• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on the time-dependent dynamic mechanical behaviour of C60 concrete under high-temperatures

    2015-04-22 07:24:52LIHongchao李洪超LIUDianshu劉殿書ZHAOLei趙磊GregYOULIANGShufeng梁書鋒WANGYutao王宇濤
    關鍵詞:梁書趙磊

    LI Hong-chao(李洪超), LIU Dian-shu(劉殿書) ZHAO Lei(趙磊),Greg YOU, LIANG Shu-feng(梁書鋒) WANG Yu-tao(王宇濤)

    (1.School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;2.Faculty of Science and Technology, Federation University Australia, University Drive, Mt Helen, Ballarat,Victoria 3353, Australia)

    ?

    Experimental study on the time-dependent dynamic mechanical behaviour of C60 concrete under high-temperatures

    LI Hong-chao(李洪超), LIU Dian-shu(劉殿書)1, ZHAO Lei(趙磊)2,Greg YOU2, LIANG Shu-feng(梁書鋒)1, WANG Yu-tao(王宇濤)1

    (1.School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;2.Faculty of Science and Technology, Federation University Australia, University Drive, Mt Helen, Ballarat,Victoria 3353, Australia)

    To study the dynamic mechanical behavior of C60 concrete at high temperatures, impact tests under different steady-state temperature fields (100, 200, 300, 400 and 500 ℃) were conducted under a variety of durations at the corresponding constant high temperature, namely 0, 30, 60, 90 and 120 min, employing split Hopkinson pressure bar (SHPB) system. In addition, the impact tests were also conducted on the specimens cooled from the high temperature to the room temperature and the specimen under room temperature. From the analysis, it is found that C60 concrete has a time-dependent behavior under high-temperature environment. Under 100, 200, 300, 400 and 500 ℃ steady-state temperature fields respectively, as the duration at the corresponding constant high temperature increases, the dynamic compressive strength and the elastic modulus decrease but the peak strain generally ascends. After cooling to the room temperature, the dynamic compressive strength and the elastic modulus descend as well, but the peak strain increases first and then decreases slightly, when the duration increases. For specimens under and cooled from the high-temperature, as the temperature increases, the dynamic compressive strength and the peak strain raise first and then reduce gradually,and the dynamic compressive strength of specimen under high temperature is higher than that of the specimen cooled from the same high temperature.

    concrete; SHPB; high temperature; dynamic mechanical behavior

    Concrete-like material has been widely used in the construction industry as one of the most important building materials. Buildings collapse frequently due to fire hazards[1-3]. Moreover, fire disaster has become more dangerous in urban area due to high-density zones and high-rise buildings. Furthermore, progressive structure collapse could occur accompanied with explosion and fire caused by unexpected events, such as accidents in chemical plants or terrorists’ attacks[4]. It has been realised that steel structures have a low thermo tolerance, especially since the 9/11 Attacks, and concrete has been attracting more and more attentions for its superior thermo tolerance[5].

    Numerous studies on mechanical properties of concrete have been done in the world, and split Hopkinson pressure bar (SHPB) technique has been used widely to measure the dynamic strength of concrete-like materials at high strain-rate between 10-1and 10-3s-1[6]. Wang et al.[7]fabricated three types of steel fiber reinforced concrete (SFRC) specimens with 0, 3.0% and 6.0% (percentage by volume) of ultrashort steel fiberand employed the SHPB system to impacted the specimens, and found that both the volume fraction of steel-fiber and strain-rate of loading exert significant influences on the SFRC strength. Li et al.[8], Jia et al.[9-10]employed the SHPB system to conduct concrete impact-compression tests under different temperatures, finding the effects of strain rate and temperature on the mechanical properties of concrete. Su et al.[11]studied the dynamic compressive mechanical properties of concrete under high temperature by SHPB system, and found that the dynamic compressive strength and specific energy absorption of concrete increase with the strain rate under different temperatures and at 400 ℃ it is increased by 14%, but at 200, 600, 800 ℃, it is decreased by 20%, 16% and 48% respectively, comparing with that at room temperature. Li et al.[12]tested concrete’s dynamic mechanical property under comparative conditions between room temperature and post-high temperature using SHPB equipment, and found that between 400 ℃-800 ℃, the dynamic compressive strength drops and critical strain raised dramatically. Yang et al.[13]did some impact tests on steel fiber reinforced reactive powder concrete specimens under the temperature between 400 ℃-800 ℃, as a result, the dynamic compressive strength decreases to 62% and 27% and the elastic modulus reduces to 83% and 35.6% respectively. Kim et al.[14]found there is a close relationship between the increase of dynamic compressive strength and the strain rate through SHPB equipment.

    Above studies increase our understanding of the mechanical property of concrete, however, there is insufficient research on the dynamic mechanical behavior under different high temperatures and especially the effect of durations maintaining constant elevated temperature. This paper thereby discussed the law of dynamic mechanical properties by conducting impact tests on C60 concrete specimens through Φ75 mm SHPB equipment under a set of elevated temperatures and various durations of the specific constant temperature.

    1 Experiment

    1.1 Experimental apparatus and data processing

    The experimental apparatus was Φ75 mm SHPB system consisting of power unit, pressure bar and data acquisition unit (Fig.1). A ceramic fiber resistance furnace was used for heating with a rated temperature of 1 300 ℃.

    Fig.1 Illustration of the Φ75 mm SHPB test apparatus

    Experimental data were processed employing the simplified three-wave equations[15]shown below, resulting in the strain-stress relation of concrete (strain rate range 73-117 s-1).

    (1)

    (2)

    (3)

    whereεi(t), εr(t)andεt(t)representthestrainsofincidentwave,reflectedwaveandtransmittedwaverespectively; A0iscross-sectionalarea; E0andC0areYoung’smodulusandelasticwavevelocityofrod’smaterial; AsandLstandfortheoriginalcross-sectionalareaandlengthofspecimen.

    1.2Testspecimenpreparation

    AccordingtothestudybyLietal.[16],foralargeΦ75 mm SHPB equipment, experimental data can accurately reveal the mechanical property of concrete specimen when the length of specimen is in the range of 30-75 mm (length-to-diameter ratio rangeL/D=0.4-1.0). C60 concrete specimens with a standard formulation (Tab.1) were placed in a standard curing room once the specimens were prepared. After 28 days’ standard curing, the concrete specimens were made into standard Φ75 mm×50 mm cylindrical specimens.

    Tab.1 C60 concrete formulation kg/m3

    1.3 Experimental procedure

    There were six different experimental temperatures, e.g. room temperature, 100, 200, 300, 400, and 500 ℃. To make internal and external temperature of specimen’s uniform by homogeneous heating, ANSYS software was used to calculate and analyze the temperature field in the furnace and to calculate the required heating time. SOLID70 Unit of ANSYS was employed to calculate steady-state temperature field of the specimen with the following settings: specimen radius of 37.5 mm; length of 50 mm; heat exchange coefficientkof 50 W(m2·K); 20 ℃ initial temperature and 500 ℃ target temperature;concrete heat conduction coefficient of 1.335 when below 293 ℃ and 0.001 241T+1.716 2 when above 293 ℃; concrete density of 2 300 kg/m3, concrete specific capacity of 840+420T/85.

    From above result, the heating-up time to reach the steady-state temperature fields of 100, 200, 300, 400, 500 ℃ in fire-port, are 50, 60, 75, 80, 130 min, respectively. To study how the maintaining duration at constant temperature influence the mechanical property of concrete, five durations, namely 0, 30, 60, 90 and 120 min,are used and designated as 0, 1, 2, 3, 4 in Tab.2. Shown in Tab.2 is the total time including both the heating-up time and the maintaining duration at constant temperature.

    Tab.2 Heating period allocation table min

    2 Experimental result analysis

    2.1 Impact wave curves and failure pattern of concrete specimens under different temperature conditions

    According to Ref.[17], the measurement error of SHPB equipment is no more than 3%. Besides the temperature drop is below 10% during the period between after heating and impacting experiment due to the thermal transmission.

    Fig.2a is the incident wave and reflected wave curves tested three times cooled from 100 ℃ with duration of 120 min at 100 ℃ constant temperature. The incident waves are steady and approximate rectangle. The reflected waves of broken specimens are approximate ‘W’ shape. Fig.2b is the transmitted wave curves tested three times cooled from 100 ℃ with duration of 120 min at 100 ℃ constent temperature. The more serious the damage degree of specimen is; the deeper the wave trough is; the higher the energy of reflected wave is; the lower the energy of transmitted wave is.

    Under each experimental condition, test was done three times (Fig.3). Here only take the tests cooled from 100 ℃.

    Fig.2 Incident wave and reflected wave curves and transmitted wave curves of specimens cooled from 100 ℃ constant temperature with duration of 120 min at 100 ℃ constant

    Fig.3 Failure patterns of specimens cooled from 100 ℃ with duration of 120 min at 100 ℃ constant temperature

    2.2 Dynamic mechanical property analysis under and cooled from high temperature of different durations

    2.2.1 Under and cooled from 100 ℃ steady-state temperature field of different durations at 100 ℃

    From Fig.4, for the specimens under 100 ℃ steady-state temperature field as the duration at 100 ℃ increases, the dynamic compressive strength decreases; the elastic modulus goes down; and the peak strain ascends overall. At the durations of 0, 30 and 60 min at 100 ℃ constant temperature, the dynamic compressive strength is higher than that under the room temperature; in contrast it is lower at durations of 90 min and 120 min.

    In Fig.5, for the specimens cooled from 100 ℃ constant temperature field, as the increase of the duration at 100 ℃, the dynamic compressive strength decreases; the elastic modulus goes down; and the peak strain ascends. In this case, the dynamic compressive strength is higher than that under room temperature for all durations except for 60 min.

    Fig.4 Stress-strain curves of specimens with different durations at 100 ℃ constant temperature field

    Fig.5 Stress-strain curves of specimens cooled from 100 ℃ to the room temperature, with different durations at 100 ℃

    2.2.2 Under and cooled from 200 ℃ steady-state temperature field of different durations at 200 ℃

    From Fig.6, for the specimens in 200 ℃ constant temperature field as the duration at 200 ℃ increases, the dynamic compressive strength goes down; the peak strain generally ascends; the elastic modulus decreases. The dynamic compressive strength is higher than that under the room temperature for all durations at 200 ℃.

    In Fig.7, for the specimens cooled from 200 ℃ constant temperature field, as the increase of the duration at 200 ℃, the dynamic compressive strength and elastic modulus reduce, but peak strain generally increases. For the cooled specimens undergone the durations of 0 min, 30 min, 60 min and 90 min at 200 ℃, the dynamic compressive strength is higher than that under the room temperature, while it is lower at the duration of 120 min at 200 ℃.

    Fig.6 Stress-strain curves of specimens with different durations at 200 ℃ constant temperature field

    Fig.7 Stress-strain curves of specimens cooled from 200 ℃ to the room temperature, with different durations at 200 ℃

    2.2.3 Under and cooled from 300 ℃ steady-state temperature field of different durations at 300 ℃

    From Fig.8, for the specimens under 300 ℃ steady-state temperature field, as the duration at 300 ℃ ascends, the dynamic compressive strength and the elastic modulus decreases but the peak strain increases. In this case, the dynamic compressive strength is higher than that under the room temperature for all durations at 300 ℃.

    From Fig.9, for the specimen cooled from 300 ℃, as the increase of the duration at 300 ℃, the dynamic compressive strength and the elastic modulus decrease; the peak strain increases first and then decreases. The dynamic compressive strength of the cooled specimens at the durations of 0, 30, 60 and 90 min at 300 ℃ is higher than that under room temperature, by contrast it reverses at the duration of 120 min at 300 ℃.

    Fig.8 Stress-strain curves of specimens with different durations at 300 ℃ constant temperature field

    Fig.9 Stress-strain curves of specimens cooled from 300 ℃ to the room temperature, with different durations at 300 ℃

    2.2.4 Under and cooled from 400 ℃ steady-state temperature field of different durations at 400 ℃

    From Fig.10, for the specimens under 400 ℃ steady-state temperature field as the duration at 400 ℃ rises, the dynamic compressive strength and the elastic modulus reduce, but the peak strain increases. At the durations of 0, 30 and 60 min under 400 ℃ constant temperature field, the dynamic compressive strength is higher than that under room temperature, but it is lower at the durations of 90 min and 120 min at 400 ℃.

    From Fig.11, for the specimens cooled from 400 ℃, as the duration at 400 ℃ increases, the dynamic compressive strength and the elastic modulus decrease, and the peak strain increases first and then decreases lightly. For the cooled specimens at the durations of 30 min and 60 min at 400 ℃, the dynamic compressive strength is higher than that under the room temperature, but the trend reverses at the durations of 0, 90 and 120 min at 400 ℃.

    Fig.10 Stress-strain curves of specimens with different durations at 400 ℃ constant temperature field

    Fig.11 Stress-strain curves of specimens cooled from 400 ℃ to the room temperature, with different durations at 400 ℃

    2.2.5 Under and cooled from 500 ℃ steady-state temperature field of different durations at 500 ℃

    From Fig.12, for specimens in 500 ℃ steady-state temperature field as the duration at 500 ℃ increases, the dynamic compressive strength decreases first and then tends to stable; the elastic modulus reduces; the peak strain increases first and then maintains stable. The dynamic compressive strength of specimen without duration under 500 ℃ constant temperature is higher than that under room temperature, but it is opposite for the other durations at 500 ℃ constant temperature, e.g. 30, 60, 90 and 120 min.

    From Fig.13, for specimens cooled from 500 ℃ as the duration at 500 ℃ constant temperature increases, the dynamic compressive strength and the elastic modulus decrease,and the peak strain reduces first and then goes up. The dynamic compressive strength of specimens cooled is lower than that under the room temperature for all durations at 500 ℃.

    Fig.12 Stress-strain curves of specimens with different durations at 500 ℃ constant temperature field

    Fig.13 Stress-strain curves of specimens cooled from 500 ℃ to the room temperature, with different durations at 500 ℃

    2.3 Dynamic mechanical property analysis under and cooled from high temperature without temperature maintaining time

    Fig.14 is a comparison of specimens under and cooled from high-temperature without temperature maintaining time, as the temperature increases (before cooling), the dynamic compressive strength increases till about 200 ℃ where the maximum value occurs, and then it decreases. The above phenomenon is resulted from the loss of free water of inside concrete at 200 ℃ which enhances the interlock capacity of concrete and lead the strength of concrete to reach the top. The dynamic compressive strength of specimen under higher temperatures is higher than that cooled from that high temperature, except at 500 ℃ where they are about same.

    Fig.15 is a comparison of specimens under and cooled from high-temperature without temperature maintaining time, the peak strain rises firstly and then descends as temperature increase and the peak strain are same at about 270 ℃. Before 270 ℃ the peak strain under high temperature is higher than that cooled, which reverses after 270 ℃.

    Fig.14 Dynamic compressive strength- temperature curves of specimens under and cooled from high temperature

    Fig.15 Peak strain-temperature curves of specimens under and cooled from high temperature

    3 Conclusions

    This impact tests on C60 concrete specimens were conducted under different steady-state temperature fields (room temperature, 100, 200, 300, 400 and 500 ℃) after the specimen was maintained for a duration of 0, 30, 60, 90 or 120 min, respectively and after the specimen was cooled from the elevated temperatures to the room temperature, using Φ75 mm split Hopkinson pressure bar (SHPB) system. From the experimental data, the following conclusions can be made:

    ① Under the same steady-state temperature field, when the duration for maintaining the elevated temperature rises, the dynamic compressive strength of concrete specimen decreases. Under the 500 ℃ steady-state temperature field, when the total time exceeds 190 min, the dynamic compressive strength stops to descend and tends towards stable. For specimens cooled from the elevated temperature, as total time increases, the dynamic compressive strength decreases.

    ② Under the same steady-state temperature field of different temperature maintaining durations, as the duration increases, the peak strain of specimen generally rises; the elastic modulus reduces; and the toughness becomes stronger. For specimens cooled from the elevated temperature, with the increase of total time, the peak strain typically increases first and then decreases slightly, and the elastic modulus decreases.

    ③ For both specimens under and cooled from high-temperature without temperature maintaining time, as the temperature increases (before cooling),the dynamic compressive strength raises slightly till around 200 ℃ where the maximum point occurs and then descends after 200 ℃, and the peak strain ascends first and then goes down. The dynamic compressive strength of specimens under high temperature is higher than that of specimens cooled from that high temperature, except at 500 ℃ where they are nearly the same.

    [1] Majid A, Li Xiaoyang, Nawawi C. Experimental investigations on bond strength between coconut fibre and concrete[J]. Material and Design, 2013, 44: 596-605.

    [2] Le T T, Austin S A, Lim S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-566.

    [3] Toledo Filho R D, Koenders E A B, Formagini S, et al. Performance assessment of ultrahigh performance fiber reinforced cementitious composites in view of sustainability[J]. Material and Design, 2012, 36: 880-888.

    [4] He Yuanming, Huo Jingsi, Chen Baisheng, et al. Impact tests on dynamic behavior of concrete at elevated temperature[J]. Engineering Mechanics, 2012, 29(9): 200-208. (in Chinese)

    [5] Li Zhiwu, Xu Jinyu, Bai Erlei, et al. SHPB test for post-high-temperature concrete[J]. Journal of Vibration and Shock, 2012, 31(8): 143-147. (in Chinese)

    [6] Li Qingming, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2): 43-360.

    [7] Wang Zhiliang, Liu Yongsheng, Shen R F.Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials, 2008, 22(5): 1-819.

    [8] Li Kui, Tao Junlin. Research on impact compressive experiment and dynamic mechanic behavior of cement mortar at high temperature[J]. Journal of Wuhan University of Technology, 2010, 32(24): 2-27. (in Chinese)

    [9] Jia, Bin, Li, Zhengliang, Tao Junlin, et al. SHPB test on high temperature dynamical mechanical behavior of concrete[J]. Journal of Wuhan University of Technology, 2010, 32(21): 34-37. (in Chinese)

    [10] Jia Bin, Yang Fang, Sun Kunlin, et al. SHPB test on dynamical mechanical behavior of concrete with high temperature[J]. Applied Mechanics and Materials, 2014, 528: 61-69.

    [11] Su Haoyang, Xu Jinyu, Ren Weibo. Experimental study on the dynamic compressive mechanical properties of concrete at elevated temperature[J]. Materials and Design, 2014, 56: 579-588.

    [12] Li Zhiwu, Xu Jinyu, Bai Erlei. Static and dynamic mechanical properties of concrete after high temperature exposure[J]. Materials Science and Engineering A, 2012, 544: 27-32.

    [13] Yang Shaowei, Liu Limei, Wang Yongwei. SHPB experiment of steel fiber reactive powder concrete exposed to high temperature[J]. Journal of Sichuan University, 2010, 42(1): 25-34. (in Chinese)

    [14] Kim D J, Sirijaroonchai K, EI-Tawil S, et al. Numerical simulation of the split Hopkinson pressure bar test technique for concrete under compression[J]. International Journal of Impact Engineering, 2010, 37: 141-149.

    [15] Hu Shisheng. Experimental techniques for studying dynamic mechanical behaviors of concrete[J]. Journal of University of Science and Technology of China, 2007, 37(10): 312-1319. (in Chinese)

    [16] Li Shenglin, Liu Dianshu, Li Xianglong, et al. The effect of specimen length in Φ75 mm split Hopkinson pressure bar experiment[J]. Journal of China University of Mining & Technology, 2010, 39(1): 93-97. (in Chinese)

    [17] Shi Shaoqiu, Gan Sun. The error analysis of resistance strain measure system on SHPB test unit[J]. Journal of Ningbo University, 1989, 2(2): 48-58. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0305

    O 347; TU 528.1 Document code: A Article ID: 1004- 0579(2015)03- 0313- 08

    Received 2015- 03- 15

    E-mail: l_hongchao@yahoo.com

    猜你喜歡
    梁書趙磊
    藝術檔案
    ——畫家趙磊博采眾長成大道
    寫給舅舅的一封信
    回答
    《囍》
    炎黃地理(2021年5期)2021-09-10 01:32:23
    A GPU accelerated finite volume coastal ocean model*
    拍賣
    兒媳婦計劃
    故事會(2015年23期)2015-12-01 06:07:32
    Runge-Kutta Multi-resolution Time-Domain Method for Modeling 3DDielectric Curved Objects
    Lagrangian methods for water transport processes in a long-narrow bay-Xiangshan Bay, China*
    從《重答劉秣陵沼書》看《梁書·文學傳》之失
    名作欣賞(2014年29期)2014-02-28 11:24:31
    亚洲一码二码三码区别大吗| 超色免费av| 欧美精品啪啪一区二区三区 | 日韩精品免费视频一区二区三区| 亚洲精品国产区一区二| 久久久国产欧美日韩av| 大香蕉久久网| 亚洲熟女精品中文字幕| 一级毛片电影观看| 亚洲精品第二区| 久久国产精品男人的天堂亚洲| 女性生殖器流出的白浆| 亚洲人成电影免费在线| 国产成人免费无遮挡视频| 超碰97精品在线观看| 考比视频在线观看| 亚洲一码二码三码区别大吗| 国产激情久久老熟女| 高清欧美精品videossex| 女人被躁到高潮嗷嗷叫费观| 五月开心婷婷网| 欧美日韩视频精品一区| 日本av手机在线免费观看| 亚洲精品成人av观看孕妇| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻丝袜制服| 色综合欧美亚洲国产小说| 亚洲欧美清纯卡通| 久久国产精品男人的天堂亚洲| 免费观看人在逋| 色婷婷av一区二区三区视频| 午夜91福利影院| 欧美+亚洲+日韩+国产| 日韩,欧美,国产一区二区三区| 国产黄频视频在线观看| 人人澡人人妻人| 99热全是精品| 80岁老熟妇乱子伦牲交| 99国产精品一区二区蜜桃av | 操出白浆在线播放| 亚洲精品久久午夜乱码| 999久久久国产精品视频| 久久久久精品人妻al黑| av福利片在线| 亚洲中文日韩欧美视频| 亚洲专区中文字幕在线| 一区二区日韩欧美中文字幕| 啦啦啦免费观看视频1| 一区二区三区乱码不卡18| 亚洲精品久久午夜乱码| 99久久99久久久精品蜜桃| 亚洲午夜精品一区,二区,三区| 欧美精品亚洲一区二区| 侵犯人妻中文字幕一二三四区| 啦啦啦啦在线视频资源| 国产欧美日韩一区二区三区在线| 成年动漫av网址| 国产在线免费精品| 性高湖久久久久久久久免费观看| 国产视频一区二区在线看| 在线观看人妻少妇| 无遮挡黄片免费观看| 一本一本久久a久久精品综合妖精| 免费高清在线观看日韩| 久久久久国内视频| 桃花免费在线播放| 99久久综合免费| 国产无遮挡羞羞视频在线观看| 极品少妇高潮喷水抽搐| 日韩,欧美,国产一区二区三区| 免费在线观看完整版高清| 欧美日韩亚洲综合一区二区三区_| 大陆偷拍与自拍| 纵有疾风起免费观看全集完整版| 91国产中文字幕| 亚洲欧美成人综合另类久久久| 一本—道久久a久久精品蜜桃钙片| 黄色毛片三级朝国网站| 搡老岳熟女国产| 国产成人精品久久二区二区91| 高清av免费在线| 国产精品1区2区在线观看. | 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 黄频高清免费视频| 老司机福利观看| www日本在线高清视频| 精品国产一区二区三区四区第35| 一级,二级,三级黄色视频| 正在播放国产对白刺激| 每晚都被弄得嗷嗷叫到高潮| 天天添夜夜摸| 免费久久久久久久精品成人欧美视频| 亚洲成人免费电影在线观看| 日韩,欧美,国产一区二区三区| 国产极品粉嫩免费观看在线| 亚洲专区字幕在线| 午夜福利一区二区在线看| 亚洲一区二区三区欧美精品| 黄片播放在线免费| 自线自在国产av| 最近中文字幕2019免费版| 夜夜夜夜夜久久久久| 高清欧美精品videossex| 日韩电影二区| 欧美日韩成人在线一区二区| 啦啦啦视频在线资源免费观看| 韩国精品一区二区三区| 男女下面插进去视频免费观看| 午夜成年电影在线免费观看| 婷婷成人精品国产| 国产精品av久久久久免费| 少妇的丰满在线观看| 久久久久网色| 99re6热这里在线精品视频| 操出白浆在线播放| 色婷婷久久久亚洲欧美| 精品乱码久久久久久99久播| 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| 另类亚洲欧美激情| 在线观看免费午夜福利视频| 99国产精品一区二区三区| 久久狼人影院| 亚洲精品久久久久久婷婷小说| 久久青草综合色| 欧美+亚洲+日韩+国产| 日韩欧美免费精品| 丰满人妻熟妇乱又伦精品不卡| 97人妻天天添夜夜摸| 精品视频人人做人人爽| 中文欧美无线码| 91精品国产国语对白视频| 久久久国产欧美日韩av| 免费看十八禁软件| xxxhd国产人妻xxx| 在线观看一区二区三区激情| 久久精品成人免费网站| 亚洲中文日韩欧美视频| 欧美变态另类bdsm刘玥| 99久久国产精品久久久| 午夜激情av网站| 亚洲男人天堂网一区| 国产国语露脸激情在线看| 国产成+人综合+亚洲专区| av欧美777| 大香蕉久久成人网| 国产在视频线精品| a级片在线免费高清观看视频| 最黄视频免费看| 一本久久精品| 欧美黄色片欧美黄色片| 99久久精品国产亚洲精品| 在线 av 中文字幕| 成年人免费黄色播放视频| 成人国语在线视频| 亚洲精品国产区一区二| 少妇裸体淫交视频免费看高清 | 纯流量卡能插随身wifi吗| 大陆偷拍与自拍| 午夜久久久在线观看| 热re99久久精品国产66热6| av有码第一页| 午夜成年电影在线免费观看| 日韩制服丝袜自拍偷拍| 最近最新免费中文字幕在线| 亚洲情色 制服丝袜| 狠狠精品人妻久久久久久综合| 最近中文字幕2019免费版| 婷婷丁香在线五月| 久久久久久人人人人人| 日韩人妻精品一区2区三区| 黑人欧美特级aaaaaa片| 日本欧美视频一区| 最黄视频免费看| 欧美国产精品va在线观看不卡| 18禁国产床啪视频网站| 中文欧美无线码| 亚洲国产精品一区三区| 热99国产精品久久久久久7| 日本vs欧美在线观看视频| 大片免费播放器 马上看| 成人av一区二区三区在线看 | 首页视频小说图片口味搜索| 一区二区三区乱码不卡18| 精品亚洲成a人片在线观看| 亚洲中文av在线| 别揉我奶头~嗯~啊~动态视频 | 欧美老熟妇乱子伦牲交| 国产精品 国内视频| 大片电影免费在线观看免费| 老司机深夜福利视频在线观看 | 性少妇av在线| 一级毛片精品| 成人av一区二区三区在线看 | 久久99热这里只频精品6学生| 天堂俺去俺来也www色官网| 考比视频在线观看| 伊人亚洲综合成人网| 多毛熟女@视频| 黄色视频在线播放观看不卡| 91成人精品电影| 亚洲人成77777在线视频| 精品一区二区三区四区五区乱码| 亚洲 欧美一区二区三区| 国产精品久久久久久精品古装| 黄片小视频在线播放| 视频在线观看一区二区三区| 法律面前人人平等表现在哪些方面 | 狂野欧美激情性xxxx| 久久精品国产综合久久久| 老熟女久久久| 亚洲人成77777在线视频| 日本vs欧美在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品二区激情视频| 最近最新免费中文字幕在线| 欧美一级毛片孕妇| 久久久久网色| 午夜免费观看性视频| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久电影网| 丁香六月欧美| 丝瓜视频免费看黄片| 免费观看av网站的网址| 91麻豆av在线| 777久久人妻少妇嫩草av网站| av天堂在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区在线观看av| 久久久久国产一级毛片高清牌| 中文字幕av电影在线播放| 激情视频va一区二区三区| 日韩视频在线欧美| 午夜福利免费观看在线| 如日韩欧美国产精品一区二区三区| 久久久精品94久久精品| 欧美精品啪啪一区二区三区 | 国产男女超爽视频在线观看| 制服诱惑二区| 熟女少妇亚洲综合色aaa.| 免费日韩欧美在线观看| 国产日韩欧美亚洲二区| 亚洲性夜色夜夜综合| 欧美日韩福利视频一区二区| 久久人人爽av亚洲精品天堂| av免费在线观看网站| 久久国产精品男人的天堂亚洲| 免费观看人在逋| 爱豆传媒免费全集在线观看| 国产成人精品久久二区二区免费| 成年人午夜在线观看视频| a级毛片黄视频| 91麻豆精品激情在线观看国产 | 69av精品久久久久久 | 欧美中文综合在线视频| 91九色精品人成在线观看| 99久久人妻综合| 久久女婷五月综合色啪小说| 精品久久久久久电影网| 亚洲国产欧美网| 亚洲 国产 在线| 精品久久久久久久毛片微露脸 | 亚洲专区字幕在线| 老熟女久久久| 天天添夜夜摸| 日韩一卡2卡3卡4卡2021年| av电影中文网址| 国产精品久久久av美女十八| 亚洲七黄色美女视频| 亚洲欧美成人综合另类久久久| 99国产精品99久久久久| 精品亚洲乱码少妇综合久久| 国产精品一区二区在线观看99| 精品久久久久久电影网| 高潮久久久久久久久久久不卡| 久久久久久免费高清国产稀缺| 91精品三级在线观看| 视频区图区小说| 国产成人a∨麻豆精品| 欧美+亚洲+日韩+国产| 久久精品人人爽人人爽视色| 国产欧美日韩综合在线一区二区| 午夜福利视频精品| 涩涩av久久男人的天堂| 91麻豆精品激情在线观看国产 | 十分钟在线观看高清视频www| 中文字幕精品免费在线观看视频| 99热全是精品| 国产在线视频一区二区| 女警被强在线播放| 丝袜美足系列| av在线老鸭窝| 精品免费久久久久久久清纯 | 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕| 啦啦啦中文免费视频观看日本| 天天躁夜夜躁狠狠躁躁| 黄色视频,在线免费观看| 少妇人妻久久综合中文| 夜夜骑夜夜射夜夜干| 日韩 欧美 亚洲 中文字幕| 欧美精品人与动牲交sv欧美| 夫妻午夜视频| 丁香六月欧美| www.自偷自拍.com| 亚洲九九香蕉| 十分钟在线观看高清视频www| a 毛片基地| 国产伦理片在线播放av一区| 亚洲美女黄色视频免费看| 国产免费视频播放在线视频| 欧美精品高潮呻吟av久久| 亚洲精品日韩在线中文字幕| 黄色a级毛片大全视频| 99久久人妻综合| 天天操日日干夜夜撸| 免费av中文字幕在线| 丝袜在线中文字幕| 90打野战视频偷拍视频| 各种免费的搞黄视频| 久久久久国产精品人妻一区二区| 99精品欧美一区二区三区四区| 日本一区二区免费在线视频| 精品久久久精品久久久| 无遮挡黄片免费观看| 视频在线观看一区二区三区| 国产99久久九九免费精品| videos熟女内射| 亚洲av欧美aⅴ国产| 久久综合国产亚洲精品| 国产深夜福利视频在线观看| 国产成人精品无人区| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 国产福利在线免费观看视频| 9色porny在线观看| av线在线观看网站| 国产成人精品久久二区二区91| 久久国产精品人妻蜜桃| 国产精品影院久久| av超薄肉色丝袜交足视频| 人人澡人人妻人| 精品亚洲成a人片在线观看| 男女边摸边吃奶| 午夜福利视频精品| 男女无遮挡免费网站观看| 日本av免费视频播放| 一本大道久久a久久精品| 午夜福利,免费看| 夜夜夜夜夜久久久久| 久久人人爽人人片av| 五月开心婷婷网| 一级毛片电影观看| 亚洲精品国产av蜜桃| 狠狠狠狠99中文字幕| 亚洲情色 制服丝袜| 在线观看人妻少妇| 这个男人来自地球电影免费观看| 黄色毛片三级朝国网站| 日韩视频在线欧美| 69精品国产乱码久久久| www日本在线高清视频| 欧美黑人欧美精品刺激| 狂野欧美激情性xxxx| 韩国高清视频一区二区三区| 欧美日韩亚洲综合一区二区三区_| 各种免费的搞黄视频| 老司机靠b影院| 国产精品av久久久久免费| 黑人猛操日本美女一级片| 三上悠亚av全集在线观看| 男女免费视频国产| 国产一区二区 视频在线| 精品亚洲成a人片在线观看| 久久免费观看电影| 日日摸夜夜添夜夜添小说| 久久亚洲精品不卡| 精品国产一区二区久久| 午夜激情av网站| 久久国产精品大桥未久av| av一本久久久久| 免费黄频网站在线观看国产| 免费高清在线观看视频在线观看| 亚洲欧美清纯卡通| 热99re8久久精品国产| 国产精品久久久久成人av| 国产av一区二区精品久久| 久久久精品国产亚洲av高清涩受| 女人爽到高潮嗷嗷叫在线视频| 久热这里只有精品99| 亚洲欧美成人综合另类久久久| 一级黄色大片毛片| 久久国产精品大桥未久av| 正在播放国产对白刺激| 男女午夜视频在线观看| 大香蕉久久成人网| 亚洲av片天天在线观看| 久久亚洲国产成人精品v| 成人国产av品久久久| 久久国产精品人妻蜜桃| 午夜福利视频在线观看免费| 汤姆久久久久久久影院中文字幕| 欧美日韩国产mv在线观看视频| 久久狼人影院| 国产av又大| 女性被躁到高潮视频| 日本精品一区二区三区蜜桃| 在线av久久热| 亚洲熟女毛片儿| 国产免费现黄频在线看| 国产亚洲午夜精品一区二区久久| 亚洲中文字幕日韩| 丝袜美腿诱惑在线| 亚洲色图综合在线观看| 久久精品国产亚洲av香蕉五月 | 男女午夜视频在线观看| 亚洲五月婷婷丁香| 亚洲国产精品成人久久小说| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| 国产一区有黄有色的免费视频| 欧美日韩一级在线毛片| 水蜜桃什么品种好| 中文字幕人妻丝袜制服| 久久国产亚洲av麻豆专区| 亚洲视频免费观看视频| 久久久久视频综合| 久久久久久久国产电影| a在线观看视频网站| 老司机亚洲免费影院| 性高湖久久久久久久久免费观看| 一本综合久久免费| 欧美精品啪啪一区二区三区 | 国产熟女午夜一区二区三区| 国产老妇伦熟女老妇高清| 大香蕉久久网| 一级毛片电影观看| 精品人妻1区二区| 亚洲熟女精品中文字幕| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| av一本久久久久| 欧美av亚洲av综合av国产av| 午夜精品久久久久久毛片777| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 免费一级毛片在线播放高清视频 | a级毛片黄视频| 99精国产麻豆久久婷婷| 日日爽夜夜爽网站| 亚洲久久久国产精品| 亚洲国产中文字幕在线视频| 在线观看一区二区三区激情| 亚洲欧美成人综合另类久久久| 亚洲精品在线美女| 久久天躁狠狠躁夜夜2o2o| 欧美乱码精品一区二区三区| 久久久久精品人妻al黑| 9色porny在线观看| 少妇被粗大的猛进出69影院| 2018国产大陆天天弄谢| 午夜影院在线不卡| 精品久久久久久电影网| 亚洲精品国产av蜜桃| 欧美人与性动交α欧美精品济南到| 欧美成人午夜精品| 欧美精品人与动牲交sv欧美| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| av在线播放精品| 免费在线观看完整版高清| 男女高潮啪啪啪动态图| 久久狼人影院| 婷婷丁香在线五月| 午夜福利视频在线观看免费| 久久这里只有精品19| 成人av一区二区三区在线看 | 热re99久久精品国产66热6| 亚洲精华国产精华精| 中文字幕精品免费在线观看视频| 亚洲中文av在线| 精品一区二区三区av网在线观看 | 嫩草影视91久久| 亚洲天堂av无毛| 亚洲熟女毛片儿| 中国美女看黄片| 亚洲精品一卡2卡三卡4卡5卡 | 国产亚洲午夜精品一区二区久久| 99久久人妻综合| 视频区图区小说| 美女视频免费永久观看网站| 国产成人影院久久av| 一级a爱视频在线免费观看| 高清黄色对白视频在线免费看| 一区二区三区乱码不卡18| 黄色视频,在线免费观看| av在线播放精品| 精品亚洲成a人片在线观看| 夜夜夜夜夜久久久久| 乱人伦中国视频| 人人妻人人澡人人看| 天天躁夜夜躁狠狠躁躁| 成年人黄色毛片网站| 97精品久久久久久久久久精品| 久久久久久久久久久久大奶| 一边摸一边抽搐一进一出视频| 满18在线观看网站| 岛国在线观看网站| 一级片免费观看大全| 精品少妇一区二区三区视频日本电影| 啪啪无遮挡十八禁网站| 午夜福利影视在线免费观看| 大陆偷拍与自拍| 搡老熟女国产l中国老女人| 日韩三级视频一区二区三区| 亚洲色图综合在线观看| 欧美激情极品国产一区二区三区| 脱女人内裤的视频| 国产在线视频一区二区| 色视频在线一区二区三区| www.999成人在线观看| 高清在线国产一区| 国产精品国产av在线观看| 国产片内射在线| 亚洲视频免费观看视频| 青春草亚洲视频在线观看| av天堂久久9| 免费在线观看影片大全网站| 免费观看a级毛片全部| 性色av一级| 欧美日韩视频精品一区| 国产精品一二三区在线看| 欧美精品一区二区免费开放| 免费在线观看视频国产中文字幕亚洲 | 成年美女黄网站色视频大全免费| 日韩免费高清中文字幕av| 狠狠婷婷综合久久久久久88av| 高清欧美精品videossex| 国产免费福利视频在线观看| 亚洲一区中文字幕在线| 交换朋友夫妻互换小说| 午夜激情av网站| 免费看十八禁软件| 亚洲三区欧美一区| 亚洲激情五月婷婷啪啪| 麻豆乱淫一区二区| 亚洲av欧美aⅴ国产| 一区二区三区乱码不卡18| 日韩熟女老妇一区二区性免费视频| 久久久精品94久久精品| av欧美777| 国产精品亚洲av一区麻豆| 97在线人人人人妻| 中文字幕人妻熟女乱码| 亚洲精品一卡2卡三卡4卡5卡 | 中文字幕人妻丝袜制服| 看免费av毛片| 91精品三级在线观看| 久久久久久久久免费视频了| 日韩欧美一区二区三区在线观看 | 伦理电影免费视频| 国产亚洲av片在线观看秒播厂| 日韩制服骚丝袜av| 久久久久久免费高清国产稀缺| 亚洲激情五月婷婷啪啪| 国产精品99久久99久久久不卡| 伊人亚洲综合成人网| 王馨瑶露胸无遮挡在线观看| 女性生殖器流出的白浆| 国产1区2区3区精品| 亚洲成av片中文字幕在线观看| 搡老乐熟女国产| 欧美97在线视频| 欧美国产精品一级二级三级| 精品乱码久久久久久99久播| 国产一区二区 视频在线| 精品少妇黑人巨大在线播放| 中文字幕av电影在线播放| 国产精品自产拍在线观看55亚洲 | 超色免费av| 12—13女人毛片做爰片一| 国产国语露脸激情在线看| av在线app专区| 精品久久蜜臀av无| 国产欧美日韩一区二区三 | 亚洲精品中文字幕在线视频| 99久久国产精品久久久| 日本91视频免费播放| 国产成人啪精品午夜网站| 国产伦理片在线播放av一区| 国产av国产精品国产| 亚洲性夜色夜夜综合| 色婷婷久久久亚洲欧美| 国产黄色免费在线视频| 999精品在线视频| 精品一区二区三区四区五区乱码| 亚洲欧美色中文字幕在线| 国产男女内射视频| 久久av网站| 国产1区2区3区精品| 51午夜福利影视在线观看| 午夜久久久在线观看| 国产99久久九九免费精品| 国产主播在线观看一区二区| 免费av中文字幕在线| 日日摸夜夜添夜夜添小说| 日日爽夜夜爽网站| 男女无遮挡免费网站观看| 亚洲人成电影观看| 午夜免费鲁丝| 精品一品国产午夜福利视频| 老司机午夜福利在线观看视频 | 丝袜喷水一区|