• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Joint receiving mechanism based on blind equalization with variable step size for M-QAM modulation

    2015-04-22 07:49:16LUJihua盧繼華AbdallahElhirtsiaAHMEDWANGXiaohua王曉華KheddarBOUDJEMAA

    LU Ji-hua(盧繼華), Abdallah Elhirtsia AHMED, WANG Xiao-hua(王曉華),Kheddar BOUDJEMAA

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China.2.School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Joint receiving mechanism based on blind equalization with variable step size for M-QAM modulation

    LU Ji-hua(盧繼華)1, Abdallah Elhirtsia AHMED1, WANG Xiao-hua(王曉華)1,Kheddar BOUDJEMAA2

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China.2.School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081, China)

    The problem of inter symbol interference (ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-QAM is solved. Since the wireless receiver doesn’t require a training sequence, a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system, a joint receiving mechanism including variable step size (VSS) modified constant modulus algorithms (MCMA) and modified decision directed modulus algorithms (MDDMA) is proposed to ameliorate the convergence speed and mean square error (MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations show that the performance of the proposed VSS-MCMA-MDDMA mechanism is better than that of algorithms with a fixed step size. In addition, the MCMA-MDDMA with VSS can perform the phase recovery by itself.

    inter symbol interference (ISI); modified constant modulus algorithm (MCMA); modified decision directed modulus algorithm (MDDMA); variable step size; blind equalization; phase rotation

    Inter symbol interference (ISI) caused by limited bandwidth, multipath and a change with time of the wireless channels for home networking has been known as a major problem for high speed data transmission. Hence, it is necessary to use an adaptive equalizer which is a linear time varying filter that gives an estimation inverse of the channel[1]to track the channel variation and reduce the ISI effects. The adaptive equalizer used in wireless receiver needs some algorithms such as the least mean square (LMS) and recursive least square (RLS) algorithms[2-3]. Whereas, these algorithms based on the attachment of training sequence with the transmitted information for learning the channel decreases the bandwidth efficiency of the system[4].

    On the other hand, the blind equalization technique uses statistical properties of the transmitted signal instead of the training sequence thus increases the throughput of the system. The blind equalization technique includes algorithms such as the constant modulus algorithm (CMA)[4].

    The CMA works well for modulations with a circular constellation, such as the M-ary phase shift keying (PSK) modulation. However, for M-ary QAM modulation when the constellation is composed of a square lattice of signal points, the CMA doesn’t performance well and may obtain a convergence with phase error. In order to improve the performance of the CMA with M-QAM signals, enhanced algorithms are proposed in Refs.[5-9]. Particularly, the modified constant modulus algorithm (MCMA) proposed in Ref.[5] is designed to solve the problem of phase rotation in high order QAM signals. Inspired by the CMA blind equalization scheme for M-QAM modulated signals, the decision directed modulus algorithm (DDMA) was developed[10]. Furthermore, the MDDMA proposed in Ref.[11] incorporates the advantages of MCMA and DDMA. The dual cost function of the combined MCMA and MDDMA in Refs.[11-12] are formulated to improve the performances for M-QAM modulation, which are referred as the MCMA-MDDMA algorithms here.

    The convergence rate and the mean square error (MSE) are used to measure the performances of blind equalization algorithms. For example in wireless home network, the convergence rate shows how long the service will be blocked on the network when the channel’s characteristics changes. The MSE has relation to the quality of service and the throughput of the system. The step size factor has an important influence when evaluating the convergence rate and MSE, and hence, it is directly related to the blind equalization algorithm’s performance[13-14].

    1 Block of a wireless communication system with proposed algorithms

    1.1 Wireless communication system with an adaptive blind equalizer

    Fig.1 shows a simple wireless communication system model with an adaptive blind equalizer.

    The received signalx(k) and the output of equalizery(k) in Fig.1 can be expressed as

    (1)

    y(k)=W(k)*X(k)

    (2)

    (3)

    Fig.1 Block diagram of a wireless communication system with an adaptive blind egualizer

    1.2 MCMA

    The cost function of MCMA proposed in Ref.[5] is given by the decomposition of CMA cost function[4]with real and imaginary parts. This will use the information of both phase and amplitude at the equalizer output in order to solve the existing problem of phase rotation in M-QAM signals. However, this cannot be solved by the cost function defined in the CMA, the cost function of which is written as

    JCMA(k)=E[(|y(k)|2-D)2]

    (4)

    whereE[·] denotes the statistical expectation andDis a constant determined by the statistics of transmitted informationa(k), expressed as

    (5)

    InsteadofCMA,theMCMAcostfunction[5]isgivenbythesumofrealandimaginarycostfunctionsJR(k) andJI(k), respectively. These two components are formulated as

    JR(k)=E[(|yR(k)|2-DR)2]

    (6)

    JI(k)=E[(|yI(k)|2-DI)2]

    (7)

    wherey(k)=yR(k)+jyI(k) and the constantsDRandDIare defined as

    (8)

    wherea(k)=aR(k)+jaI(k).

    Using the gradient descendent method, the updated tap weight vectorw(k+1) in the MCMA is expressed as

    w(k+1)=w(k)-μeMC(k)X*(k)

    (9)

    whereμis the step size factor ;eMCis the estimated error of MCMA algorithm and

    eMC(k)=eR(k)+jeI(k)

    (10)

    eR(k)=yR(k)(|yR(k)|2-DR)

    (11)

    eI(k)=yI(k)(|yI(k)|2-DI)

    (12)

    1.3 MDDMA

    (13)

    UsingthesameideawhenmodifyingtheCMAcostfunctiontocreatetheMCMA,theMDDMA[11]dividestheDDMAcostfunction[10]intorealandimaginaryparts,respectivelyas

    (14)

    (15)

    TheupdatedcoefficientofMDDMAisgivenby

    w(k+1)=w(k)-μeMD(k)X*(k)

    (16)

    whereeMD(k)=eMR(k)+jeMI(k) is the error function, and its and imaginary parts are

    (17)

    (18)

    1.4CombinedMCMA-MDDMA

    MCMA-MDDMAisproposedbyusingacombinedcostfunctionofbothMCMAandMDDMA[11].ThisalgorithmhasshownagoodperformancewhencomparedwithMCMA[12].Keepingthesamenotationscitedpreviously,thecostfunctionofMCMA-MDDMAis

    JMM(k)=JMMR(k)+JMMI(k)

    (19)

    with

    JMMR(k)=E[(|yR(k)|2-DR)2]+

    (20)

    JMMI(k)=E[(|yI(k)|2-DI)2]+

    (21)

    TheupdatedcoefficientofMCMA-MDDMAcanbedescribedas

    w(k+1)=w(k)-μeMM(k)X*(k)

    (22)

    where

    eMM(k)=eMMR(k)+jeMMI(k)

    (23)

    The real and the imaginary parts ofeMM(k) are respectively expressed as

    eMMR=yR(k)(|yR(k)|2-DR)+

    (24)

    eMMI=yI(k)(|yI(k)|2-DI)+

    (25)

    2 Proposed VSS receiving scheme

    2.1 Convergence of MCMA-MDDMA with fixed step size

    Fig.2 MSE convergence curves for MCMA-MDDMA with a fixed step size

    The inefficiency of using a fixed step size is simulated under the following conditions: Input of information is a 16-QAM modulated signal and the channel impulse vector ish1=10.129 4+0.483j. An AWGN is added to the input with signal-to-noise ratio (SNR) of 35 dB. Fig.2 illustrates the convergence curve of MCMA-MDDMA with different values of fixed step size. Results show that MCMA-MDDMA with a fixed step size suffers from a compromise between the convergence rate and the convergence steady state MSE.

    2.2 Proposed MCMA-MDDMA with VSS

    Fig.3 Two states of MCMA-MDDMA with fixed step size

    In this section, a VSS is proposed. Then, it is applied to combined MCMA-MDDMA referred as VSS-MCMA-MDDMA. The step size is selected according to the distancedbetween the desired output and equalizer output in the constellation plane. During the equalization process, the regions ofy(k) can be located according theith point in the constellation diagram, as shown in Fig.4. Herei=1,2,…,M, andMis the order of the QAM signals.

    Fig.4 Regions defined around the ith point in the M-QAM constellation diagram

    3 Simulation results

    Simulationsarecarriedoutwiththefollowingscenario:transmitted16-QAMsymbolswithuniformdistributions,transversalequalizerwith21coefficientswheretheinitializationconsistsofsettingcentertapto1andothersto0,andtheSNRratioischosentobe35dB.Finally,atwo-tapfrequency-selectivechannelwithimpulseresponseisfixedash1=[10.129+0.046 3j] . The proposed combined MCMA-MDDMA with VSS is compared with CMA, MCMA, and MCMA-MDDMA with a fixed step size. The three step sizes for VSS-MCMA-MDDMA areμ1=0.000 05,μ2=0.000 03, andμ3=μ1/6. The regions 1, 2 and 3 are selected by choosingd1=0.6 andd2=0.2. The step size for CMA, MCMA and MCMA-MDDMA are allμ=0.000 02.

    All the MSE curves are obtained by calculating the average over 200 Monte Carlo realizations with 20 000 symbols for each realization.

    Results are shown in Fig.5. The obtained MSE of the VSS-MCMA-MDDMA at the steady state is approximately 2 dB, 5 dB and 10 dB better comparng with MCMA-MDDMA, MCMA, and CMA, respectively. Moreover the convergence speed of the VSS-MCMA-MDDMA is faster than other algorithms.

    Fig.5 MSE curves using channel h1 for 16-QAM signals

    We decrease the number of iterations from 20 000 to 10 000 iterations. The simulation results of Fig.6 show the MSE performance for the channelh1=10.129+0.046 3j.

    Fig.6 MSE curves using channel h1 for 10 000 iterations

    As shown from the MSE performance of Fig.6 when decreasing the number of iterations from 20 000 to 10 000, the proposed VSS-MCMA-MDDMA has the best performance in terms of convergence speed and the MSE at the steady sate. For example at the point of 3 000 iterations we observe that the MSE of the VSS-MCMA-MDDMA is -17 dB, and the MSE of MCMA, MCMA-MDDMA are -15 dB and -8 dB, respectively. In terms of convergence speed, the proposed VSS-MCMA-MDDMA is the fastest one that can converge after 3 800 iterations. The MCMA and MCMA-MDDMA converge after 6 000 and 4 000 iterations, respectively.

    To examine the behavior of VSS-MCMA-MDDMA when the phase rotation problem is presented, the following simulations are done using frequency selective channelh2with two complex coefficientsc1=0.906 3+0.422 6j andc2=0.321 4+0.383 0j.

    Fig.7 shows the signal constellation diagram using 16-QAM modulation of 2 000 to 20 000 symbols for CMA, MCMA, MCMA-MDDMA and VSS-MCMA-MDDMA. It can be seen that the VSS-MCMA-MDDMA can correct the phase error without a need for additional correction loop. In contrary, the CMA algorithm still presents a phase rotation at its output so it needs a phase looked loop (PLL) to correct the phase rotation. In another aspect, it has the clearest signal constellation when compared with MCMA and MCMA-MDDMA algorithms.

    Fig.7 Constellations of 16QAM signals using channel h2 (2 000 to 20 000 symbols)

    As shown in Fig.8, the CMA has the highest steady state MSE error due to the phase rotation caused by the channel. Meanwhile, the VSS-MCMA-MDDMA has a faster convergence and lower MSE than MCMA and MCMA-MDDMA.

    Finally, the symbol error rate (SER) performances are investigated in Tab.1 and Tab.2 for the channelh1and channelh2, respectively. Due to the phase error, SER performance of CMA algorithm is quite poor. In contrast, the MCMA, MCMA-MDDMA and VSS-MCMA-MDDMA algorithms have better SER performance for the adoption of phase recovering process, i.e., VSS-MCMA-MDDMA has lowest SER.

    Fig.8 MSE curves using channel h2 for 16-QAM signals

    Tab.1 SER for 16-QAM signals using channelh1

    SNR/dBCMAMCMAMCMA-MDDMAVSS-MCMA-MDDMA201.09×10-41.21×10-49.67×10-56.71×10-5256.47×10-58.05×10-55.81×10-53.48×10-5305.60×10-54.85×10-54.29×10-52.69×10-5

    Tab.2 SER for 16-QAM signals using channel h2

    4 Conclusion

    A VSS blind equalization technique for QAM signals based on the distance between the output of equalizer and the desired output in the constellation plane is proposed. Using this technique, an application was tested on combined MCMA and MDDMA (MCMA-MDDMA). The results using 16-QAM signals show that the MCMA-MDDMA with VSS is better regarding both the convergence speed and steady state MSE. In addition, it can recover the phase.

    [1] RAPPAPORT Theodore S. Wireless communications: principles and practice[M]. Upper Saddle River, New Jersey: Prentice Hall, 1996: 299-311.

    [2] Benesty J, Duhamel P. A fast exact least mean square adaptive algorithm[J].Signal Processing, IEEE Transactions on, 1992, 40(12): 2904-2920.

    [3] Cioffi J, Kailath T. Fast, recursive-least-squares transversal filters for adaptive filtering[J].EEE Transactions on, Acoustics, Speech and Signal Processing, 1984, 32(2): 304-337.

    [4] Godard D. Self-recovering equalization and carrier tracking in two-dimensional data communication systems[J]. IEEE Transactions on Communications, 1980, 28(11): 1867-1875.

    [5] Oh K N, Chin Y O. Modified constant modulus algorithm: blind equalization and carrier phase recovery algorithm[C]∥“Gateway to Globalization”, 1995 IEEE International Conference on Communications, Seattle, USA, 1995.

    [6] He L, Amin M G, Reed Jr C, et al. A hybrid adaptive blind equalization algorithm for QAM signals in wireless communications[J]. IEEE Transactions on Signal Processing, 2004, 52(7): 2058-2069.

    [7] Li X L, Zhang X D. A family of generalized constant modulus algorithms for blind equalization[J].IEEE Transactions on Communications, 2006, 54(11): 1913-1917.

    [8] Zhao X, Guo Y, Rao W. Blind Equalization Algorithms Based on Orthogonal Wavelet and Coordinate Transformation[C]∥IHMSC’09. International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 2009.

    [9] Labed A, Aissa-El-Bey A, Chonavel T, et al. New hybrid adaptive blind equalization algorithms for QAM signals[C]∥ICASSP 2009. IEEE International Conference on Acoustics, Speech and Signal Processing, Taibei, 2009.

    [10] Fernandes C A R, Mota J C M. New Blind Algorithms Based on Modified “Constant Modulus” Criteria for QAM Constellations[C]∥Telecommunications and Networking-ICT 2004. Berlin: Springer, 2004: 498-503.

    [11] Fernandes C A R, Mota J C M, Favier G. Decision directed algorithms for blind equalization based on constant modulus criteria[C]∥Colloque sur le Traitement du Signal et des Image, Louvain, Belgique, 2005.

    [12] Fan C P, Liang W H, Lee W. Fast blind equalization with two-stage single/multilevel modulus and DD algorithm for high order QAM cable systems[C]∥IEEE International Symposium on Circuits and Systems, IEEE, 2008.

    [13] Xue W, Yang X, Zhang Z. A variable step size algorithm for blind equalization of QAM signals[C]∥Progress In Electromagnetics Research Symposium, Cambridge, USA. 2010.

    [14] Gao Y, Qiu X. A new variable step size CMA blind equalization algorithm[C]∥24th Chinese Control and Decision Conference (CCDC), Taiyuan, China, 2012.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0315

    TN 914.3 Document code: A Article ID: 1004- 0579(2015)03- 0381- 06

    Received 2014- 02- 22

    Supported by the National Natural Science Foundation of China (61002014; 61101129; 61227001; 61072050)

    E-mail: lujihua@bit.edu.cn

    91久久精品国产一区二区成人 | 成年人黄色毛片网站| 精品免费久久久久久久清纯| 丰满人妻一区二区三区视频av | 日日干狠狠操夜夜爽| 男女之事视频高清在线观看| 日日干狠狠操夜夜爽| 国产成人影院久久av| 久久性视频一级片| 香蕉丝袜av| 波多野结衣高清作品| 亚洲国产精品999在线| av中文乱码字幕在线| 久久精品91蜜桃| 亚洲电影在线观看av| 欧美最新免费一区二区三区 | 在线免费观看不下载黄p国产 | 国产高潮美女av| 亚洲第一欧美日韩一区二区三区| 国产三级黄色录像| 色吧在线观看| 最新中文字幕久久久久| 久久精品国产亚洲av香蕉五月| 国产成人系列免费观看| 日韩欧美国产一区二区入口| 麻豆久久精品国产亚洲av| 国产视频一区二区在线看| 少妇高潮的动态图| 中文资源天堂在线| 亚洲一区二区三区不卡视频| 免费看光身美女| 色老头精品视频在线观看| 国产精品99久久久久久久久| 亚洲在线观看片| 级片在线观看| 精品久久久久久久久久久久久| 内地一区二区视频在线| 国产精品 欧美亚洲| 中出人妻视频一区二区| 人妻久久中文字幕网| 国产精品亚洲av一区麻豆| 非洲黑人性xxxx精品又粗又长| 麻豆成人午夜福利视频| 18美女黄网站色大片免费观看| 久久性视频一级片| 欧美色视频一区免费| 精品久久久久久久末码| 美女高潮喷水抽搐中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 黄色女人牲交| 国产蜜桃级精品一区二区三区| 国产精品,欧美在线| 男女床上黄色一级片免费看| 日韩欧美三级三区| 黄片小视频在线播放| 老汉色av国产亚洲站长工具| 哪里可以看免费的av片| 一个人免费在线观看的高清视频| 深爱激情五月婷婷| 欧美日韩乱码在线| av视频在线观看入口| 亚洲精品久久国产高清桃花| 欧美xxxx黑人xx丫x性爽| 俺也久久电影网| 麻豆国产av国片精品| x7x7x7水蜜桃| 国产单亲对白刺激| 天堂影院成人在线观看| 男女那种视频在线观看| av专区在线播放| 熟妇人妻久久中文字幕3abv| 在线观看免费视频日本深夜| 一进一出抽搐gif免费好疼| 97碰自拍视频| 国产一区在线观看成人免费| 宅男免费午夜| 长腿黑丝高跟| 制服丝袜大香蕉在线| 国产精华一区二区三区| bbb黄色大片| 国产69精品久久久久777片| 亚洲av电影不卡..在线观看| 欧美大码av| 国产伦精品一区二区三区四那| 国产探花极品一区二区| 精品福利观看| 国产高潮美女av| 亚洲国产精品999在线| 久久婷婷人人爽人人干人人爱| 久久中文看片网| 久久久久久国产a免费观看| 亚洲av一区综合| 免费看十八禁软件| 在线免费观看不下载黄p国产 | 亚洲乱码一区二区免费版| av欧美777| 亚洲熟妇中文字幕五十中出| 天美传媒精品一区二区| 真人一进一出gif抽搐免费| bbb黄色大片| 蜜桃久久精品国产亚洲av| 少妇的逼水好多| 亚洲欧美日韩高清在线视频| 国产av麻豆久久久久久久| 老司机深夜福利视频在线观看| 99久久九九国产精品国产免费| 日韩中文字幕欧美一区二区| 在线观看av片永久免费下载| 在线观看一区二区三区| 99热只有精品国产| 听说在线观看完整版免费高清| 男女视频在线观看网站免费| 久99久视频精品免费| 午夜激情福利司机影院| 亚洲久久久久久中文字幕| 久久人妻av系列| 欧美日本视频| 国产精品99久久99久久久不卡| 又粗又爽又猛毛片免费看| 在线视频色国产色| 国产私拍福利视频在线观看| 18禁在线播放成人免费| 久久久久国内视频| 麻豆成人午夜福利视频| 成人亚洲精品av一区二区| 人妻丰满熟妇av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 99久久久亚洲精品蜜臀av| 精华霜和精华液先用哪个| 黄片小视频在线播放| 观看美女的网站| 黄色视频,在线免费观看| 淫秽高清视频在线观看| 国产欧美日韩精品亚洲av| 舔av片在线| 18禁裸乳无遮挡免费网站照片| 18禁黄网站禁片午夜丰满| 日本在线视频免费播放| 免费人成在线观看视频色| 亚洲av五月六月丁香网| ponron亚洲| 久久精品国产亚洲av香蕉五月| 女生性感内裤真人,穿戴方法视频| 欧美成人性av电影在线观看| 午夜免费激情av| 婷婷丁香在线五月| 成人精品一区二区免费| 黄色日韩在线| 男人舔奶头视频| 日本 av在线| 丰满乱子伦码专区| 日本 欧美在线| 国产麻豆成人av免费视频| 久久伊人香网站| 搡老妇女老女人老熟妇| 国产成人av教育| 亚洲国产欧美网| av国产免费在线观看| 日韩高清综合在线| 窝窝影院91人妻| 亚洲国产精品sss在线观看| 一区二区三区免费毛片| 亚洲欧美日韩高清在线视频| 日韩 欧美 亚洲 中文字幕| 十八禁人妻一区二区| 美女被艹到高潮喷水动态| 亚洲美女黄片视频| 欧美乱妇无乱码| 国产熟女xx| 热99在线观看视频| 非洲黑人性xxxx精品又粗又长| 日本熟妇午夜| 99在线人妻在线中文字幕| 欧美3d第一页| 1000部很黄的大片| 嫩草影院入口| 中文字幕av在线有码专区| 色噜噜av男人的天堂激情| 午夜福利视频1000在线观看| 国产精品乱码一区二三区的特点| 亚洲精品粉嫩美女一区| 成人18禁在线播放| 国产野战对白在线观看| 精品欧美国产一区二区三| 无限看片的www在线观看| 国产精品久久久久久精品电影| 国产成人aa在线观看| 欧美精品啪啪一区二区三区| 琪琪午夜伦伦电影理论片6080| 欧美极品一区二区三区四区| 国产精品影院久久| 亚洲五月婷婷丁香| 国产精品国产高清国产av| 中文字幕人妻丝袜一区二区| 91麻豆av在线| 国产爱豆传媒在线观看| 俺也久久电影网| 91九色精品人成在线观看| 国产精品久久久久久精品电影| 无人区码免费观看不卡| 成人特级黄色片久久久久久久| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 美女免费视频网站| 午夜激情欧美在线| 身体一侧抽搐| 精品久久久久久久末码| 内射极品少妇av片p| 国产成年人精品一区二区| 国产成人欧美在线观看| 国内少妇人妻偷人精品xxx网站| av视频在线观看入口| 欧美最黄视频在线播放免费| 国产精品久久久人人做人人爽| 国内精品久久久久久久电影| 午夜两性在线视频| 免费人成视频x8x8入口观看| 脱女人内裤的视频| 一进一出好大好爽视频| 国产成人欧美在线观看| 日韩精品青青久久久久久| 最近最新免费中文字幕在线| 亚洲无线观看免费| 色吧在线观看| 老司机福利观看| 欧美一区二区精品小视频在线| 91久久精品国产一区二区成人 | 久久亚洲精品不卡| 成年女人毛片免费观看观看9| av在线蜜桃| 69av精品久久久久久| av专区在线播放| 热99在线观看视频| 亚洲精品456在线播放app | 一个人看的www免费观看视频| 日本精品一区二区三区蜜桃| 久久久国产成人精品二区| 动漫黄色视频在线观看| 91在线精品国自产拍蜜月 | 性色av乱码一区二区三区2| 久久久久久久亚洲中文字幕 | 欧美激情在线99| 精品久久久久久久人妻蜜臀av| 久久精品国产亚洲av香蕉五月| 久久久久性生活片| 国内少妇人妻偷人精品xxx网站| 天天躁日日操中文字幕| 国产伦在线观看视频一区| 亚洲av免费在线观看| 成熟少妇高潮喷水视频| 精品久久久久久,| 麻豆国产av国片精品| 成年版毛片免费区| 69人妻影院| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 欧美另类亚洲清纯唯美| 亚洲国产精品999在线| 成人av在线播放网站| 黄色日韩在线| 欧美激情在线99| 欧美高清成人免费视频www| 岛国视频午夜一区免费看| 欧美成人免费av一区二区三区| 久久久久久人人人人人| 毛片女人毛片| 欧美日韩综合久久久久久 | 男人舔女人下体高潮全视频| 免费看日本二区| 国产爱豆传媒在线观看| 麻豆国产av国片精品| 波野结衣二区三区在线 | 日日摸夜夜添夜夜添小说| 精品国产美女av久久久久小说| 色视频www国产| 老熟妇仑乱视频hdxx| 久久久久国内视频| 黄色成人免费大全| 91久久精品国产一区二区成人 | 亚洲精品国产精品久久久不卡| 精品人妻一区二区三区麻豆 | 亚洲人成伊人成综合网2020| 在线观看av片永久免费下载| 国产淫片久久久久久久久 | 又粗又爽又猛毛片免费看| 美女cb高潮喷水在线观看| 欧美不卡视频在线免费观看| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 国产91精品成人一区二区三区| 精品午夜福利视频在线观看一区| 少妇人妻一区二区三区视频| 夜夜夜夜夜久久久久| 一区二区三区高清视频在线| 亚洲av免费高清在线观看| 变态另类成人亚洲欧美熟女| 夜夜爽天天搞| 老熟妇乱子伦视频在线观看| 久久6这里有精品| 久久久久免费精品人妻一区二区| 国产一区二区三区在线臀色熟女| 小蜜桃在线观看免费完整版高清| 久久久久久国产a免费观看| 国产在线精品亚洲第一网站| 色吧在线观看| 国产又黄又爽又无遮挡在线| 色综合亚洲欧美另类图片| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 国产97色在线日韩免费| av中文乱码字幕在线| 老司机在亚洲福利影院| 欧美zozozo另类| 国产成+人综合+亚洲专区| 色综合站精品国产| 成人精品一区二区免费| 亚洲无线在线观看| 一级毛片高清免费大全| 90打野战视频偷拍视频| 中文字幕高清在线视频| 九九热线精品视视频播放| 免费在线观看日本一区| 免费高清视频大片| 久久国产精品人妻蜜桃| 精品乱码久久久久久99久播| 最新美女视频免费是黄的| 午夜a级毛片| 成年女人毛片免费观看观看9| 亚洲真实伦在线观看| 热99re8久久精品国产| 我的老师免费观看完整版| 99riav亚洲国产免费| 老司机在亚洲福利影院| 精品久久久久久久末码| 小说图片视频综合网站| 嫁个100分男人电影在线观看| 黄色成人免费大全| 免费看十八禁软件| 全区人妻精品视频| 在线观看午夜福利视频| 在线观看免费视频日本深夜| 偷拍熟女少妇极品色| 99久久成人亚洲精品观看| 国产高清激情床上av| 亚洲人与动物交配视频| 精品不卡国产一区二区三区| 最近最新免费中文字幕在线| 国产精品亚洲一级av第二区| 久久性视频一级片| 色哟哟哟哟哟哟| 欧美成狂野欧美在线观看| 久久香蕉精品热| 亚洲精品久久国产高清桃花| 亚洲 欧美 日韩 在线 免费| 18美女黄网站色大片免费观看| 一个人看的www免费观看视频| 亚洲aⅴ乱码一区二区在线播放| 99国产精品一区二区三区| 男女之事视频高清在线观看| 99久久九九国产精品国产免费| а√天堂www在线а√下载| 亚洲一区二区三区不卡视频| 亚洲七黄色美女视频| 无限看片的www在线观看| 免费看美女性在线毛片视频| 国产成+人综合+亚洲专区| 超碰av人人做人人爽久久 | 麻豆国产97在线/欧美| 国产激情欧美一区二区| 亚洲av电影在线进入| 中文字幕av在线有码专区| 综合色av麻豆| 午夜日韩欧美国产| 欧美性感艳星| 国产精品乱码一区二三区的特点| 啪啪无遮挡十八禁网站| 久久香蕉精品热| 黄片大片在线免费观看| 麻豆久久精品国产亚洲av| 久9热在线精品视频| 成人av一区二区三区在线看| 热99re8久久精品国产| 波多野结衣高清无吗| 老司机午夜十八禁免费视频| 国产午夜精品久久久久久一区二区三区 | 美女 人体艺术 gogo| 日韩欧美 国产精品| 可以在线观看的亚洲视频| 在线观看av片永久免费下载| 桃色一区二区三区在线观看| 18禁黄网站禁片免费观看直播| 亚洲欧美精品综合久久99| 少妇丰满av| 久久精品国产99精品国产亚洲性色| 美女大奶头视频| 国产v大片淫在线免费观看| 啦啦啦免费观看视频1| 亚洲avbb在线观看| 色吧在线观看| 可以在线观看毛片的网站| 亚洲av日韩精品久久久久久密| 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 91在线观看av| 欧美激情在线99| 欧美最新免费一区二区三区 | 一级黄片播放器| 国产三级在线视频| 亚洲avbb在线观看| 丰满人妻一区二区三区视频av | 国产精品久久久人人做人人爽| 中文字幕人妻熟人妻熟丝袜美 | 韩国av一区二区三区四区| 日本免费a在线| 色老头精品视频在线观看| 天天躁日日操中文字幕| 午夜福利在线观看免费完整高清在 | aaaaa片日本免费| 村上凉子中文字幕在线| 国产成人啪精品午夜网站| 一进一出好大好爽视频| 国产精品电影一区二区三区| 国产精品精品国产色婷婷| 一个人看视频在线观看www免费 | 国产精品 欧美亚洲| 日本 av在线| 一本精品99久久精品77| 亚洲精品美女久久久久99蜜臀| 天堂av国产一区二区熟女人妻| 久久久国产精品麻豆| 国产亚洲精品综合一区在线观看| 亚洲欧美一区二区三区黑人| 黄色成人免费大全| 1024手机看黄色片| 久久精品人妻少妇| 亚洲第一欧美日韩一区二区三区| 他把我摸到了高潮在线观看| 淫妇啪啪啪对白视频| 久久香蕉国产精品| 欧美+日韩+精品| 久久亚洲真实| av在线蜜桃| 99热6这里只有精品| 国产真实伦视频高清在线观看 | 国内揄拍国产精品人妻在线| 国产av一区在线观看免费| 亚洲精品色激情综合| 日日摸夜夜添夜夜添小说| 叶爱在线成人免费视频播放| 国产精品1区2区在线观看.| 毛片女人毛片| 精品人妻1区二区| 色综合欧美亚洲国产小说| 香蕉av资源在线| 免费人成在线观看视频色| 黄色视频,在线免费观看| 国产精品国产高清国产av| 高清毛片免费观看视频网站| 日本免费一区二区三区高清不卡| 久久久国产成人精品二区| 男女做爰动态图高潮gif福利片| 99热这里只有是精品50| 天天添夜夜摸| 少妇高潮的动态图| 男人和女人高潮做爰伦理| 亚洲精品在线观看二区| 成熟少妇高潮喷水视频| 国产高清视频在线观看网站| 在线观看舔阴道视频| 久久亚洲真实| 91久久精品电影网| 亚洲第一欧美日韩一区二区三区| 久久中文看片网| 一级毛片高清免费大全| 69av精品久久久久久| 亚洲精品在线美女| 夜夜夜夜夜久久久久| 草草在线视频免费看| 国产探花在线观看一区二区| 精品免费久久久久久久清纯| 欧美三级亚洲精品| 亚洲成a人片在线一区二区| 国产主播在线观看一区二区| 国产激情欧美一区二区| 69人妻影院| 亚洲国产高清在线一区二区三| 午夜激情欧美在线| 午夜a级毛片| 日韩大尺度精品在线看网址| 亚洲av一区综合| 欧美区成人在线视频| 亚洲一区二区三区色噜噜| 久久久久性生活片| www.色视频.com| 日日摸夜夜添夜夜添小说| 狠狠狠狠99中文字幕| 一区二区三区激情视频| 国产日本99.免费观看| 男女做爰动态图高潮gif福利片| 精品国内亚洲2022精品成人| 少妇裸体淫交视频免费看高清| 女同久久另类99精品国产91| 一级黄片播放器| 男女做爰动态图高潮gif福利片| 啦啦啦韩国在线观看视频| 午夜亚洲福利在线播放| 成年女人看的毛片在线观看| 欧美黄色淫秽网站| 日韩欧美三级三区| 国产伦在线观看视频一区| www.www免费av| 国产极品精品免费视频能看的| 老司机午夜十八禁免费视频| 免费av毛片视频| 国产伦精品一区二区三区四那| 最近最新中文字幕大全免费视频| 麻豆久久精品国产亚洲av| 免费看日本二区| 亚洲精品色激情综合| 国产精品亚洲美女久久久| 国产成人影院久久av| av天堂在线播放| 久久久久精品国产欧美久久久| 久久久久久大精品| 免费av不卡在线播放| 51国产日韩欧美| 亚洲美女视频黄频| 中文字幕av在线有码专区| 国产精品 国内视频| 91字幕亚洲| 国产久久久一区二区三区| 久久久久久久午夜电影| 黄色日韩在线| 一级黄片播放器| 欧美午夜高清在线| 日韩欧美在线乱码| www.www免费av| 人人妻人人澡欧美一区二区| 制服人妻中文乱码| 免费观看人在逋| 亚洲中文字幕一区二区三区有码在线看| 首页视频小说图片口味搜索| 88av欧美| 欧美精品啪啪一区二区三区| 一级作爱视频免费观看| 少妇丰满av| 精品久久久久久久人妻蜜臀av| 老鸭窝网址在线观看| 欧美+亚洲+日韩+国产| 日本在线视频免费播放| 国产一区二区三区在线臀色熟女| 国产精品乱码一区二三区的特点| 免费搜索国产男女视频| 熟女电影av网| 欧美在线一区亚洲| 国产97色在线日韩免费| 91久久精品电影网| 黄色片一级片一级黄色片| 男人舔奶头视频| 老司机午夜福利在线观看视频| 少妇人妻一区二区三区视频| e午夜精品久久久久久久| 男女下面进入的视频免费午夜| 久久久久精品国产欧美久久久| 五月玫瑰六月丁香| 久久久久久久亚洲中文字幕 | 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久人妻蜜臀av| 欧美成人一区二区免费高清观看| 男女午夜视频在线观看| 久久久精品大字幕| 日韩av在线大香蕉| 大型黄色视频在线免费观看| 国产精品 欧美亚洲| 国产精品精品国产色婷婷| 亚洲精品在线美女| 校园春色视频在线观看| 淫秽高清视频在线观看| 久久精品91蜜桃| 午夜福利成人在线免费观看| 亚洲av日韩精品久久久久久密| 国产精品亚洲一级av第二区| 成年女人毛片免费观看观看9| 有码 亚洲区| 日本成人三级电影网站| www国产在线视频色| 国产一区二区激情短视频| 小说图片视频综合网站| 狂野欧美激情性xxxx| 国产成人福利小说| 国产老妇女一区| 国产精品久久久久久久久免 | 一个人观看的视频www高清免费观看| 伊人久久大香线蕉亚洲五| 最新美女视频免费是黄的| 日日干狠狠操夜夜爽| 日韩精品青青久久久久久| 国产精品一区二区免费欧美| 亚洲aⅴ乱码一区二区在线播放| 国产精品影院久久| 欧美一级a爱片免费观看看| 欧美黑人巨大hd| 久久人人精品亚洲av| 日韩大尺度精品在线看网址| 中亚洲国语对白在线视频| 亚洲欧美日韩无卡精品| 国产av麻豆久久久久久久| 十八禁人妻一区二区| 午夜福利欧美成人| 小蜜桃在线观看免费完整版高清| 国产亚洲av嫩草精品影院| 国产一区二区在线观看日韩 | 99在线人妻在线中文字幕| 小说图片视频综合网站| 99久国产av精品|