of loading exert significant influences on the SFRC strength. Li et al.[8], Jia et al.[9-10]employed the SHPB system to conduct concrete impact-compression tests under different temperatures, finding the effects of strain rate and temperature on the mechanical properties of concrete. Su et al.[11]studied the dynamic compressive mechanical properties of concrete under high temperature by SHPB system, and found that the dynamic compressive strength and specific energy absorption of concrete increase with the strain rate under different temperatures and at 400 ℃ it is increased by 14%, but at 200, 600, 800 ℃, it is decreased by 20%, 16% and 48% respectively, comparing with that at room temperature. Li et al.[12]tested concrete’s dynamic mechanical property under comparative conditions between room temperature and post-high temperature using SHPB equipment, and found that between 400 ℃-800 ℃, the dynamic compressive strength drops and critical strain raised dramatically. Yang et al.[13]did some impact tests on steel fiber reinforced reactive powder concrete specimens under the temperature between 400 ℃-800 ℃, as a result, the dynamic compressive strength decreases to 62% and 27% and the elastic modulus reduces to 83% and 35.6% respectively. Kim et al.[14]found there is a close relationship between the increase of dynamic compressive strength and the strain rate through SHPB equipment.

    Above studies increase our understanding of the mechanical property of concrete, however, there is insufficient research on the dynamic mechanical behavior under different high temperatures and especially the effect of durations maintaining constant elevated temperature. This paper thereby discussed the law of dynamic mechanical properties by conducting impact tests on C60 concrete specimens through Φ75 mm SHPB equipment under a set of elevated temperatures and various durations of the specific constant temperature.

    1 Experiment

    1.1 Experimental apparatus and data processing

    The experimental apparatus was Φ75 mm SHPB system consisting of power unit, pressure bar and data acquisition unit (Fig.1). A ceramic fiber resistance furnace was used for heating with a rated temperature of 1 300 ℃.

    Fig.1 Illustration of the Φ75 mm SHPB test apparatus

    Experimental data were processed employing the simplified three-wave equations[15]shown below, resulting in the strain-stress relation of concrete (strain rate range 73-117 s-1).

    (1)

    (2)

    (3)

    whereεi(t), εr(t)andεt(t)representthestrainsofincidentwave,reflectedwaveandtransmittedwaverespectively; A0iscross-sectionalarea; E0andC0areYoung’smodulusandelasticwavevelocityofrod’smaterial; AsandLstandfortheoriginalcross-sectionalareaandlengthofspecimen.

    1.2Testspecimenpreparation

    AccordingtothestudybyLietal.[16],foralargeΦ75 mm SHPB equipment, experimental data can accurately reveal the mechanical property of concrete specimen when the length of specimen is in the range of 30-75 mm (length-to-diameter ratio rangeL/D=0.4-1.0). C60 concrete specimens with a standard formulation (Tab.1) were placed in a standard curing room once the specimens were prepared. After 28 days’ standard curing, the concrete specimens were made into standard Φ75 mm×50 mm cylindrical specimens.

    Tab.1 C60 concrete formulation kg/m3

    1.3 Experimental procedure

    There were six different experimental temperatures, e.g. room temperature, 100, 200, 300, 400, and 500 ℃. To make internal and external temperature of specimen’s uniform by homogeneous heating, ANSYS software was used to calculate and analyze the temperature field in the furnace and to calculate the required heating time. SOLID70 Unit of ANSYS was employed to calculate steady-state temperature field of the specimen with the following settings: specimen radius of 37.5 mm; length of 50 mm; heat exchange coefficientkof 50 W(m2·K); 20 ℃ initial temperature and 500 ℃ target temperature;concrete heat conduction coefficient of 1.335 when below 293 ℃ and 0.001 241T+1.716 2 when above 293 ℃; concrete density of 2 300 kg/m3, concrete specific capacity of 840+420T/85.

    From above result, the heating-up time to reach the steady-state temperature fields of 100, 200, 300, 400, 500 ℃ in fire-port, are 50, 60, 75, 80, 130 min, respectively. To study how the maintaining duration at constant temperature influence the mechanical property of concrete, five durations, namely 0, 30, 60, 90 and 120 min,are used and designated as 0, 1, 2, 3, 4 in Tab.2. Shown in Tab.2 is the total time including both the heating-up time and the maintaining duration at constant temperature.

    Tab.2 Heating period allocation table min

    2 Experimental result analysis

    2.1 Impact wave curves and failure pattern of concrete specimens under different temperature conditions

    According to Ref.[17], the measurement error of SHPB equipment is no more than 3%. Besides the temperature drop is below 10% during the period between after heating and impacting experiment due to the thermal transmission.

    Fig.2a is the incident wave and reflected wave curves tested three times cooled from 100 ℃ with duration of 120 min at 100 ℃ constant temperature. The incident waves are steady and approximate rectangle. The reflected waves of broken specimens are approximate ‘W’ shape. Fig.2b is the transmitted wave curves tested three times cooled from 100 ℃ with duration of 120 min at 100 ℃ constent temperature. The more serious the damage degree of specimen is; the deeper the wave trough is; the higher the energy of reflected wave is; the lower the energy of transmitted wave is.

    Under each experimental condition, test was done three times (Fig.3). Here only take the tests cooled from 100 ℃.

    Fig.2 Incident wave and reflected wave curves and transmitted wave curves of specimens cooled from 100 ℃ constant temperature with duration of 120 min at 100 ℃ constant

    Fig.3 Failure patterns of specimens cooled from 100 ℃ with duration of 120 min at 100 ℃ constant temperature

    2.2 Dynamic mechanical property analysis under and cooled from high temperature of different durations

    2.2.1 Under and cooled from 100 ℃ steady-state temperature field of different durations at 100 ℃

    From Fig.4, for the specimens under 100 ℃ steady-state temperature field as the duration at 100 ℃ increases, the dynamic compressive strength decreases; the elastic modulus goes down; and the peak strain ascends overall. At the durations of 0, 30 and 60 min at 100 ℃ constant temperature, the dynamic compressive strength is higher than that under the room temperature; in contrast it is lower at durations of 90 min and 120 min.

    In Fig.5, for the specimens cooled from 100 ℃ constant temperature field, as the increase of the duration at 100 ℃, the dynamic compressive strength decreases; the elastic modulus goes down; and the peak strain ascends. In this case, the dynamic compressive strength is higher than that under room temperature for all durations except for 60 min.

    Fig.4 Stress-strain curves of specimens with different durations at 100 ℃ constant temperature field

    Fig.5 Stress-strain curves of specimens cooled from 100 ℃ to the room temperature, with different durations at 100 ℃

    2.2.2 Under and cooled from 200 ℃ steady-state temperature field of different durations at 200 ℃

    From Fig.6, for the specimens in 200 ℃ constant temperature field as the duration at 200 ℃ increases, the dynamic compressive strength goes down; the peak strain generally ascends; the elastic modulus decreases. The dynamic compressive strength is higher than that under the room temperature for all durations at 200 ℃.

    In Fig.7, for the specimens cooled from 200 ℃ constant temperature field, as the increase of the duration at 200 ℃, the dynamic compressive strength and elastic modulus reduce, but peak strain generally increases. For the cooled specimens undergone the durations of 0 min, 30 min, 60 min and 90 min at 200 ℃, the dynamic compressive strength is higher than that under the room temperature, while it is lower at the duration of 120 min at 200 ℃.

    Fig.6 Stress-strain curves of specimens with different durations at 200 ℃ constant temperature field

    Fig.7 Stress-strain curves of specimens cooled from 200 ℃ to the room temperature, with different durations at 200 ℃

    2.2.3 Under and cooled from 300 ℃ steady-state temperature field of different durations at 300 ℃

    From Fig.8, for the specimens under 300 ℃ steady-state temperature field, as the duration at 300 ℃ ascends, the dynamic compressive strength and the elastic modulus decreases but the peak strain increases. In this case, the dynamic compressive strength is higher than that under the room temperature for all durations at 300 ℃.

    From Fig.9, for the specimen cooled from 300 ℃, as the increase of the duration at 300 ℃, the dynamic compressive strength and the elastic modulus decrease; the peak strain increases first and then decreases. The dynamic compressive strength of the cooled specimens at the durations of 0, 30, 60 and 90 min at 300 ℃ is higher than that under room temperature, by contrast it reverses at the duration of 120 min at 300 ℃.

    Fig.8 Stress-strain curves of specimens with different durations at 300 ℃ constant temperature field

    Fig.9 Stress-strain curves of specimens cooled from 300 ℃ to the room temperature, with different durations at 300 ℃

    2.2.4 Under and cooled from 400 ℃ steady-state temperature field of different durations at 400 ℃

    From Fig.10, for the specimens under 400 ℃ steady-state temperature field as the duration at 400 ℃ rises, the dynamic compressive strength and the elastic modulus reduce, but the peak strain increases. At the durations of 0, 30 and 60 min under 400 ℃ constant temperature field, the dynamic compressive strength is higher than that under room temperature, but it is lower at the durations of 90 min and 120 min at 400 ℃.

    From Fig.11, for the specimens cooled from 400 ℃, as the duration at 400 ℃ increases, the dynamic compressive strength and the elastic modulus decrease, and the peak strain increases first and then decreases lightly. For the cooled specimens at the durations of 30 min and 60 min at 400 ℃, the dynamic compressive strength is higher than that under the room temperature, but the trend reverses at the durations of 0, 90 and 120 min at 400 ℃.

    Fig.10 Stress-strain curves of specimens with different durations at 400 ℃ constant temperature field

    Fig.11 Stress-strain curves of specimens cooled from 400 ℃ to the room temperature, with different durations at 400 ℃

    2.2.5 Under and cooled from 500 ℃ steady-state temperature field of different durations at 500 ℃

    From Fig.12, for specimens in 500 ℃ steady-state temperature field as the duration at 500 ℃ increases, the dynamic compressive strength decreases first and then tends to stable; the elastic modulus reduces; the peak strain increases first and then maintains stable. The dynamic compressive strength of specimen without duration under 500 ℃ constant temperature is higher than that under room temperature, but it is opposite for the other durations at 500 ℃ constant temperature, e.g. 30, 60, 90 and 120 min.

    From Fig.13, for specimens cooled from 500 ℃ as the duration at 500 ℃ constant temperature increases, the dynamic compressive strength and the elastic modulus decrease,and the peak strain reduces first and then goes up. The dynamic compressive strength of specimens cooled is lower than that under the room temperature for all durations at 500 ℃.

    Fig.12 Stress-strain curves of specimens with different durations at 500 ℃ constant temperature field

    Fig.13 Stress-strain curves of specimens cooled from 500 ℃ to the room temperature, with different durations at 500 ℃

    2.3 Dynamic mechanical property analysis under and cooled from high temperature without temperature maintaining time

    Fig.14 is a comparison of specimens under and cooled from high-temperature without temperature maintaining time, as the temperature increases (before cooling), the dynamic compressive strength increases till about 200 ℃ where the maximum value occurs, and then it decreases. The above phenomenon is resulted from the loss of free water of inside concrete at 200 ℃ which enhances the interlock capacity of concrete and lead the strength of concrete to reach the top. The dynamic compressive strength of specimen under higher temperatures is higher than that cooled from that high temperature, except at 500 ℃ where they are about same.

    Fig.15 is a comparison of specimens under and cooled from high-temperature without temperature maintaining time, the peak strain rises firstly and then descends as temperature increase and the peak strain are same at about 270 ℃. Before 270 ℃ the peak strain under high temperature is higher than that cooled, which reverses after 270 ℃.

    Fig.14 Dynamic compressive strength- temperature curves of specimens under and cooled from high temperature

    Fig.15 Peak strain-temperature curves of specimens under and cooled from high temperature

    3 Conclusions

    This impact tests on C60 concrete specimens were conducted under different steady-state temperature fields (room temperature, 100, 200, 300, 400 and 500 ℃) after the specimen was maintained for a duration of 0, 30, 60, 90 or 120 min, respectively and after the specimen was cooled from the elevated temperatures to the room temperature, using Φ75 mm split Hopkinson pressure bar (SHPB) system. From the experimental data, the following conclusions can be made:

    ① Under the same steady-state temperature field, when the duration for maintaining the elevated temperature rises, the dynamic compressive strength of concrete specimen decreases. Under the 500 ℃ steady-state temperature field, when the total time exceeds 190 min, the dynamic compressive strength stops to descend and tends towards stable. For specimens cooled from the elevated temperature, as total time increases, the dynamic compressive strength decreases.

    ② Under the same steady-state temperature field of different temperature maintaining durations, as the duration increases, the peak strain of specimen generally rises; the elastic modulus reduces; and the toughness becomes stronger. For specimens cooled from the elevated temperature, with the increase of total time, the peak strain typically increases first and then decreases slightly, and the elastic modulus decreases.

    ③ For both specimens under and cooled from high-temperature without temperature maintaining time, as the temperature increases (before cooling),the dynamic compressive strength raises slightly till around 200 ℃ where the maximum point occurs and then descends after 200 ℃, and the peak strain ascends first and then goes down. The dynamic compressive strength of specimens under high temperature is higher than that of specimens cooled from that high temperature, except at 500 ℃ where they are nearly the same.

    [1] Majid A, Li Xiaoyang, Nawawi C. Experimental investigations on bond strength between coconut fibre and concrete[J]. Material and Design, 2013, 44: 596-605.

    [2] Le T T, Austin S A, Lim S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-566.

    [3] Toledo Filho R D, Koenders E A B, Formagini S, et al. Performance assessment of ultrahigh performance fiber reinforced cementitious composites in view of sustainability[J]. Material and Design, 2012, 36: 880-888.

    [4] He Yuanming, Huo Jingsi, Chen Baisheng, et al. Impact tests on dynamic behavior of concrete at elevated temperature[J]. Engineering Mechanics, 2012, 29(9): 200-208. (in Chinese)

    [5] Li Zhiwu, Xu Jinyu, Bai Erlei, et al. SHPB test for post-high-temperature concrete[J]. Journal of Vibration and Shock, 2012, 31(8): 143-147. (in Chinese)

    [6] Li Qingming, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2): 43-360.

    [7] Wang Zhiliang, Liu Yongsheng, Shen R F.Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials, 2008, 22(5): 1-819.

    [8] Li Kui, Tao Junlin. Research on impact compressive experiment and dynamic mechanic behavior of cement mortar at high temperature[J]. Journal of Wuhan University of Technology, 2010, 32(24): 2-27. (in Chinese)

    [9] Jia, Bin, Li, Zhengliang, Tao Junlin, et al. SHPB test on high temperature dynamical mechanical behavior of concrete[J]. Journal of Wuhan University of Technology, 2010, 32(21): 34-37. (in Chinese)

    [10] Jia Bin, Yang Fang, Sun Kunlin, et al. SHPB test on dynamical mechanical behavior of concrete with high temperature[J]. Applied Mechanics and Materials, 2014, 528: 61-69.

    [11] Su Haoyang, Xu Jinyu, Ren Weibo. Experimental study on the dynamic compressive mechanical properties of concrete at elevated temperature[J]. Materials and Design, 2014, 56: 579-588.

    [12] Li Zhiwu, Xu Jinyu, Bai Erlei. Static and dynamic mechanical properties of concrete after high temperature exposure[J]. Materials Science and Engineering A, 2012, 544: 27-32.

    [13] Yang Shaowei, Liu Limei, Wang Yongwei. SHPB experiment of steel fiber reactive powder concrete exposed to high temperature[J]. Journal of Sichuan University, 2010, 42(1): 25-34. (in Chinese)

    [14] Kim D J, Sirijaroonchai K, EI-Tawil S, et al. Numerical simulation of the split Hopkinson pressure bar test technique for concrete under compression[J]. International Journal of Impact Engineering, 2010, 37: 141-149.

    [15] Hu Shisheng. Experimental techniques for studying dynamic mechanical behaviors of concrete[J]. Journal of University of Science and Technology of China, 2007, 37(10): 312-1319. (in Chinese)

    [16] Li Shenglin, Liu Dianshu, Li Xianglong, et al. The effect of specimen length in Φ75 mm split Hopkinson pressure bar experiment[J]. Journal of China University of Mining & Technology, 2010, 39(1): 93-97. (in Chinese)

    [17] Shi Shaoqiu, Gan Sun. The error analysis of resistance strain measure system on SHPB test unit[J]. Journal of Ningbo University, 1989, 2(2): 48-58. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0305

    O 347; TU 528.1 Document code: A Article ID: 1004- 0579(2015)03- 0313- 08

    Received 2015- 03- 15

    E-mail: l_hongchao@yahoo.com

    猜你喜歡
    梁書趙磊
    藝術檔案
    ——畫家趙磊博采眾長成大道
    寫給舅舅的一封信
    回答
    《囍》
    炎黃地理(2021年5期)2021-09-10 01:32:23
    A GPU accelerated finite volume coastal ocean model*
    拍賣
    兒媳婦計劃
    故事會(2015年23期)2015-12-01 06:07:32
    Runge-Kutta Multi-resolution Time-Domain Method for Modeling 3DDielectric Curved Objects
    Lagrangian methods for water transport processes in a long-narrow bay-Xiangshan Bay, China*
    從《重答劉秣陵沼書》看《梁書·文學傳》之失
    名作欣賞(2014年29期)2014-02-28 11:24:31
    久久亚洲国产成人精品v| 一区二区三区高清视频在线| 免费看美女性在线毛片视频| 亚洲无线观看免费| 精品久久久噜噜| 一级毛片aaaaaa免费看小| 日本一本二区三区精品| 建设人人有责人人尽责人人享有的 | 寂寞人妻少妇视频99o| 岛国毛片在线播放| h日本视频在线播放| 欧美+日韩+精品| 久久久精品免费免费高清| 成人欧美大片| 内射极品少妇av片p| 国产又色又爽无遮挡免| 亚洲精品一二三| 波多野结衣巨乳人妻| 日本一本二区三区精品| 青春草视频在线免费观看| 国产色爽女视频免费观看| 日本三级黄在线观看| 中文字幕免费在线视频6| 国产精品一二三区在线看| 狂野欧美白嫩少妇大欣赏| 国产精品一区www在线观看| 大香蕉97超碰在线| 好男人视频免费观看在线| 少妇猛男粗大的猛烈进出视频 | 99九九线精品视频在线观看视频| 国产黄a三级三级三级人| 精品久久国产蜜桃| 亚洲av福利一区| 最近最新中文字幕免费大全7| 美女国产视频在线观看| 99久久中文字幕三级久久日本| 爱豆传媒免费全集在线观看| 国产成年人精品一区二区| 街头女战士在线观看网站| 亚洲真实伦在线观看| 日日啪夜夜撸| 免费观看在线日韩| 国产免费福利视频在线观看| 久久久久久九九精品二区国产| 午夜福利高清视频| 亚洲精品视频女| 3wmmmm亚洲av在线观看| 99久久精品热视频| 菩萨蛮人人尽说江南好唐韦庄| eeuss影院久久| 亚洲欧洲国产日韩| 成人国产麻豆网| 免费av毛片视频| 精品午夜福利在线看| 亚洲伊人久久精品综合| 亚洲精品成人久久久久久| 国产不卡一卡二| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品电影| 久久久久久久久大av| 在线免费观看的www视频| 高清av免费在线| or卡值多少钱| or卡值多少钱| 日日摸夜夜添夜夜爱| 一本久久精品| 国产麻豆成人av免费视频| 色视频www国产| 中文字幕亚洲精品专区| 女的被弄到高潮叫床怎么办| 欧美日韩亚洲高清精品| 亚洲国产精品国产精品| 久久久a久久爽久久v久久| 亚洲在线观看片| 国产伦精品一区二区三区四那| 国产又色又爽无遮挡免| 大香蕉久久网| 美女脱内裤让男人舔精品视频| 亚洲欧美精品自产自拍| 成人毛片a级毛片在线播放| 国内少妇人妻偷人精品xxx网站| 亚洲真实伦在线观看| 男人舔女人下体高潮全视频| 日韩大片免费观看网站| 午夜激情久久久久久久| 日韩强制内射视频| 国产精品一区二区三区四区久久| 一级毛片电影观看| av在线天堂中文字幕| 天美传媒精品一区二区| 91精品伊人久久大香线蕉| 午夜福利视频1000在线观看| 日本黄大片高清| 男女边摸边吃奶| av播播在线观看一区| 亚洲精品成人久久久久久| 在线免费观看的www视频| 嫩草影院精品99| 天天躁日日操中文字幕| 乱系列少妇在线播放| 日韩一区二区三区影片| 亚洲国产精品国产精品| 啦啦啦韩国在线观看视频| 高清视频免费观看一区二区 | 视频中文字幕在线观看| 在线观看免费高清a一片| 99久国产av精品国产电影| 最近的中文字幕免费完整| 如何舔出高潮| 亚洲精品乱码久久久v下载方式| 免费少妇av软件| 人人妻人人看人人澡| 99久久九九国产精品国产免费| 国产精品久久久久久久电影| 天天躁夜夜躁狠狠久久av| 街头女战士在线观看网站| 国产精品久久久久久精品电影| 中文精品一卡2卡3卡4更新| 国产精品女同一区二区软件| 国产高清有码在线观看视频| 亚洲精品国产av成人精品| 少妇熟女欧美另类| 直男gayav资源| 亚洲性久久影院| 国产精品久久久久久久电影| 国产一级毛片七仙女欲春2| 亚洲乱码一区二区免费版| 亚洲精品aⅴ在线观看| 3wmmmm亚洲av在线观看| 午夜激情久久久久久久| 亚洲av电影在线观看一区二区三区 | 亚洲成人av在线免费| 欧美精品一区二区大全| 亚洲欧美成人综合另类久久久| 亚洲av免费在线观看| 亚洲精品国产成人久久av| 精品久久久久久久末码| 简卡轻食公司| 久久久久久久国产电影| 国产亚洲av片在线观看秒播厂 | 国产爱豆传媒在线观看| 男女下面进入的视频免费午夜| 天堂√8在线中文| 欧美日韩视频高清一区二区三区二| 一区二区三区免费毛片| 国产黄色视频一区二区在线观看| 久久精品久久久久久久性| 日日啪夜夜爽| 国产一区有黄有色的免费视频 | 永久免费av网站大全| 日韩av不卡免费在线播放| 搡女人真爽免费视频火全软件| 2018国产大陆天天弄谢| 深爱激情五月婷婷| 亚洲四区av| 人妻少妇偷人精品九色| 日韩 亚洲 欧美在线| 国产精品蜜桃在线观看| 国产日韩欧美在线精品| 亚洲,欧美,日韩| 人体艺术视频欧美日本| 午夜福利网站1000一区二区三区| 久久99精品国语久久久| 亚洲国产av新网站| 97在线视频观看| 午夜福利视频精品| 久久久久精品性色| 国产久久久一区二区三区| 免费人成在线观看视频色| 九草在线视频观看| 国产精品一区二区性色av| 亚洲精品日韩av片在线观看| 在线免费观看的www视频| 乱人视频在线观看| 午夜老司机福利剧场| 精品人妻熟女av久视频| av黄色大香蕉| 高清视频免费观看一区二区 | 搡老妇女老女人老熟妇| 五月天丁香电影| 99热这里只有是精品在线观看| 亚洲美女搞黄在线观看| 欧美潮喷喷水| 久久久久国产网址| 日韩欧美 国产精品| 精品一区二区免费观看| 亚洲国产欧美在线一区| or卡值多少钱| 能在线免费看毛片的网站| 少妇人妻精品综合一区二区| 精品久久久久久成人av| 亚洲丝袜综合中文字幕| 国产探花极品一区二区| 欧美精品一区二区大全| 免费播放大片免费观看视频在线观看| 亚洲国产欧美人成| 如何舔出高潮| 男女那种视频在线观看| 亚洲性久久影院| 国产成人精品久久久久久| 国产真实伦视频高清在线观看| 美女黄网站色视频| 一二三四中文在线观看免费高清| 97热精品久久久久久| 免费在线观看成人毛片| 久久精品国产鲁丝片午夜精品| kizo精华| 成年女人看的毛片在线观看| 亚洲精品,欧美精品| 最近最新中文字幕免费大全7| 一级毛片久久久久久久久女| 免费观看无遮挡的男女| 国产美女午夜福利| 国产在视频线在精品| 少妇熟女aⅴ在线视频| 国产乱人视频| 高清日韩中文字幕在线| 一夜夜www| 国产亚洲精品久久久com| 18禁动态无遮挡网站| 小蜜桃在线观看免费完整版高清| 国产精品一区二区三区四区免费观看| 麻豆久久精品国产亚洲av| 看非洲黑人一级黄片| 亚洲最大成人av| 国语对白做爰xxxⅹ性视频网站| 欧美 日韩 精品 国产| 国产成人午夜福利电影在线观看| 看十八女毛片水多多多| 只有这里有精品99| 九九久久精品国产亚洲av麻豆| 观看美女的网站| 国产人妻一区二区三区在| 晚上一个人看的免费电影| a级一级毛片免费在线观看| 国产男女超爽视频在线观看| 国产三级在线视频| 有码 亚洲区| 亚洲高清免费不卡视频| 天堂俺去俺来也www色官网 | 国产男女超爽视频在线观看| 欧美日韩在线观看h| 国产av不卡久久| 亚洲va在线va天堂va国产| 特大巨黑吊av在线直播| av专区在线播放| 成人亚洲欧美一区二区av| 在线观看一区二区三区| 日本av手机在线免费观看| 51国产日韩欧美| 极品少妇高潮喷水抽搐| 国产精品一区二区三区四区免费观看| 午夜福利在线在线| 久久久久久久午夜电影| 日本欧美国产在线视频| 成年av动漫网址| 亚洲,欧美,日韩| 日本色播在线视频| 丰满乱子伦码专区| 亚洲人与动物交配视频| 国产日韩欧美在线精品| 黄色欧美视频在线观看| 熟女电影av网| 91久久精品电影网| 久久99热这里只有精品18| 亚洲va在线va天堂va国产| 日本三级黄在线观看| www.av在线官网国产| 街头女战士在线观看网站| 少妇裸体淫交视频免费看高清| 韩国av在线不卡| 成人综合一区亚洲| 欧美精品一区二区大全| 久久久国产一区二区| 禁无遮挡网站| 中文在线观看免费www的网站| 免费av不卡在线播放| 婷婷六月久久综合丁香| 毛片一级片免费看久久久久| 午夜精品国产一区二区电影 | 日本黄色片子视频| 欧美变态另类bdsm刘玥| 麻豆久久精品国产亚洲av| 97超视频在线观看视频| 国内精品宾馆在线| 免费少妇av软件| av.在线天堂| 国产成人免费观看mmmm| 欧美xxxx黑人xx丫x性爽| 九九爱精品视频在线观看| 免费无遮挡裸体视频| 国产精品福利在线免费观看| 乱人视频在线观看| 日本黄色片子视频| 欧美+日韩+精品| 亚洲欧美日韩无卡精品| 综合色丁香网| 国产精品一二三区在线看| 日韩成人伦理影院| 91aial.com中文字幕在线观看| 亚洲av一区综合| 超碰97精品在线观看| 天堂av国产一区二区熟女人妻| ponron亚洲| 亚洲内射少妇av| 美女cb高潮喷水在线观看| 免费黄频网站在线观看国产| 九草在线视频观看| 日韩中字成人| 亚洲精品久久午夜乱码| 国产一级毛片在线| 亚洲欧美日韩东京热| 久久精品国产自在天天线| 色播亚洲综合网| 特大巨黑吊av在线直播| 亚洲欧美日韩东京热| 久久久久精品久久久久真实原创| 热99在线观看视频| 99热这里只有精品一区| 99久国产av精品国产电影| 国产精品无大码| 国内精品美女久久久久久| 成年女人在线观看亚洲视频 | 日韩在线高清观看一区二区三区| 成人毛片a级毛片在线播放| av一本久久久久| 晚上一个人看的免费电影| 欧美最新免费一区二区三区| 国产一区亚洲一区在线观看| 国产精品一区www在线观看| 国产午夜精品一二区理论片| 亚洲av国产av综合av卡| 欧美一区二区亚洲| 亚洲国产成人一精品久久久| 国产精品.久久久| 久久久久久伊人网av| 水蜜桃什么品种好| 国产精品99久久久久久久久| 少妇人妻一区二区三区视频| 一二三四中文在线观看免费高清| 免费少妇av软件| 男人舔奶头视频| 一个人观看的视频www高清免费观看| 内地一区二区视频在线| 国产精品一区二区在线观看99 | av卡一久久| 免费黄频网站在线观看国产| 日韩人妻高清精品专区| av在线天堂中文字幕| 中文字幕制服av| 老司机影院毛片| 亚洲自偷自拍三级| 亚洲最大成人手机在线| 国产又色又爽无遮挡免| 国产午夜精品久久久久久一区二区三区| 欧美激情在线99| 亚洲av在线观看美女高潮| 久久久久国产网址| 七月丁香在线播放| 国产亚洲精品久久久com| 欧美变态另类bdsm刘玥| 97人妻精品一区二区三区麻豆| 国模一区二区三区四区视频| 成年女人在线观看亚洲视频 | 国产黄色免费在线视频| 精品一区在线观看国产| 欧美极品一区二区三区四区| 亚洲第一区二区三区不卡| 淫秽高清视频在线观看| 晚上一个人看的免费电影| 国产黄片美女视频| 美女国产视频在线观看| 老司机影院成人| 日韩在线高清观看一区二区三区| 日韩欧美精品v在线| 毛片一级片免费看久久久久| 日本一本二区三区精品| 中文字幕av成人在线电影| 欧美日韩视频高清一区二区三区二| 亚洲久久久久久中文字幕| 插逼视频在线观看| 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| 一个人看的www免费观看视频| 亚洲自偷自拍三级| 干丝袜人妻中文字幕| 国产白丝娇喘喷水9色精品| 亚洲18禁久久av| 少妇人妻精品综合一区二区| 中国美白少妇内射xxxbb| av国产免费在线观看| 18禁裸乳无遮挡免费网站照片| 秋霞伦理黄片| 亚洲精品成人久久久久久| 国模一区二区三区四区视频| 成人午夜精彩视频在线观看| eeuss影院久久| 在现免费观看毛片| 亚洲精品一二三| av免费在线看不卡| 人妻少妇偷人精品九色| 国产精品99久久久久久久久| 又大又黄又爽视频免费| 国产淫片久久久久久久久| 久久久久久久久久成人| 免费电影在线观看免费观看| 一本一本综合久久| 内射极品少妇av片p| 亚洲精品色激情综合| 干丝袜人妻中文字幕| 岛国毛片在线播放| 一级a做视频免费观看| 女的被弄到高潮叫床怎么办| 国产成人精品久久久久久| 色综合站精品国产| 熟妇人妻不卡中文字幕| 国产免费福利视频在线观看| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 免费高清在线观看视频在线观看| videossex国产| 欧美+日韩+精品| 亚洲av福利一区| 亚洲av电影不卡..在线观看| 国产免费一级a男人的天堂| 国产高清有码在线观看视频| 美女被艹到高潮喷水动态| 美女大奶头视频| 人妻少妇偷人精品九色| 色网站视频免费| 舔av片在线| 夜夜爽夜夜爽视频| 哪个播放器可以免费观看大片| 中文乱码字字幕精品一区二区三区 | 特级一级黄色大片| 又粗又硬又长又爽又黄的视频| 国产单亲对白刺激| 寂寞人妻少妇视频99o| 欧美激情在线99| 久久久精品免费免费高清| 国产精品一及| 女的被弄到高潮叫床怎么办| 天天躁夜夜躁狠狠久久av| 女人十人毛片免费观看3o分钟| 别揉我奶头 嗯啊视频| 蜜臀久久99精品久久宅男| 插阴视频在线观看视频| 少妇熟女aⅴ在线视频| 午夜激情久久久久久久| 中国美白少妇内射xxxbb| 国产日韩欧美在线精品| 搡女人真爽免费视频火全软件| 一级黄片播放器| 天天躁夜夜躁狠狠久久av| 精品久久久精品久久久| 亚洲最大成人中文| 亚洲精品国产成人久久av| 青春草视频在线免费观看| 亚洲自偷自拍三级| 久久久久久久久中文| 国产精品精品国产色婷婷| 国内精品一区二区在线观看| 最近手机中文字幕大全| 亚洲精品日韩在线中文字幕| 中文字幕亚洲精品专区| 亚洲av免费在线观看| av专区在线播放| 欧美一区二区亚洲| 亚洲成人av在线免费| 国产老妇伦熟女老妇高清| 2022亚洲国产成人精品| 欧美 日韩 精品 国产| 亚洲怡红院男人天堂| 成人综合一区亚洲| 偷拍熟女少妇极品色| 亚洲色图av天堂| 99久久精品国产国产毛片| 男女啪啪激烈高潮av片| 亚洲一区高清亚洲精品| 26uuu在线亚洲综合色| 国产高清三级在线| 男女国产视频网站| 天天一区二区日本电影三级| 日韩欧美精品免费久久| 久久精品人妻少妇| 亚洲久久久久久中文字幕| 亚洲自偷自拍三级| 国产午夜精品论理片| 91精品伊人久久大香线蕉| 美女脱内裤让男人舔精品视频| 久久久久精品性色| 亚洲成人中文字幕在线播放| videos熟女内射| 床上黄色一级片| 亚洲无线观看免费| 亚洲国产最新在线播放| 在线观看av片永久免费下载| 成人鲁丝片一二三区免费| 亚洲怡红院男人天堂| 欧美潮喷喷水| 日日干狠狠操夜夜爽| 亚洲国产高清在线一区二区三| 午夜激情欧美在线| 亚洲欧洲国产日韩| 成人欧美大片| 欧美激情在线99| 永久网站在线| 色视频www国产| 99久久精品热视频| 精品久久久久久久人妻蜜臀av| 两个人视频免费观看高清| 亚洲电影在线观看av| 人妻系列 视频| 日本wwww免费看| av专区在线播放| 啦啦啦中文免费视频观看日本| 亚洲电影在线观看av| 三级国产精品片| 美女国产视频在线观看| 18+在线观看网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产高清在线一区二区三| 少妇熟女欧美另类| 久久这里只有精品中国| 成人一区二区视频在线观看| 一区二区三区四区激情视频| 寂寞人妻少妇视频99o| 色视频www国产| 亚洲综合色惰| 精品久久久久久久人妻蜜臀av| 成人午夜高清在线视频| 三级国产精品欧美在线观看| 亚洲精品中文字幕在线视频 | 日本黄色片子视频| av免费在线看不卡| 97超碰精品成人国产| 91久久精品国产一区二区成人| 免费观看在线日韩| 亚洲一区高清亚洲精品| 国产精品久久久久久精品电影| 80岁老熟妇乱子伦牲交| 嫩草影院入口| 久久久亚洲精品成人影院| 欧美 日韩 精品 国产| xxx大片免费视频| 伊人久久精品亚洲午夜| 成年人午夜在线观看视频 | 99热全是精品| 久久99热这里只有精品18| 国产欧美日韩精品一区二区| 成人午夜高清在线视频| av在线蜜桃| 久久久久久久大尺度免费视频| 亚洲av成人av| 日韩,欧美,国产一区二区三区| 日本一二三区视频观看| 中文欧美无线码| av在线老鸭窝| 欧美性感艳星| 肉色欧美久久久久久久蜜桃 | 国产午夜精品论理片| 亚洲欧美清纯卡通| 国产免费福利视频在线观看| 成人鲁丝片一二三区免费| 亚洲自偷自拍三级| 日本熟妇午夜| 在线 av 中文字幕| 精华霜和精华液先用哪个| 黄色欧美视频在线观看| 久久6这里有精品| 久久热精品热| 亚洲久久久久久中文字幕| 夫妻午夜视频| 老司机影院毛片| 亚洲人与动物交配视频| 久久久成人免费电影| 波多野结衣巨乳人妻| 亚洲精品影视一区二区三区av| 午夜福利高清视频| 日本三级黄在线观看| 久久久精品欧美日韩精品| 一级毛片黄色毛片免费观看视频| 国产亚洲一区二区精品| 亚洲自偷自拍三级| 黄色配什么色好看| 日韩 亚洲 欧美在线| 亚洲国产精品专区欧美| 高清视频免费观看一区二区 | 国产亚洲5aaaaa淫片| 免费黄频网站在线观看国产| 一级毛片黄色毛片免费观看视频| 成年免费大片在线观看| 中文精品一卡2卡3卡4更新| 伦理电影大哥的女人| 三级毛片av免费| 最近最新中文字幕免费大全7| 国产精品99久久久久久久久| 男人爽女人下面视频在线观看| 黄片wwwwww| 欧美变态另类bdsm刘玥| 日本一二三区视频观看| eeuss影院久久| 国产午夜精品一二区理论片| 午夜福利在线观看吧| 国产精品无大码| av专区在线播放| 一本久久精品| 精品久久久久久久久亚洲| 18+在线观看网站| 2021少妇久久久久久久久久久| 日本色播在线视频| 看黄色毛片网站| 久久久久九九精品影院| 婷婷色综合大香蕉| 亚洲丝袜综合中文字幕|