• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc

    2023-03-13 09:19:54MeiLingLu盧美玲YaoWang王瑤HeZhiZhang張鶴之HaoLinChen陳昊林
    Chinese Physics B 2023年2期
    關(guān)鍵詞:王瑤美玲

    Mei-Ling Lu(盧美玲), Yao Wang(王瑤), He-Zhi Zhang(張鶴之), Hao-Lin Chen(陳昊林),

    Tian-Yuan Cui(崔天元)1, and Xi Luo(羅熙)1,2,?

    1College of Science,University of Shanghai for Science and Technology,Shanghai,China

    2Shanghai Key Laboratory of Modern Optical System,University of Shanghai for Science and Technology,Shanghai,China

    Keywords: superconducting topological surface states, chiral symmetry, topological nodal superconductor,Majorana Fermi arc

    1.Introduction

    Since the discovery of topological insulators and their material realization,[1-4]research on topological band structures has become one of the major topics in condensed matter physics.Starting from the pioneering works of Thouless,[5]Haldane,[6]Kane and Mele,[7,8]the “ten-fold way”classification[9,10]of topological insulators and topological superconductors has provided an elegant example of the interplay between symmetry and gapped band systems.The non-trivial topology can be characterized either by the total Chern number(or Z2if time reversal symmetry is present)of the occupied bands,[7,8]or through the bulk-edge correspondence;namely,there are gapless topological edge modes corresponding to the non-trivial topology of the bulk band when an open boundary condition is applied.[11]

    Besides the gapped band structure, the topology of gapless bands has also been studied.Weyl semimetals are the most well-known three-dimensional example with a nontrivial gapless band structure.[12]The Weyl node is a monopole of Berry’s phase, and is protected by its non-trivial winding number around the node.From the perspective of bulk-edge correspondence,there are surface Fermi arcs connecting Weyl nodes with opposite chiralities.[13,14]The existence of a Fermi arc is related to a two-dimensional Chern number; namely,if one considers a line connecting the Weyl nodes, and for a given momentum along the line, the Hamiltonian reduces to a quasi two-dimensional gapped system which has gapless edge modes when the bulk Chern number is non-zero,and the gapless edge modes correspond to the Fermi arcs.In other words, the Weyl semimetal is an intermediate state between a topological insulator and a trivial one.[15,16]After Weyl semimetals,the topological nodal-line semimetal has also been proposed.[17]A general relation between the topological classification of gapless systems and the gapped ones has been discussed.[18]

    A systematic way of predicting topological materials(including higher-order ones)is by comparing the possible band structures allowed by the lattice symmetry with their atomic limits,which are trivial band structures.[19-21]

    Furthermore, the concept of topological states of matter not only prospers in condensed matter physics, but also appears in classical systems and beyond, such as topological Weyl magnons,[22]topological phonons,[23-25]topological photonics,[26,27]and topological non-Hermitian systems.[28,29]Within topological systems, the topological superconductor has drawn much attention.One reason is that the Majorana zero modes and Majorana edge modes in the topological superconductor have potential applications in realizing topological quantum computation.[30-33]

    One famous scenario for realizing the Majorana zero mode is that proposed by Fu and Kane, using the proximity effect between a topological insulator and an s-wave superconductor.[34]Following this track, several possible cases of Majorana zero modes have been observed[35-42].In 2018, a 2e2/hconductance was observed in InSb nanowires,which was believed to be evidence of the Majorana zero mode,[43]but this result has been supplanted by the same authors’new data.[44]

    Recently discovered iron-based superconductors, such as FeTe0.55Se0.45,[45,46](Li0.84Fe0.16)OHFeSe,[47]LiFeAs,[48]and CaKFe4As4,[49]are new promising candidates for observing Majorana zero modes and Majorana edge modes.[50]One intriguing property of the iron-based superconductor is its endurance against a large in-plane magnetic field(e.g.,more than 20 T in thin film of FeTeSe[51,52]),which is one of the motivations of this paper.

    Since the normal state of an iron-based superconductor is a topological insulator,[53,54]we will focus on the superconductivity of the topological surface state(TSS)with an external in-plane magnetic field.We find a topological nodal phase protected by chiral symmetry (with a pseudo time-reversal symmetryT2p =1),and for open boundary conditions,a Majorana Fermi arc connects these two Majorana nodes, similar to the case of Weyl semimetal.[12]The Majorana Fermi arc is also known to be a flat band Andreev bound state[55]which can influence the interface properties drastically.[56-58]The Andreev flat band states have also been considered in two dimensions with p-wave superconductivity[59]or with inhomogeneous magnetic fields,[60]and in three dimensions with momentum dependent pairings[61]or odd-parity pairing.[62]Furthermore, we reveal that the topological nodal superconductor is an intermediate state between two different chiral superconductors, which is exactly a two-dimensional superconductor analogue of a Weyl semimetal.This nodal superconducting phase is also confirmed in a three-dimensional lattice model with thin film geometry,which is possible to realize in iron-based superconductors.The localizations of the Majorana nodes can be controlled by the in-plane magnetic field,which may introduce a non-trivial topological Berry phase between them,similar to the proposal of braiding the Weyl nodes in Weyl semimetals.[63]

    This paper is organized as follows.In Subsection 2.1,we construct an effective Bogoliubov-de Gennes(BdG)Hamiltonian for the superconducting TSSs.Although the time-reversal symmetry is broken by the external in-plane magnetic field,a pseudo time-reversal symmetryTpwithT2p =1 remains.Together with the particle-hole symmetry,a chiral symmetry can be defined,which protects the topological nodal superconducting phase.There will be a Majorana Fermi arc connecting the two nodes when open boundary conduction is applied.In Subsection 2.2,we show that the topological nodal superconductor can be viewed as an intermediate state between two chiral superconductors,which provides the topological stability of the nodal superconductor.We discuss the effects of substrates in Subsection 2.3.In Subsection 2.4, we consider a three-dimensional lattice model simulating the thin film of iron-based superconductors,[54]and the nodal superconducting phase is confirmed numerically.The last section is devoted to conclusions,and we provide more details on the band structures of the effective theory in Appendix A.

    2.Results and discussion

    2.1.Superconducting TSS under an in-plane magnetic field and Majorana Fermi arc

    We start from a general effective BdG Hamiltonian describing the superconducting TSSs of a thin film of a topological insulator

    The BdG Hamiltonian(1)is time-reversal symmetric,i.e.,T h0(q)T-1=h?0(-q), withT= iσyχ0τ0K, whereKis the complex conjugation operator.The charge conjugation can also be defined byCh0(q)C-1=-h?0(-q)withC=σ0χ0τxK.Note that in the normal state,the TSSs in top and bottom surfaces have opposite helicities; therefore there is an emergent mirror symmetry of thexyplane.The superconducting TSS is believed to respect this mirror symmetry; namely, we find thatMxyh0(q)M-1xy=h0(q)withMxy=-iσzχxτ0.[66,67]From the mirror symmetryMxy,one can note that it commutes with the odd-parity pairing termΔσyχzτywhile it anti-commutes with the even-parity pairing term,say,Δeσyχ0τy;therefore the odd-parity pairing term is favored by the mirror symmetry.

    Now we consider adding an in-plane magnetic field.Because of the two-dimensional rotation symmetry, we can choose the in-plane magnetic field to be along thex-direction without loss of generality.By adding a Zeeman term toh0,the BdG Hamiltonian becomes

    whereλxis the in-plane Zeeman coupling strength.Although the time-reversal symmetry is broken by the external magnetic field, there remains a pseudo time-reversal symmetryTp=σxχxτ0K(which is the combination of time-reversal symmetryTand the mirror symmetry-iMxy) withTphx(q)T-1p =h?x(-q), andT2p =1.The particle-hole symmetry remains true with the in-plane magnetic field.Therefore the Hamiltonianhx(2)has a chiral symmetryΞhx(q)Ξ-1=-hx(q),withΞ=CTp=σxχxτx.Namely, the system belongs to BDI.[9]The BDI superconductor is also discussed in Refs.[60,68].By substituting the momentumqi →sinqiand the topping termt →t0+t1(2-cosqx-cosqy),we can construct a lattice model of the effective Hamiltonianhx(2).We plot the band structure of the lattice model in Fig.1.From the band structure, one observes that the system is a nodal superconductor(Fig.1(a)), and there is a Majorana Fermi arc connecting the two nodes when choosing open boundary conditions along they-direction(Fig.1(b)),which provides a two-dimensional superconductor analogue of a Weyl semimetal.A more detailed study on the phase diagram of the hopping termt0andt1is provided in Appendix A.

    Similar to the case of Weyl semimetal, where the Fermi arc is related to a two-dimensional Chern number,[12]one can find a non-trivial topological number of a one-dimensional system associated with the existence of Majorana Fermi arc.To be more specific, for a givenq0x(except for the Majorana nodes),the BDI Hamiltonianhx(qy,q0x)describes a quasi onedimensional system,and it is classified by Z in 1D.[9]In order to determine the characteristic topological number,we change into the basis that diagonalizes the chiral operatorΞwith the unitary transformationUΞ,

    where

    From bulk-edge correspondence, if one considers open boundary conditions along they-direction,then for a non-zeroW(q0x), there will beW(q0x) types of Majorana zero mode(s)localizing at each end of the open boundary.W(q0x)can only change in the case when the bulk gap closes.For the parameters chosen in Fig.1(a),W(qx=0)=1 andW(qx=π)=0,which is consistent with Fig.1(b),namely,the Majorana Fermi arc, which comes from the Majorana zero modes at the ends,connects two bulk Majorana nodes,and exists whenW(q0x)/=0 and disappears whenW(q0x)=0.The physics here is similar to that of a Weyl semimetal where the Fermi arc connects two Weyl points with opposite helicities.[12]

    Fig.1.The band structures of hx (2)with μ =0, Δ =λx =1,t0 =t =0.5,and t1 =1.(a)The bulk spectra with qy =0.(b)Open boundary condition along the y-direction with y=50.The two Majorana nodes are connected by

    2.2.Interpreting the nodal superconducting phase as an intermediate phase between two chiral superconductors

    Since Weyl semimetal can be viewed as an intermediate phase between a topological insulator and a trivial one,[16]one may ask whether the nodal superconducting phase could be interpreted as an intermediate state between two topological distinct phases.The answer is yes, which also provides the topological origin of the stability of the nodal superconducting phase.

    In order to show this scenario,we add a spin-triplet intersurface pairing term into the Hamiltonianhx(2),

    whereΔtis the spin-triplet pairing strength.This term preserves the mirror symmetryMxy, and breaks both the timereversal symmetryTand the pseudo oneTp; therefore, the chiral symmetry is broken byΔt.The spin-triplet pairing can arise from the Coulomb interaction,and has played an important role in topological superconductivity, such as CuxBi2Se3in 3D[69,70]and bilayer Rashba systems in 2D.[64]

    When there are no external magnetic fields, the band spectra nearΓpoint are

    whereα=±.The topological phase boundary can be determined by the band touching at theΓpoint;[67]namely, the phase boundaries are given by

    which are two circles centered at±Δwith radiustfor fixedΔandtin theΔt-μplane; see Fig.2.In addition, within each circle,there is a topological chiral superconducting phase with a non-zero Chern number.These topological non-trivial phase are protected by the mirror symmetryMxy, and because{Mxy,C}= 0, the topological phase is classified by Z⊕Z.[66,67]More interestingly,whent&gt;Δ,these two circles intersect.Although the total Chern-number is zero in the intersection,it remains non-trivial because of the mirror symmetry and the Z⊕Z classification.In particular, whenΔt=0, the two circles coincide, and because the system is time reversal symmetric, it is classified by Z2.[9]In addition, there will be topological helical edge states when the parameters are within the circles.

    Fig.2.(a)and(b)Topological phase diagrams of h(7)in the Δt-μ plane and Δt-λx plane with Δ =1,t=0.5,(a)λx=0,and(b)μ =0. N stands for the bulk Chern number.Along the Δt =0 line within the two circles is the topological nodal superconducting phase,as confirmed numerically in Fig.1(b),which is an intermediate state between two chiral superconductors.

    Now we add in the external in-plane magnetic field.Without loss of generality,we chooseμ=0 for simplicity(the effect ofμis shown in Fig.2(a)).Then the band spectra become

    The topological phase boundary is determined as before.We plot the phase diagram in Fig.2 (see Appendix A for more details).From Fig.2(a) one notes that there are two distinct topological non-trivial regions with opposite Chern numbers when the external magnetic field is absent.Furthermore, the non-zero Chern numberNindicates that time-reversal symmetry is broken when the spin-triplet pairing termΔtexists.By turning on the external in-plane magnetic fieldλx,the two topological non-trivial regions are connected without gap closing at theΓpoint (see Fig.2(b)).From the phase diagram Fig.2(b) we have two observations.One is that the topological chiral superconducting phase is protected by the mirror symmetryMxysince the in-plane magnetic fieldλxbreaks it and causes phase transition.The other one is that because of the phase transition between these two topological non-trivial phases, the bulk gap should be closed at a momentum away from theΓpoint; in particular, the gapless phase transition occurs whenΔt=0 and the nodal superconducting phase is protected by the chiral symmetry (see Fig.1).These results are also confirmed by the numerical calculations of the lattice model, which are presented in Appendix A.To sum up,in this section,we show that the nodal superconducting phase can be viewed as an intermediate phase between two different topological non-trivial phases;therefore the nodal structure is topologically stable and protected by the chiral symmetry.

    2.3.Effects of substrate

    The superconducting TSSs could be realized in the thin films of the iron-based superconductors through the molecular beam epitaxy method[71]or exfoliation;[72]in either method,the substrate will always be present.Then we shall consider if the topological nodal superconducting phase was stable in the presence of substrate.

    Fig.3.The topological phase diagram of hsub (11)in the ν-λx plane withμ =0, Δ =1, and t =0.5.The red shaded area is the topological nodal superconducting phase which remains stable when the substrate exists.

    A uniform substrate can be treated as a difference of chemical potential of the two surfaces;therefore we consider a termνσ0χzτzto simulate the effect of the substrate.By adding this term into the Hamiltonianhx(2),it becomes

    The substrate breaks mirror symmetryMxy,but preserves chiral symmetry.We plot the phase diagram in theν-λxplane in Fig.3 with the phase boundary determined by the gap closing at theΓpoint of the above Hamiltonian.From the phase diagram,we see that the topological nodal phase is stable against the substrate.

    2.4.Three-dimensional lattice model

    In order to confirm the existence of the topological nodal superconducting phase and the Majorana Fermi arcs,here we construct a three-dimensional lattice model to mimic a thin film of topological insulator with superconductivity.For the normal state of an iron-based superconductor, we consider a four-band lattice model with two orbital degrees of freedom(pzand dx2-y2),[53,54]and the magnetic field is applied alongxdirection with Zeeman couplingλx,

    whereσiandρiare Pauli matrices acting on spin and the orbital.vis the hopping constant which we set to unity,M(q)=M0-M1(cosqx+cosqy)-M2cosqz,withMibeing constants that control the topological phase of the normal state when the magnetic field is absent.For example,we chooseM0=-8.5,M1=-3,andM2=3,such that the normal state is a topological insulator with a band inversion atZ,and there will be one TSS on each open surface along thez-direction.[53,54]The low energy effective theory of the model Hamiltonianh3D0 (12)can also describe thek·ptheory near theΓpoint of a normal state of CuxBi2Se3where the orbital degrees of freedom come from the conduction and valence bands atΓpoint.[69]

    For the superconducting part, we introduce an interorbital spin-singlet pairing term ?Δ=Δ0iσyρxwhich is inversion-odd.The reason is that,in the effective theory(1)for the superconducting TSS, the pairing term is odd under mirror symmetryMxywhich is a remnant of the three-dimensional inversion symmetry.Then the BdG Hamiltonian reads

    which is possible to be realized in the iron-based superconductors.[54,69,73]For a thin film geometry, we consider four layers along thez-direction and add an on-site energy differenceVin the top and bottom layers to simulate the effects of substrates.[54]We plot the topological band structure in Fig.4.The bulk spectra is a nodal superconductor (Fig.5(a)) and the Majorana Fermi arc exists when we choose an open boundary alongy,which is also stable against substrate potential (Fig.5(b)).The behavior of the thin film of the three-dimensional lattice model is consistent with the effective theory of the superconducting TSSs discussed in Subsection 2.1.The rich structures of the lattice model, e.g.,the emergence ofΔandΔt,will be presented in future works.

    Fig.4.The BdG band spectra of the three-dimensional lattice model h3DBdG (12) with four layers along the z-direction. M0 =-8.5, M1 =-3,M2 =3, Δ0 =1.5, V =0.5 and λx =0.5.(a) Bulk spectra with qy =0.(b)Open boundary condition along the y-direction with y=30.There is a Majorana Fermi arc connecting the Majorana nodes.

    3.Conclusion

    In summary, we study the superconducting TSSs under an external in-plane magnetic field.Due to a pseudo timereversal symmetry,the system belongs to BDI.There exists a topological nodal superconducting phase with Majorana Fermi arcs connecting the Majorana nodes,and it is an intermediate state between two different topological chiral superconductors, which fulfills a two-dimensional superconducting analogue of Weyl semimetals.This topological nodal superconducting phase is stable against substrates, and can be realized in a three-dimensional lattice model for the thin films of an iron-based superconductor[54]as well as a topological superconductor CuxBi2Se3,[69]which can endure large in-plane magnetic field.The Majorana nodes can be controlled through external in-plane magnetic field, which may introduce a nontrivial topological Berry phase between them.[63]

    Appendix A: More results on two-dimensional lattice model

    The effective BdG Hamiltonian we consider for the superconducting TSSs with an external in-plane magnetic field reads

    We plot the phase diagram in Fig.A1(a),and study the properties of different phases by numerics under open boundary conditions in Figs.A1(b)-A1(f).We fixt1=0.4 and varyt0.In Fig.A1(b),t0lies in the white regime of Fig.A1(a),which is a trivial gapped superconducting phase.In Fig.A1(c),t0lies in the pink regime,which is a topological nodal superconductor with a Majorana Fermi arc connecting the Majorana nodes.In Fig.A1(d),t0lies at the phase boundary between pink and blue regimes, where the Majorana Fermi arc remains and the bands touch atΓandX.In Fig.A1(e),t0lies in the blue regime,which shows the Majorana nodes atXevolve towardsΓand the ones atΓmove towardsX.In Fig.A1(f),t0lies in the orange regime,and the band gap has touched again atX.

    Furthermore,we plot the phase diagram inΔt-λxplane in Fig.A2(a).We also choose five typical points in Fig.A2(a)and plot their band structures(Figs.A2(b)-A2(f)).Away fromΔt=0 line, there are chiral Majorana edge modes, and their chiralities change side ifΔthas an opposite sign.In addition,alongΔt=0,the chiral Majorana edge modes evolve into the Majorana Fermi arcs that connect the Majorana nodes.

    Fig.A1.(a)The topological phase diagram of the nodal superconducting phase in t1-t0 plane withμ =0,Δ =λx=1,and Δt =0.From(b)to(f)are band structures of h2D (A1)with 50 sites along the y-direction, and we fix t1 =0.4.(b)t0 =2.2, in the white regime of(a).(c)t0 =1.6 in the pink regime.(d)t0=1.2,at the phase boundary.(e)t0=0.8,in the blue regime.(f)t0=0.4,in the orange regime.

    Fig.A2.(a)The topological phase diagram in the Δt-λx plane with t0 =t =0.5,t1 =1, μ =0 and Δ =1.From(b)to(f)are band structures of h2D (A1)with 50 sites along the y-direction.(b)Δt =1.2,λx=0,(c)Δt =0.2,λx=1,(d)Δt =0,λx=1,(e)Δt =-0.2,λx=1,(f)Δt =-1.2,λx=0.The red(blue)curve stands for the edge mode localizing at the left(right)edge.The chiralities of the chiral Majorana edge modes in(b)and(c)are opposite to those in(e)and(f),which is consistent with the bulk Chern number N in(a).

    Acknowledgments

    We thank Yue Yu and Ziqiang Wang for helpful discussions.Project supported by the National Natural Science Foundation of China(Grant Nos.11804223(MLL,YW,HZZ,HLC,TYC,XL),11474061(XL),and 12174067(XL)).

    猜你喜歡
    王瑤美玲
    長(zhǎng)大以后做什么
    Polysaccharides Based Random and Unidirectional Aerogels for Thermal and Mechanical Stability
    發(fā)現(xiàn)腦垂體瘤壓迫視神經(jīng)一例
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    趙美玲
    A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced(3+1)-Dimensional Nonlinear Evolution Equation?
    “王瑤式”說法
    愛你(2017年10期)2017-04-14 11:21:51
    春天的早晨
    王瑤怎樣當(dāng)北大教授
    Clinical observation of Huatan Huoxue Formula in treating coronary heart disease with hyperlipidemia
    中文欧美无线码| 久久青草综合色| 精品久久久久久电影网| 成人手机av| 少妇被粗大猛烈的视频| 婷婷色麻豆天堂久久| 午夜影院在线不卡| 欧美3d第一页| 国产白丝娇喘喷水9色精品| 少妇的逼好多水| av在线播放精品| 在线观看免费日韩欧美大片| 下体分泌物呈黄色| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 亚洲国产av影院在线观看| 国产欧美日韩一区二区三区在线| 久久精品国产自在天天线| 国产成人aa在线观看| av在线观看视频网站免费| 十八禁网站网址无遮挡| 国产成人精品久久久久久| 伦精品一区二区三区| 国产一区有黄有色的免费视频| 18禁裸乳无遮挡动漫免费视频| 一级片免费观看大全| 国产有黄有色有爽视频| 熟女电影av网| 男女边摸边吃奶| 免费av中文字幕在线| 男女免费视频国产| 韩国高清视频一区二区三区| 搡老乐熟女国产| 亚洲色图 男人天堂 中文字幕 | 性色av一级| 精品久久久精品久久久| 国产亚洲欧美精品永久| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久| 国产日韩欧美在线精品| 欧美成人午夜精品| 亚洲四区av| 性色avwww在线观看| av电影中文网址| 美女内射精品一级片tv| 美女大奶头黄色视频| 在线天堂最新版资源| 国产成人精品在线电影| 欧美变态另类bdsm刘玥| 精品亚洲成国产av| 欧美成人精品欧美一级黄| 老司机影院成人| 狂野欧美激情性xxxx在线观看| 亚洲伊人久久精品综合| 美女脱内裤让男人舔精品视频| 九九爱精品视频在线观看| 久久精品夜色国产| 9191精品国产免费久久| 久久青草综合色| 久久ye,这里只有精品| 自拍欧美九色日韩亚洲蝌蚪91| 黄色一级大片看看| 一二三四中文在线观看免费高清| 亚洲人成77777在线视频| 熟女av电影| 国产色婷婷99| 久久久久久久大尺度免费视频| 99久久综合免费| 少妇的逼好多水| 一区二区av电影网| 成人毛片60女人毛片免费| 国产成人精品福利久久| 日韩电影二区| 青春草国产在线视频| 久久国内精品自在自线图片| 亚洲高清免费不卡视频| 国产精品一区二区在线不卡| 精品一区二区三区四区五区乱码 | 国产精品久久久久久精品古装| 日本爱情动作片www.在线观看| 亚洲av福利一区| 男女国产视频网站| 狠狠婷婷综合久久久久久88av| av视频免费观看在线观看| 夜夜爽夜夜爽视频| 国产一级毛片在线| 麻豆乱淫一区二区| 欧美日韩av久久| 99久久精品国产国产毛片| 亚洲精品国产av成人精品| 国产成人免费无遮挡视频| 黄片播放在线免费| 亚洲av电影在线观看一区二区三区| 精品一区二区免费观看| 日韩中字成人| 国产麻豆69| 国产极品粉嫩免费观看在线| 免费人妻精品一区二区三区视频| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区激情短视频 | 国产亚洲午夜精品一区二区久久| 七月丁香在线播放| av免费在线看不卡| 色婷婷av一区二区三区视频| 桃花免费在线播放| 国产成人免费观看mmmm| 最新中文字幕久久久久| 日韩不卡一区二区三区视频在线| av在线观看视频网站免费| 国产黄频视频在线观看| 两性夫妻黄色片 | 精品久久久久久电影网| 成人国产麻豆网| 国产一区二区在线观看av| 亚洲熟女精品中文字幕| 欧美日韩成人在线一区二区| 亚洲天堂av无毛| 如日韩欧美国产精品一区二区三区| 纵有疾风起免费观看全集完整版| 夫妻性生交免费视频一级片| 国产男女超爽视频在线观看| 九九在线视频观看精品| 日本免费在线观看一区| 永久网站在线| 午夜福利网站1000一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲精品美女久久久久99蜜臀 | 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| 欧美精品一区二区大全| 夫妻性生交免费视频一级片| 色网站视频免费| 亚洲国产精品一区二区三区在线| 免费看光身美女| 亚洲性久久影院| 熟女av电影| 亚洲精品456在线播放app| 人妻少妇偷人精品九色| 欧美少妇被猛烈插入视频| 男女国产视频网站| 久久热在线av| 亚洲情色 制服丝袜| av电影中文网址| 999精品在线视频| 一个人免费看片子| 亚洲国产精品999| 色网站视频免费| 亚洲熟女精品中文字幕| 亚洲av福利一区| 国产精品免费大片| 丝袜美足系列| 青春草国产在线视频| 国产亚洲精品第一综合不卡 | 极品少妇高潮喷水抽搐| 日韩欧美一区视频在线观看| 看十八女毛片水多多多| 国产女主播在线喷水免费视频网站| 1024视频免费在线观看| 久久这里只有精品19| 九色成人免费人妻av| 91精品国产国语对白视频| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 美女中出高潮动态图| 在线天堂中文资源库| 高清黄色对白视频在线免费看| 熟女电影av网| 亚洲精品视频女| 国产成人91sexporn| 啦啦啦在线观看免费高清www| 亚洲精品自拍成人| 日韩av不卡免费在线播放| 2022亚洲国产成人精品| 最黄视频免费看| 国产视频首页在线观看| 丝袜美足系列| 97精品久久久久久久久久精品| 自线自在国产av| 国产av一区二区精品久久| 插逼视频在线观看| 亚洲精品aⅴ在线观看| 久久这里只有精品19| 国产精品女同一区二区软件| 国产1区2区3区精品| 最近的中文字幕免费完整| 国产日韩欧美亚洲二区| 在线观看一区二区三区激情| 欧美+日韩+精品| 婷婷色麻豆天堂久久| 26uuu在线亚洲综合色| 日本wwww免费看| 亚洲精品国产色婷婷电影| 亚洲国产精品成人久久小说| 男人舔女人的私密视频| 日韩视频在线欧美| 看十八女毛片水多多多| 午夜日本视频在线| 亚洲美女视频黄频| 国产精品一区二区在线不卡| 亚洲精品国产av成人精品| 亚洲精品456在线播放app| 国产精品人妻久久久久久| 精品国产一区二区三区久久久樱花| 亚洲激情五月婷婷啪啪| 香蕉国产在线看| 自拍欧美九色日韩亚洲蝌蚪91| 丰满迷人的少妇在线观看| 大片免费播放器 马上看| a级毛片黄视频| 欧美成人午夜免费资源| av线在线观看网站| 美女中出高潮动态图| 欧美激情 高清一区二区三区| 99国产精品免费福利视频| 久久人妻熟女aⅴ| 这个男人来自地球电影免费观看 | 菩萨蛮人人尽说江南好唐韦庄| 我的女老师完整版在线观看| 久久人人爽人人爽人人片va| 高清不卡的av网站| 免费黄色在线免费观看| 亚洲国产成人一精品久久久| 男女无遮挡免费网站观看| 国产免费现黄频在线看| 精品人妻偷拍中文字幕| 99久久中文字幕三级久久日本| 一级毛片 在线播放| 汤姆久久久久久久影院中文字幕| 欧美日韩视频精品一区| 欧美国产精品一级二级三级| 欧美人与性动交α欧美软件 | 午夜福利在线观看免费完整高清在| 成人黄色视频免费在线看| 成人影院久久| 中文字幕精品免费在线观看视频 | 成人毛片a级毛片在线播放| 精品一区二区三区四区五区乱码 | 国产欧美日韩综合在线一区二区| 成人国产av品久久久| 人人妻人人澡人人看| 国产成人精品婷婷| 在线 av 中文字幕| 日韩视频在线欧美| 亚洲精品美女久久av网站| 日韩,欧美,国产一区二区三区| 五月开心婷婷网| 久久99蜜桃精品久久| 各种免费的搞黄视频| 久久久精品94久久精品| 搡老乐熟女国产| 在线观看美女被高潮喷水网站| 亚洲人与动物交配视频| 久久这里有精品视频免费| 久久久久久久久久成人| 亚洲国产精品一区二区三区在线| 日本与韩国留学比较| 成人漫画全彩无遮挡| a 毛片基地| 精品一区二区三卡| 波野结衣二区三区在线| 日本色播在线视频| 免费大片18禁| 黄网站色视频无遮挡免费观看| 成年动漫av网址| 天天操日日干夜夜撸| 七月丁香在线播放| 亚洲成人手机| 欧美日韩亚洲高清精品| 日韩电影二区| 在线天堂最新版资源| 日本色播在线视频| 免费观看性生交大片5| 国产精品久久久久久精品古装| 夜夜爽夜夜爽视频| 大话2 男鬼变身卡| 岛国毛片在线播放| 在线天堂最新版资源| 99热网站在线观看| 美女内射精品一级片tv| 日韩制服丝袜自拍偷拍| 欧美激情极品国产一区二区三区 | 亚洲,一卡二卡三卡| 亚洲成人一二三区av| 成年人免费黄色播放视频| 国产成人一区二区在线| 晚上一个人看的免费电影| 亚洲情色 制服丝袜| 寂寞人妻少妇视频99o| 18禁观看日本| 欧美日韩亚洲高清精品| 精品视频人人做人人爽| 精品福利永久在线观看| 国产成人91sexporn| 大香蕉97超碰在线| 99热这里只有是精品在线观看| 亚洲综合色网址| 久久午夜福利片| 51国产日韩欧美| 亚洲精品久久成人aⅴ小说| 纵有疾风起免费观看全集完整版| 99热网站在线观看| 中文字幕精品免费在线观看视频 | 欧美日韩精品成人综合77777| 国产片内射在线| 国产精品久久久久久精品电影小说| 美国免费a级毛片| 婷婷色综合www| 精品人妻一区二区三区麻豆| 色网站视频免费| 十分钟在线观看高清视频www| 中国国产av一级| 国产精品99久久99久久久不卡 | 亚洲天堂av无毛| 大片电影免费在线观看免费| a级毛片黄视频| kizo精华| 午夜福利网站1000一区二区三区| 99热国产这里只有精品6| 校园人妻丝袜中文字幕| 热re99久久精品国产66热6| 精品少妇黑人巨大在线播放| 少妇被粗大猛烈的视频| 精品少妇久久久久久888优播| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| 亚洲av中文av极速乱| 一级毛片电影观看| 人妻系列 视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产欧美日韩在线播放| 久久久久久久久久成人| 亚洲美女视频黄频| 亚洲国产最新在线播放| 午夜福利乱码中文字幕| 黄片无遮挡物在线观看| 久久97久久精品| 内地一区二区视频在线| 国产一区二区激情短视频 | 99热全是精品| 久久精品aⅴ一区二区三区四区 | 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线| 国产国语露脸激情在线看| 中文字幕精品免费在线观看视频 | 中文欧美无线码| 国产精品一区二区在线不卡| 丝袜在线中文字幕| 亚洲av电影在线进入| 婷婷色综合大香蕉| 美女福利国产在线| tube8黄色片| 亚洲av日韩在线播放| 九色成人免费人妻av| 国产精品国产三级国产专区5o| 亚洲三级黄色毛片| 欧美精品一区二区大全| 欧美另类一区| 天天躁夜夜躁狠狠躁躁| 熟女人妻精品中文字幕| 国产爽快片一区二区三区| 肉色欧美久久久久久久蜜桃| 国产成人精品婷婷| 激情视频va一区二区三区| 国产欧美亚洲国产| 亚洲美女黄色视频免费看| 大码成人一级视频| 日韩欧美精品免费久久| 久久久久久久大尺度免费视频| 赤兔流量卡办理| 五月伊人婷婷丁香| 亚洲国产最新在线播放| 乱码一卡2卡4卡精品| 天天躁夜夜躁狠狠久久av| xxxhd国产人妻xxx| 国产深夜福利视频在线观看| 国产免费福利视频在线观看| 久久影院123| 女人被躁到高潮嗷嗷叫费观| 插逼视频在线观看| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| 黄色一级大片看看| 午夜激情久久久久久久| 国产精品久久久久久精品电影小说| 成年女人在线观看亚洲视频| 亚洲精品,欧美精品| 大片免费播放器 马上看| h视频一区二区三区| 如日韩欧美国产精品一区二区三区| 久久ye,这里只有精品| 亚洲国产精品一区二区三区在线| 日本wwww免费看| 激情五月婷婷亚洲| 亚洲国产欧美日韩在线播放| 熟女电影av网| 久久ye,这里只有精品| 伊人久久国产一区二区| 永久免费av网站大全| 丰满迷人的少妇在线观看| 国产日韩欧美亚洲二区| 亚洲精品aⅴ在线观看| 精品久久蜜臀av无| 久久99热6这里只有精品| 成人亚洲欧美一区二区av| 亚洲欧洲精品一区二区精品久久久 | 日本与韩国留学比较| 啦啦啦中文免费视频观看日本| 在线亚洲精品国产二区图片欧美| 免费大片黄手机在线观看| 大码成人一级视频| 晚上一个人看的免费电影| 精品熟女少妇av免费看| 亚洲av男天堂| 少妇 在线观看| 看十八女毛片水多多多| 黑人猛操日本美女一级片| 内地一区二区视频在线| 日本-黄色视频高清免费观看| 国产一区亚洲一区在线观看| 国产精品国产三级国产专区5o| 午夜福利,免费看| 日本色播在线视频| 亚洲高清免费不卡视频| 午夜影院在线不卡| 亚洲精品,欧美精品| 99九九在线精品视频| 免费看不卡的av| 草草在线视频免费看| 春色校园在线视频观看| 免费看不卡的av| 日韩不卡一区二区三区视频在线| 亚洲国产最新在线播放| 18禁国产床啪视频网站| 日韩中文字幕视频在线看片| 韩国高清视频一区二区三区| 免费观看在线日韩| 国国产精品蜜臀av免费| 香蕉精品网在线| 国产永久视频网站| 男男h啪啪无遮挡| a级片在线免费高清观看视频| 日韩不卡一区二区三区视频在线| 国产av国产精品国产| 精品人妻一区二区三区麻豆| 亚洲激情五月婷婷啪啪| 成人18禁高潮啪啪吃奶动态图| 国产一级毛片在线| 国产成人精品无人区| 9191精品国产免费久久| 18+在线观看网站| 一本色道久久久久久精品综合| 国产亚洲精品久久久com| 少妇被粗大的猛进出69影院 | 国产片内射在线| 亚洲精品中文字幕在线视频| 国产又色又爽无遮挡免| 视频区图区小说| 亚洲人与动物交配视频| 亚洲精品一区蜜桃| 另类亚洲欧美激情| 91国产中文字幕| 美女国产高潮福利片在线看| av有码第一页| 男女高潮啪啪啪动态图| 国产乱人偷精品视频| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 岛国毛片在线播放| 久久ye,这里只有精品| 精品亚洲成a人片在线观看| 男人操女人黄网站| 春色校园在线视频观看| 日韩视频在线欧美| 国产精品国产三级国产av玫瑰| 国产黄色视频一区二区在线观看| 国产精品久久久久久久电影| 一本久久精品| 精品国产露脸久久av麻豆| 精品卡一卡二卡四卡免费| 捣出白浆h1v1| 亚洲av电影在线观看一区二区三区| 免费少妇av软件| 亚洲一级一片aⅴ在线观看| 极品少妇高潮喷水抽搐| 女人精品久久久久毛片| 亚洲伊人色综图| 国产国语露脸激情在线看| 老熟女久久久| 少妇人妻 视频| 中文字幕亚洲精品专区| 久久久久国产网址| 一级a做视频免费观看| 午夜免费观看性视频| 精品一区二区免费观看| 天天躁夜夜躁狠狠躁躁| 成人国产麻豆网| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 欧美日韩视频高清一区二区三区二| 中文字幕免费在线视频6| 亚洲中文av在线| 男女高潮啪啪啪动态图| 美女中出高潮动态图| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 国产黄频视频在线观看| 国产 精品1| 国产av码专区亚洲av| 99九九在线精品视频| 国产白丝娇喘喷水9色精品| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区 | 亚洲人成网站在线观看播放| 一级毛片 在线播放| 晚上一个人看的免费电影| 欧美变态另类bdsm刘玥| 亚洲精品色激情综合| 韩国精品一区二区三区 | 久久精品国产a三级三级三级| 国产福利在线免费观看视频| 久久午夜福利片| 女性生殖器流出的白浆| 人人妻人人添人人爽欧美一区卜| 日韩精品免费视频一区二区三区 | 久久午夜综合久久蜜桃| 人妻 亚洲 视频| 亚洲av福利一区| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 精品亚洲成国产av| 久久久久久伊人网av| 内地一区二区视频在线| 视频区图区小说| 日韩制服丝袜自拍偷拍| 国产欧美日韩综合在线一区二区| 国产亚洲一区二区精品| 久久99精品国语久久久| 青春草国产在线视频| 只有这里有精品99| 国产亚洲一区二区精品| 日本与韩国留学比较| 少妇熟女欧美另类| 18在线观看网站| 51国产日韩欧美| 免费高清在线观看视频在线观看| 成年人午夜在线观看视频| 人成视频在线观看免费观看| 欧美日韩av久久| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| a级毛片在线看网站| 国产乱来视频区| 2022亚洲国产成人精品| 在线免费观看不下载黄p国产| 男女下面插进去视频免费观看 | 大陆偷拍与自拍| 欧美日韩国产mv在线观看视频| 亚洲成av片中文字幕在线观看 | 26uuu在线亚洲综合色| 麻豆乱淫一区二区| 在线观看免费日韩欧美大片| 婷婷色av中文字幕| 免费观看a级毛片全部| 纯流量卡能插随身wifi吗| 成人国产麻豆网| 男女午夜视频在线观看 | 中文字幕免费在线视频6| 国产国语露脸激情在线看| 久久精品国产鲁丝片午夜精品| 中文字幕人妻熟女乱码| 久久精品国产亚洲av天美| 亚洲av.av天堂| 在线观看人妻少妇| 777米奇影视久久| 午夜免费观看性视频| 男女国产视频网站| 免费看不卡的av| 日韩成人av中文字幕在线观看| 国产又色又爽无遮挡免| 亚洲av电影在线观看一区二区三区| 精品一品国产午夜福利视频| 激情五月婷婷亚洲| 亚洲成av片中文字幕在线观看 | 一区在线观看完整版| 99热这里只有是精品在线观看| 亚洲精品视频女| 国产亚洲一区二区精品| 五月伊人婷婷丁香| 亚洲少妇的诱惑av| xxx大片免费视频| 美女中出高潮动态图| 成人影院久久| 久久久久精品人妻al黑| www.熟女人妻精品国产 | 街头女战士在线观看网站| 99热这里只有是精品在线观看| 日本与韩国留学比较| 久久人人97超碰香蕉20202| 亚洲成国产人片在线观看| 亚洲丝袜综合中文字幕| 成人18禁高潮啪啪吃奶动态图| 亚洲性久久影院| 亚洲色图综合在线观看| 久久国产精品大桥未久av| 中文字幕精品免费在线观看视频 | 久久午夜福利片| 欧美日韩一区二区视频在线观看视频在线| 精品久久久精品久久久| 全区人妻精品视频| 黄色视频在线播放观看不卡| 国产精品一国产av| 丝瓜视频免费看黄片| xxx大片免费视频| 两个人免费观看高清视频| 色视频在线一区二区三区|