• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New model reference adaptive control with input constraints

    2015-04-22 07:49:30WUWenbin武文斌GENGQingbo耿慶波FEIQing費(fèi)慶HUQiong胡瓊

    WU Wen-bin(武文斌), GENG Qing-bo(耿慶波), FEI Qing(費(fèi)慶),HU Qiong(胡瓊)

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    ?

    New model reference adaptive control with input constraints

    WU Wen-bin(武文斌), GENG Qing-bo(耿慶波), FEI Qing(費(fèi)慶),HU Qiong(胡瓊)

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    A new scheme of adaptive control is proposed for a class of linear time-invariant (LTI) dynamical systems, especially in aerospace, with matched parametric uncertainties and input constraints. Based on a typical and conventional direct model reference adaptive control scheme, various modifications have been employed to achieve the goal. “Composite model reference adaptive control”of higher performance is seamlessly combined with “positiveμ-mod”, which consequently results in a smooth tracking trajectory despite of the input constraints. In addition, bounded-gain forgetting is utilized to facilitate faster convergence of parameter estimates. The stability of the closed-loop system can be guaranteed by using Lyapunov theory. The merits and effectiveness of the proposed method are illustrated by a numerical example of the longitudinal dynamical systems of a fixed-wing airplane.

    model reference adaptive control; input constraints; flight control

    Adaptive control was developed essentially to process control with parametric uncertainties, in which model reference adaptive control (MRAC)[1-6], as an effective control methodology, has been maturely applied to flight control. Among them, an improved composite model reference adaptive control (CMRAC)was suggested, in which the direct and indirect adaptive control interacts to result in an extremely small tracking error[7]. Furthermore, bounded-gain forgetting (BGF)[8], which has also been observed to lead to improve transients, and make parameters converge faster.

    However if MRAC is directly used in the condition with input constraints, field experience implies instability with large transient errors or oscillations, in short, the stability of the designed control system will severely deteriorate. Among all has been done, a design scheme called “anti-windup” was introduced in a non-adaptive scheme[9]. The main idea of the design is that as the signals of the open-loop become large, the performance degrades in a decent way. Since adaptive control is motivated by parameter uncertainties in numerous areas, challenges which combine both parameter uncertainties and input constraints occur. Recently a methodology named “adaptive scaling[10]”was taken into account and the most typical one is “positiveμ-mod[11]”, the main idea of which is to modify tracking error and reference model input constraints to remove the effect of input constraints mostly. Furthermore composite nonlinear control with state and measurement for general multivariable systems with input saturation was presented, in which a design procedure of composite nonlinear feedback(CNF) control for general multivariable with saturation was considered and the control didn’t need impose restrictive assumption on the system’s dynamics[12].

    To diminish the effects of input constraints, the control design forsaturated systems must be modified, based on which, a class of problems of input constraints as well as parametric uncertainties is the objective to be solved.

    In this technical note, the highlights of the design are as follows:

    ① It combines CMRAC andμ-mod seamlessly for the stable tracking object and uses BGF for fast convergence, which consequently arrives at a simple structure with a fast and stable performance.

    ② It just switches to modified part when the adaptive control touches the set virtual limit, while the control is in the reasonable range, modification for the input constraints is not available, thus energy and time will be saved, which is critical in reality, especially in the war or accident.

    ③ It illustrates the effectiveness of the designed scheme through asimplified longitudinal dynamics of an aerial vehicle like F-16 aircraft.

    The paper is organized as follows. In Section 1, the control problem statement and objective are introduced, where a basic MRAC design is also discussed. The adaptive controller structure based on CMRAC and positiveμ-mod is given in Section 2, moreover BGF is also embedded to facilitate fast convergence for parameters during adaptation. In Section 3,the stability of the closed-loop was analyzed, along with the adaptive scheme to update the controller parameters. Section 4 demonstrates the validity of the overall adaptive control scheme by a control application in the F-16 longitudinal dynamics simulation.

    1 Model definition

    First of all, we put forward a class of single-input (SI) linear time-invariant (LTI) systems as:

    (1)

    (2)

    The objective of the control is to design the input u to make all signals in the closed-loop system bounded and the outputyasymptotically track the command r∈R along with the presence of matched parametric uncertainties {AP,Λ,Θd}.

    The system output tracking error is calculated as

    ey=y-r

    (3)

    And we make integrated output tracking error as

    (4)

    Then we can augment the system to obtain the extended open-loop dynamics.

    (5)

    As a conclusion, the uncertain systems have an unknown constant matrix A∈Rn×n; known matrices B∈Rn, Bc∈Rn, C∈Rn×m; an unknown positive constantΛ∈Rand an unknown matrix of constant parametersΘd∈RN. The state-dependent regressor vectorΦd(xp)∈RNis assumed to be known. Thus the target of control becomes asymptotically tracking an time-varying command signal r∈R, by the system output y∈Rm, along with the presences of matched parametric uncertainties {A,Λ,Θd} and input constraints given in Eq.(2).

    Assumption:

    (A,B) is controllable and (A,C) is observable with A∈Rn×n, B∈Rn, C∈Rn×m, andm

    From the assumption above, we can find that the design purpose only needs to satisfy the basic condition for the plant dynamics.

    The reference Hurwitz matrix Amis presented as

    (6)

    Therefore, the reference model can be obtained as

    (7)

    (8)

    Andletthesystemtrackingerrorhavetheformas

    e=x-xm

    (9)

    Then the adaptive control input is written as

    (10)

    It easily results in the tracking error dynamics

    (11)

    The adaptive law is given by in the form[1,7]

    (12)

    (13)

    The stability of this system can be found in adaptive control[1, 13].

    2 Modifications to MRAC approach

    In this section, several modifications to the basic MRAC approach are made to deal with the problem of input constraints and make the performance smoother and faster.

    2.1 Composite model reference adaptive control (CMRAC)

    A composite MRAC structure[7]was developed by combining two aspects of direct and indirect adaptive control and has been testified with a smooth transient performance. Now the indirect adaptive part will be constructed for that objective.

    According to the dynamics, we rewrite the extended open-loop system in the form

    (14)

    (15)

    whereλf>0 is a filter inverse constant.

    For this point forward, the subscript f on a signal denotes a version of that signal that has been filtered byG(s). We filter both sides in Eq.(14) and assume the initial conditions for the filter dynamics are zero. From Eq.(14) we can get

    λf(x-xf)-Amx-Bcrf=BΛ(uf+ΘTΦf)

    (16)

    Then assuming that the rank of B is full,

    (BTB)-1BT(λf(x-xf)-Amx-Bcrf)=

    Λ(uf+ΘTΦf)

    (17)

    Y=Λ(uf+ΘTΦf)

    (18)

    Therefore we can estimate Y according to the bilinear predictor model as the form with

    (19)

    The predictor output estimation error is then given by

    (20)

    Owning to Eqs.(16)-(20),

    (21)

    (22)

    SincethefundamentalideaofCMRACistocombinedirectMRACwithindirectadaptation,tillnowwecangettheCMRACadaptivelawjustbyaddingtwopartstogether.

    2.2Bounded-gainforgetting(BGF)

    Time-varyingadaptivegainsfacilitatefasterconvergenceofparameterestimatesaswellasdevelopednoisesensitivity.Particularly,theBGF[8]gainadjustmenthasbeenprovedtohaveafastandsmoothconvergenceofparameterestimation.Theadaptivegainadjustmentisselectedas

    (23)

    Inwhichρis a positive scalar forgetting factor chosen as

    (24)

    whereρ0is the positive constant maximum forgetting rate andkρ0is the positive constant bound on the adaptive gain matrix magnitude. The inverse gain adjustment law in Eq.(23) has several important properties[8]. First, it ensures thatΓΘfto be positively definite. Second, the data forgetting property enables parameter tracking, and is only activated whenΦfilispersistently exciting.

    Avoiding taking inverses and simplifying implementation, Eq.(23) is replaced by using the equivalent gain adjustment law

    (25)

    2.3Positiveμ-modification

    Aboveall,abasicmethodispresentedwithoutinputconstraintsandnowwewillmakesomeimprovementsonthatwith“positiveμ-modification[11]”, an application of the idea called“adaptive scaling[10]”.

    The adaptive scheme with positiveμ-modification can be defined as

    uc=uad+μΔuc,

    (26)

    (27)

    Werewritethesystemandgettheclosed-loopsystemdynamics:

    (28)

    where Δuad=u-uaddenotes the deficiency of the control signal during adaptation.

    Next we should consider to modify reference model dynamics with the system dynamics

    (29)

    Let e=x-xmbe the tracking error signal. Then

    (30)

    (31)

    where ru>0 is corresponding rate of adaptation. And PT>0 solves the algebraic Lyapunov equationas same as Eq.(13).

    (32)

    Remark maximum amplitude of the reference signalrmaxis chosen as

    (33)

    (34)

    IfthesysteminitialconditionandtheinitialvalueoftheLyapunovfunctioninEq.(13)satisfy

    (35)

    Proof can be referred to the work in Ref.[11].

    3 Stability analysis

    In this section, we merge CMRAC with BGF and μ-modadaptation, thus create our CBμ-mod model reference adaptive control architecture. The whole adaptive law is formulated as

    (36)

    Toaccesstheclosed-loopsystemstability,theLyapunovfunctioncandidateisdefinedas:

    (37)

    Then the time derivative of the Lyapunov function is

    (38)

    It is known that aTb=trace(bTa), as the trace identity, is also valid for two co-dimensional vector a and b. The time derivative of the Lyapunov function along the system trajectories (36) is

    (39)

    (40)

    4 Simulation example

    4.1 Aircraft dynamic

    In this part, it verifies the effectiveness of the methods with stable and smoothing performance of the developed adaptive scheme by simulations. The simulated model used is an F-16 longitudinal dynamics model in a short period as

    (41)

    wherexp=[α;q];αis the aircraft angle during attack in radians,qis the pitch rate in radians/second,u=δeis the elevator deflection (control input)in degrees. It is shown that the correspond numerical values of above aerodynamic derivatives in Refs.[7, 14]. All particular values are set for an F-16 aircraft trimmed on the assumption of sea level as

    4.2 Parameters setting

    The control objectives tracking a time-varying whereas bounded angle of commandr=αcmdwith a variety of uncertainties.

    Moreover let Q=diag[0.1, 1, 800] tosolve the Lyapunov function to getP. Furthermore, rates of adaptation areΓΘ=diag[1, 100, 100, 20],ΓΛ=8. The filterinverse constant and the CMRAC gain are set asλf=10,rc=10. For BGF,ρ0=0.9 andkρ0=100.

    4.3 Simulation results and analysis

    To testify the effective of the adaptive controller, we set two different conditions with different parameters as follows:

    ① Composite adaptive control without input constraints.

    ② Composite BGFμ-mod model reference adaptive control with input constraints. In this case, we set the positiveμ-mod parameters asumax=1.5,δ=0.2umax,μ-5,ru=0.4.

    Example 1: In this case, we assume parameters are unknown without input constraints. Signals for the input are given as squares. Simulation results are shown in Fig.1. Design based on CMRAC indeed results in improved performance.

    Fig.1 Case 1: results of CMRAC in the presence of parametric uncertainties without input constraints

    Fig.2 Case 2: results of composite BGF μ-mod in the presence of parametric uncertainties and input constraints

    5 Conclusion

    By combining several modifications to a basic MRAC, we derive a new and effective architecture to solve the problem of uncertainties and input constraints. Not only the goal of asymptotic tracking performance is attained, but also fast convergence for adapted parameters is obtained. The availability of these modifications motivates a fresh perspective for further studies. For different purposes, corresponding methods can be adopted and analyzed. Consequently an overall scheme can be conceived. Furthermore simulation results on a flight vehicle indicate the validity of the whole design structure. The future work contains analysis about details of research for input constraints.

    [1] Narendra K, Annaswamy A. Stable adaptive systems[M]. North Chelmsford, MA: Courier Corporation, 2012.

    [2] Narendra K S, Annaswamy A M. Robust adaptive control[C]∥American Control Conference, 1984: 333-335.

    [3] Tao G. Adaptive control design and analysis[M]. New York: John Wiley & Sons, 2003.

    [4] Ioannou P A, Sun J. Robust adaptive control[M]. Mineola: Dover Publications, 2012.

    [5] Lavretsky E, Wise K A. Robust and adaptive control: with aerospace applications[M]. Berlin: Science & Business Media Springer, 2013.

    [6] Sastry S, Bodson M. Adaptive control: stability, convergence and robustness[M]. North Chelmsford, MA: Courier Corporation, 2011.

    [7] Lavretsky E. Combined/composite model reference adaptive control[J]. Automatic Control, IEEE

    Transactions on, 2009, 54(11): 2692-2697.

    [8] Slotine J J E, Li W. Applied nonlinear control[M]. Upper Saddle River, New Jersey: Prentice Hall, 1991.

    [9] Morabito F, Teel A R, Zaccarian L. Nonlinear antiwindup applied to Euler-Lagrange systems[J]. Robotics and Automation, IEEE Transactions on, 2004, 20(3): 526-537.

    [10] Monopoli R V. Adaptive control for systems with hard saturation[C]∥Decision and Control Including the 14th Symposium on Adaptive Processes, 1975 IEEE Conference on, 1975, 14: 841-843.

    [11] Lavretsky E, Hovakimyan N. Stable adaptation in the presence of input constraints[J]. Systems & Control Letters, 2007, 56(11): 722-729.

    [12] He Y, Chen B M, Wu C. Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation[J]. Systems & Control Letters, 2005, 54(5): 455-469.

    [13] Khalil H K. Nonlinear systems[M]. Upper Saddle River, New Jersey: Prentice Hall, 2002.

    [14] Stevens B L, Lewis F L. Aircraft control and simulation[M]. New York: John Wiley & Sons, 2003.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0319

    TP 273.2 Document code: A Article ID: 1004- 0579(2015)03- 0405- 08

    Received 2013- 12- 24

    Supported by Deep Exploration Technology and Experimentation Project (201311194-04)

    E-mail: wuwb296@126.com

    成年女人毛片免费观看观看9 | 中文字幕亚洲精品专区| 超碰97精品在线观看| 美女视频免费永久观看网站| 免费黄网站久久成人精品| 999久久久国产精品视频| 黑人巨大精品欧美一区二区蜜桃| 韩国精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产午夜精品一二区理论片| 日本免费在线观看一区| 成人国语在线视频| 丝袜美足系列| 午夜精品国产一区二区电影| 国产免费现黄频在线看| 亚洲伊人久久精品综合| 国产在视频线精品| 欧美av亚洲av综合av国产av | 精品国产超薄肉色丝袜足j| 男人舔女人的私密视频| 欧美激情极品国产一区二区三区| 久久精品亚洲av国产电影网| 亚洲国产精品一区三区| 飞空精品影院首页| 久久久久久久久久久免费av| 99热网站在线观看| 国产精品久久久久成人av| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜| 五月伊人婷婷丁香| 啦啦啦中文免费视频观看日本| 中文乱码字字幕精品一区二区三区| 欧美av亚洲av综合av国产av | 视频区图区小说| 国产精品 欧美亚洲| 久久久精品94久久精品| 国产极品天堂在线| 成人手机av| 搡女人真爽免费视频火全软件| 国产亚洲午夜精品一区二区久久| 午夜福利视频精品| 啦啦啦啦在线视频资源| 在线免费观看不下载黄p国产| 99久久综合免费| 超碰成人久久| 国产视频首页在线观看| 制服人妻中文乱码| 我的亚洲天堂| 天天躁日日躁夜夜躁夜夜| 精品少妇一区二区三区视频日本电影 | 成人手机av| 18禁裸乳无遮挡动漫免费视频| 一级毛片电影观看| 日日摸夜夜添夜夜爱| 最近手机中文字幕大全| 少妇人妻精品综合一区二区| 黄色 视频免费看| 熟女av电影| 日产精品乱码卡一卡2卡三| 激情五月婷婷亚洲| 婷婷成人精品国产| 90打野战视频偷拍视频| 各种免费的搞黄视频| 一本久久精品| 精品一品国产午夜福利视频| av在线观看视频网站免费| 伦理电影免费视频| 欧美成人精品欧美一级黄| 日韩,欧美,国产一区二区三区| 中文字幕人妻熟女乱码| 亚洲综合精品二区| 国产精品香港三级国产av潘金莲 | 老司机影院毛片| 色婷婷av一区二区三区视频| 成年人午夜在线观看视频| 美女午夜性视频免费| 国产福利在线免费观看视频| av天堂久久9| 免费看av在线观看网站| 国产男女超爽视频在线观看| 亚洲成国产人片在线观看| 又黄又粗又硬又大视频| 日本欧美视频一区| 亚洲精品国产一区二区精华液| 午夜影院在线不卡| 亚洲一码二码三码区别大吗| 久久ye,这里只有精品| 99热全是精品| videosex国产| 亚洲国产欧美在线一区| 麻豆乱淫一区二区| 美女高潮到喷水免费观看| 久久久久精品久久久久真实原创| av电影中文网址| 久久国产精品男人的天堂亚洲| 亚洲精品aⅴ在线观看| 欧美中文综合在线视频| 国产日韩欧美视频二区| 大香蕉久久网| 色婷婷av一区二区三区视频| av女优亚洲男人天堂| 精品人妻在线不人妻| 天天躁夜夜躁狠狠久久av| 伦理电影免费视频| 国产亚洲一区二区精品| 人人妻人人爽人人添夜夜欢视频| 国产精品秋霞免费鲁丝片| 国产免费一区二区三区四区乱码| 男女无遮挡免费网站观看| av有码第一页| 欧美最新免费一区二区三区| 热re99久久国产66热| 亚洲av免费高清在线观看| 啦啦啦在线观看免费高清www| 人人妻人人添人人爽欧美一区卜| 日韩一区二区三区影片| 久久国产精品男人的天堂亚洲| 欧美黄色片欧美黄色片| 精品国产乱码久久久久久男人| 观看av在线不卡| 777米奇影视久久| 久久韩国三级中文字幕| 免费看av在线观看网站| 精品99又大又爽又粗少妇毛片| videos熟女内射| 伦理电影大哥的女人| 你懂的网址亚洲精品在线观看| 精品人妻偷拍中文字幕| 大陆偷拍与自拍| 日本午夜av视频| 多毛熟女@视频| 中国国产av一级| 国产精品久久久久久精品电影小说| 老女人水多毛片| 亚洲国产精品999| 午夜福利在线观看免费完整高清在| 99国产综合亚洲精品| 伊人亚洲综合成人网| 日韩一卡2卡3卡4卡2021年| 精品第一国产精品| 成年人午夜在线观看视频| 国产精品蜜桃在线观看| 亚洲欧美色中文字幕在线| 成人免费观看视频高清| 一区二区三区精品91| 日韩大片免费观看网站| 成人漫画全彩无遮挡| 老司机影院成人| 伊人久久大香线蕉亚洲五| 亚洲第一青青草原| 午夜福利网站1000一区二区三区| 亚洲美女视频黄频| 国产综合精华液| 人妻少妇偷人精品九色| 欧美av亚洲av综合av国产av | 日韩欧美一区视频在线观看| 狠狠婷婷综合久久久久久88av| 两性夫妻黄色片| 日日爽夜夜爽网站| 新久久久久国产一级毛片| 天天躁夜夜躁狠狠久久av| 国产综合精华液| 亚洲av在线观看美女高潮| 高清黄色对白视频在线免费看| 成人影院久久| 91成人精品电影| a级毛片在线看网站| 日韩成人av中文字幕在线观看| 日日啪夜夜爽| 一区二区三区精品91| 午夜日韩欧美国产| 成年动漫av网址| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 一级爰片在线观看| 一区在线观看完整版| 久久午夜福利片| 精品国产一区二区三区四区第35| 欧美日韩精品成人综合77777| 黄色怎么调成土黄色| 国产老妇伦熟女老妇高清| 国产成人aa在线观看| 久久久久久久大尺度免费视频| 国产免费又黄又爽又色| 亚洲男人天堂网一区| 久久人妻熟女aⅴ| 一区二区av电影网| av国产精品久久久久影院| 亚洲精品成人av观看孕妇| 日韩精品免费视频一区二区三区| 99精国产麻豆久久婷婷| 亚洲美女视频黄频| 少妇猛男粗大的猛烈进出视频| 丝袜在线中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久av不卡| www.自偷自拍.com| 欧美亚洲 丝袜 人妻 在线| 少妇猛男粗大的猛烈进出视频| 久久婷婷青草| 看非洲黑人一级黄片| 国产精品久久久久久精品电影小说| 在线精品无人区一区二区三| 日本vs欧美在线观看视频| 国产精品99久久99久久久不卡 | 美女主播在线视频| 国产成人aa在线观看| 岛国毛片在线播放| 中文字幕最新亚洲高清| 巨乳人妻的诱惑在线观看| 日本av免费视频播放| 欧美人与性动交α欧美软件| 精品酒店卫生间| 777米奇影视久久| 国产精品蜜桃在线观看| 亚洲av日韩在线播放| av国产精品久久久久影院| 亚洲第一av免费看| 午夜av观看不卡| 国产精品久久久久成人av| 国产成人一区二区在线| 18禁裸乳无遮挡动漫免费视频| 人妻系列 视频| 黑丝袜美女国产一区| 国产片内射在线| 久久精品国产a三级三级三级| 亚洲精品视频女| 热re99久久国产66热| kizo精华| 国产男人的电影天堂91| 999久久久国产精品视频| 91午夜精品亚洲一区二区三区| 啦啦啦视频在线资源免费观看| 成年女人在线观看亚洲视频| 精品一区二区三区四区五区乱码 | 成人18禁高潮啪啪吃奶动态图| av在线app专区| 丝袜人妻中文字幕| 中文乱码字字幕精品一区二区三区| 国产成人精品福利久久| 午夜激情久久久久久久| 极品少妇高潮喷水抽搐| 免费观看a级毛片全部| 成年人午夜在线观看视频| 久久久国产精品麻豆| 国产激情久久老熟女| 久久久久久人妻| 国产精品 国内视频| 亚洲伊人久久精品综合| www.精华液| 国产免费视频播放在线视频| 精品少妇一区二区三区视频日本电影 | 亚洲,一卡二卡三卡| 国产精品熟女久久久久浪| 亚洲国产毛片av蜜桃av| 成年美女黄网站色视频大全免费| 亚洲精品乱久久久久久| 最近手机中文字幕大全| 日韩精品免费视频一区二区三区| 欧美激情高清一区二区三区 | 五月天丁香电影| 捣出白浆h1v1| 久久久精品94久久精品| 成年女人在线观看亚洲视频| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放| 18在线观看网站| 我要看黄色一级片免费的| 亚洲久久久国产精品| 中文精品一卡2卡3卡4更新| 国产深夜福利视频在线观看| 男人操女人黄网站| 人妻系列 视频| 制服丝袜香蕉在线| 天天躁日日躁夜夜躁夜夜| 十八禁网站网址无遮挡| 国产日韩一区二区三区精品不卡| h视频一区二区三区| 日本vs欧美在线观看视频| 青春草国产在线视频| 久久精品国产亚洲av高清一级| 国产免费视频播放在线视频| 亚洲在久久综合| 激情五月婷婷亚洲| 成年动漫av网址| 成人国产av品久久久| 免费少妇av软件| 视频区图区小说| 最近2019中文字幕mv第一页| 欧美变态另类bdsm刘玥| 天天躁狠狠躁夜夜躁狠狠躁| 免费日韩欧美在线观看| 精品国产一区二区三区四区第35| 黄频高清免费视频| 可以免费在线观看a视频的电影网站 | 亚洲欧美一区二区三区黑人 | 精品酒店卫生间| 亚洲一级一片aⅴ在线观看| 国产精品免费视频内射| videosex国产| 伦理电影免费视频| 亚洲国产精品国产精品| 国产女主播在线喷水免费视频网站| 久久久久久久久免费视频了| 另类精品久久| 成人亚洲欧美一区二区av| 精品午夜福利在线看| www.自偷自拍.com| 国产欧美日韩综合在线一区二区| 亚洲精品成人av观看孕妇| 大话2 男鬼变身卡| 欧美人与性动交α欧美软件| 在线天堂最新版资源| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 制服人妻中文乱码| 18+在线观看网站| 又粗又硬又长又爽又黄的视频| 国产在线一区二区三区精| 日韩伦理黄色片| 亚洲精品在线美女| 91国产中文字幕| 秋霞在线观看毛片| 人成视频在线观看免费观看| 人妻少妇偷人精品九色| 成人毛片a级毛片在线播放| 99久国产av精品国产电影| 波野结衣二区三区在线| 久久韩国三级中文字幕| 夫妻性生交免费视频一级片| 热re99久久国产66热| 久久久久国产网址| 久久久久久久精品精品| 99国产精品免费福利视频| 丰满迷人的少妇在线观看| 精品视频人人做人人爽| 亚洲欧洲日产国产| 久久久精品免费免费高清| 国产男女内射视频| 亚洲三级黄色毛片| 欧美精品国产亚洲| 男人添女人高潮全过程视频| 熟女少妇亚洲综合色aaa.| 国产免费又黄又爽又色| 午夜激情久久久久久久| 午夜福利乱码中文字幕| 亚洲精品国产一区二区精华液| 国产又爽黄色视频| 在线观看三级黄色| 亚洲三级黄色毛片| 免费av中文字幕在线| 美女中出高潮动态图| 可以免费在线观看a视频的电影网站 | 日韩电影二区| 国产男女内射视频| 少妇被粗大的猛进出69影院| 一级毛片电影观看| 免费在线观看完整版高清| 男女国产视频网站| 欧美黄色片欧美黄色片| 天堂8中文在线网| 亚洲国产精品999| 国产精品一区二区在线不卡| 国产精品二区激情视频| 日韩成人av中文字幕在线观看| 欧美人与善性xxx| 中文字幕最新亚洲高清| 宅男免费午夜| 我的亚洲天堂| 久久久久国产网址| 好男人视频免费观看在线| 女性生殖器流出的白浆| 好男人视频免费观看在线| 老司机影院毛片| 亚洲国产欧美网| 成人免费观看视频高清| 99九九在线精品视频| 亚洲人成77777在线视频| 国产片内射在线| 自线自在国产av| 看非洲黑人一级黄片| 人妻系列 视频| 叶爱在线成人免费视频播放| 丝袜美足系列| 国产熟女欧美一区二区| 色婷婷久久久亚洲欧美| 交换朋友夫妻互换小说| 人妻系列 视频| av在线观看视频网站免费| 性色av一级| 一区二区三区精品91| 亚洲三区欧美一区| 日本av免费视频播放| 亚洲精品中文字幕在线视频| 少妇人妻 视频| 99久久人妻综合| 亚洲综合色惰| av在线老鸭窝| 午夜久久久在线观看| 青春草视频在线免费观看| 国产精品人妻久久久影院| 国产淫语在线视频| 久久久国产一区二区| 亚洲精品久久成人aⅴ小说| av网站在线播放免费| 精品国产一区二区三区四区第35| 国产人伦9x9x在线观看 | 亚洲婷婷狠狠爱综合网| 欧美激情高清一区二区三区 | 人妻 亚洲 视频| 久久久精品94久久精品| 精品人妻熟女毛片av久久网站| 大片电影免费在线观看免费| 欧美成人午夜精品| 中文字幕av电影在线播放| 天堂俺去俺来也www色官网| 久久精品熟女亚洲av麻豆精品| 日韩人妻精品一区2区三区| 熟女少妇亚洲综合色aaa.| 国产视频首页在线观看| 久久久久精品性色| 黄片小视频在线播放| av福利片在线| 日韩欧美精品免费久久| 欧美变态另类bdsm刘玥| 精品一区二区免费观看| 热re99久久精品国产66热6| 成人毛片60女人毛片免费| 色播在线永久视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲一级一片aⅴ在线观看| 丝袜在线中文字幕| 亚洲精品日韩在线中文字幕| 色播在线永久视频| 国产精品二区激情视频| 免费久久久久久久精品成人欧美视频| 国产在线一区二区三区精| 丝袜人妻中文字幕| 晚上一个人看的免费电影| 久久久久精品久久久久真实原创| 亚洲国产毛片av蜜桃av| 丰满乱子伦码专区| 精品少妇黑人巨大在线播放| 午夜日韩欧美国产| 人成视频在线观看免费观看| 亚洲精品成人av观看孕妇| 一区在线观看完整版| 免费黄网站久久成人精品| 国产精品亚洲av一区麻豆 | 国产成人精品久久二区二区91 | 丝瓜视频免费看黄片| av片东京热男人的天堂| 国产xxxxx性猛交| 国产人伦9x9x在线观看 | 夜夜骑夜夜射夜夜干| 久久99一区二区三区| 欧美日韩精品网址| 香蕉国产在线看| 99久久人妻综合| 久久久久视频综合| 宅男免费午夜| 卡戴珊不雅视频在线播放| 亚洲人成77777在线视频| 国产免费一区二区三区四区乱码| 国产成人精品久久二区二区91 | 亚洲少妇的诱惑av| 亚洲内射少妇av| 尾随美女入室| 嫩草影院入口| 国产女主播在线喷水免费视频网站| 麻豆精品久久久久久蜜桃| 亚洲色图 男人天堂 中文字幕| 亚洲精品一区蜜桃| 亚洲精品国产一区二区精华液| 欧美黄色片欧美黄色片| 大片免费播放器 马上看| 日本-黄色视频高清免费观看| 国产 精品1| 日本色播在线视频| 国产野战对白在线观看| 久久ye,这里只有精品| 亚洲国产日韩一区二区| 午夜老司机福利剧场| 欧美精品人与动牲交sv欧美| 欧美亚洲日本最大视频资源| 精品久久久久久电影网| 精品一品国产午夜福利视频| 一区二区三区四区激情视频| 一级毛片黄色毛片免费观看视频| 国产日韩欧美视频二区| 成人国产麻豆网| 美女中出高潮动态图| 亚洲国产精品一区三区| 国产精品一区二区在线观看99| 欧美 亚洲 国产 日韩一| 麻豆av在线久日| 晚上一个人看的免费电影| 各种免费的搞黄视频| 国产精品国产av在线观看| 国精品久久久久久国模美| 中文字幕人妻丝袜制服| 建设人人有责人人尽责人人享有的| 久久精品久久久久久噜噜老黄| 国产一区有黄有色的免费视频| 91久久精品国产一区二区三区| 不卡视频在线观看欧美| 欧美 亚洲 国产 日韩一| 18在线观看网站| 99久久人妻综合| 国产精品免费大片| 国产一区二区三区综合在线观看| 国产在视频线精品| 久久99蜜桃精品久久| 亚洲图色成人| 男女国产视频网站| 久久久久久久久久久免费av| 97人妻天天添夜夜摸| 国产一区二区三区av在线| 午夜福利视频在线观看免费| 91久久精品国产一区二区三区| 久久精品人人爽人人爽视色| 欧美日韩精品网址| 亚洲欧美成人综合另类久久久| 巨乳人妻的诱惑在线观看| 午夜免费鲁丝| 日本免费在线观看一区| 亚洲av综合色区一区| 国产97色在线日韩免费| 国产毛片在线视频| 一本久久精品| 亚洲美女黄色视频免费看| 日本91视频免费播放| 国产精品欧美亚洲77777| 亚洲中文av在线| 女性被躁到高潮视频| 中文欧美无线码| 国产在线一区二区三区精| 激情五月婷婷亚洲| 国产成人精品在线电影| 在线免费观看不下载黄p国产| 人人妻人人澡人人看| 成人午夜精彩视频在线观看| 精品卡一卡二卡四卡免费| 久久久亚洲精品成人影院| av线在线观看网站| 精品一区在线观看国产| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区国产| 日韩制服骚丝袜av| 亚洲,欧美精品.| av电影中文网址| 街头女战士在线观看网站| 高清在线视频一区二区三区| 国产日韩一区二区三区精品不卡| 人体艺术视频欧美日本| 久久精品久久久久久久性| 成人国产av品久久久| 久久99一区二区三区| 美女视频免费永久观看网站| 最近最新中文字幕免费大全7| 高清视频免费观看一区二区| 亚洲精品国产av成人精品| 亚洲色图 男人天堂 中文字幕| 亚洲欧美色中文字幕在线| av国产精品久久久久影院| 伊人亚洲综合成人网| 精品99又大又爽又粗少妇毛片| 黑人猛操日本美女一级片| 亚洲成色77777| 欧美成人午夜精品| 99久久中文字幕三级久久日本| 91精品三级在线观看| 五月天丁香电影| 亚洲欧洲国产日韩| 精品人妻在线不人妻| 午夜91福利影院| 2022亚洲国产成人精品| 欧美av亚洲av综合av国产av | 天天躁夜夜躁狠狠躁躁| 免费av中文字幕在线| 精品国产一区二区三区久久久樱花| 国产乱来视频区| 日韩三级伦理在线观看| 国产一区二区三区综合在线观看| 777久久人妻少妇嫩草av网站| 亚洲欧美成人综合另类久久久| 1024香蕉在线观看| 日韩欧美精品免费久久| 国产 一区精品| 久久国产精品男人的天堂亚洲| 久久国产亚洲av麻豆专区| 日韩av在线免费看完整版不卡| 日日啪夜夜爽| 久久综合国产亚洲精品| 午夜福利网站1000一区二区三区| 99久久人妻综合| 精品第一国产精品| 久久99一区二区三区| 男人舔女人的私密视频| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品一区二区三区在线| 亚洲国产成人一精品久久久| 亚洲精品国产色婷婷电影| 你懂的网址亚洲精品在线观看| 久久久久久久大尺度免费视频| 夫妻午夜视频| 肉色欧美久久久久久久蜜桃| 欧美 日韩 精品 国产| 黑人猛操日本美女一级片| 你懂的网址亚洲精品在线观看| 如何舔出高潮| av天堂久久9| 永久网站在线| 99久久人妻综合|