• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polysaccharides Based Random and Unidirectional Aerogels for Thermal and Mechanical Stability

    2022-05-09 06:47:52CHAUDARYAneebaCHUDHARYTaybaFAROOQAmjadZHANGMeiling張美玲PATOARYMohammedKayesLIULifang劉麗芳
    關(guān)鍵詞:美玲

    CHAUDARY Aneeba, CHUDHARY Tayba, FAROOQ Amjad, ZHANG Meiling(張美玲), PATOARY Mohammed Kayes, LIU Lifang(劉麗芳)*

    1 College of Textiles, Donghua University, Shanghai 201620, China2 Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China3 Department of Chemistry, Zhejiang University, Hangzhou 310027, China

    Abstract: Owing to the increasing energy demands and the environmental constraints, the need for bio-based materials has been on the rise due to their variety of favorable properties like biocompatibility, cost-effectiveness, large specific surface area, high porosity, and non-toxicity. Thermal stability and mechanical strength of aerogels are highly dependent on their micro-porous structures. A three-dimensional structure based on cellulose nanofiber/chitosan (CNF/CS) aerogels was built using two different freezing methodologies, namely random freezing, and unidirectional freezing techniques, by changing mold shapes. The unidirectional aerogels ultimately resulted in high-temperature stability and mechanical strength. The results show that the unidirectional CNF/CS(u-CNF/CS) aerogels contain controlled micro porous orientation relative to random-CNF/CS (r-CNF/CS) aerogels with the disordered porous distribution. The high-temperature stability with an increase of glass transition temperature Tg from 275 ℃ (CNF) to 283 ℃ (CNF/CS), the ultra-low thermal conductivity of 0.030 W/(m ·K), and mechanical robustness of u-CNF/CS aerogels make them quite favorable for practical applications.

    Key words: aerogel; cellulose nanofiber (CNF); chitosan (CS); thermal stability; mechanical robustness

    Introduction

    Increasing thermal insulation demand causes huge energy loss in greenhouse gas emissions. To address this thermal insulation need, many porous materials have been introduced because of their lowest thermal insulation behavior. Mineral wood and polymers with their best thermal conductivity about 0.030-0.040 W/(m ·K) have been commercially popular lately[1]. Vacuum insulation panels contain the lowest thermal insulation about 0.007-0.008 W/(m ·K), but they are costly with poor mechanical stability[1]. Aerogels with the best thermal and mechanical performance are well known in superinsulation fields because of their mesoporosity (≥ 90%) and the lowest density (about 0.1 g/cm3).

    Polysaccharides, as abundantly available renewable carbohydrate polymers, hold abundant characteristics, such as biodegradability, non-toxicity, environment friendliness, and presence of large functional groups for example carboxylic groups and amino groups which help to form polysaccharides derivatives[2-3]. Cellulose nanofiber (CNF) and chitosan (CS) are natural polysaccharides with abundant presence in plants, fungi, and bacteria-containing amorphous and crystalline domains. Polysaccharides are carbohydrates of polymers in which glycosidic bonds are present[4-6].

    Cellulose has gained significant interest in the past years due to holding outstanding properties: renewability, biocompatibility, the lowest density, surface reactivity[7], good thermal properties[8-11], and mechanical characteristics[12]. CNF suspension holds gel-like properties at low concentrations[13]. However, the rheological properties of CNF depend on CNF concentration and pH[14-15]. CS adds strength to the structure when mixed in an aqueous form with another polysaccharide, and gives good structure stability with minimizing structural defects within the geometry[9, 16-17].

    CS is a natural polysaccharide obtained from seafood surpluses like shrimps, lobster, and crab shells. It possesses great physiochemical characteristics and has been applicable in extensive fields of research such as water purification, thermal insulation, and biomedical applications[18-21]. CS can form gels easily based on its active functional groups in the aqueous form[22]. Due to such characteristics, it is used in various areas such as catalysts and drug delivery[23-28].

    Aerogels as an ultra-porous material with the lowest density, large surface area, and mechanically robustness have been famous in recent years with plenty of applications. Composite aerogels based on nanotubes and graphene are used for thermal insulation[29-30]. However, the manufacturing of such aerogels is costly and complex, which restricts their practical usage. Therefore, researches are needed for fabricating cost-effective and low thermal insulated aerogels[31-32]. Many cellulose-based composite aerogels have already been reported for thermal insulation applications[33-34].

    Directional freezing affects the resulted characteristics of aerogels due to microstructure variation in anisotropic aerogels. Such anisotropic aerogels have been mentioned in Refs. [35-40]. Therefore, preparing nano-fibrillated aerogels with excellent performance is still a challenge. CS possesses superior biocompatibility and intrinsic antibacterial characteristics[41-43].

    Herein, a novel approach is ued to fabricate CNF/CS anisotropic aerogels employing random and unidirectional freezing. The structural behavior and its effect on resultant composite aerogels properties are observed. CS acts as a structural robustness material and provides mesoporosity within the geometry, whereas cellulose provides supportive bridges within the layers and results in good formability.

    1 Experiments

    1.1 Materials

    CNFs were provided by Liontec Biopharma Co., Ltd., Tianjin, China. CS was bought from Titan Technology Co., Ltd., Shanghai, China. Formaldehyde was purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Acetic acid and sodium hydroxide were provided by Aladdin Reagent Co., Ltd., Shanghai, China. All chemicals were analytically pure.

    1.2 Preparation of CNF/CS hydrogel

    The CNF solution has been prepared by the addition of deionized water into suspension, which is dispersed at 11 000 r/min using a high-speed homogenizer for 45 min. Meanwhile, CS solutions have been prepared by mixing CS in CNF suspension and glacial acetic acid solution with subsequent magnetic stirring in 80 ℃ heated oil bath for 40 min to get a translucent and uniform suspension. CNF/CS suspensions were further mixed for an additional 30 min to obtain a viscous suspension.

    1.3 Fabrication of aerogels

    The CNF/CS hydrogel was poured into a flat surface mold and directly placed into a liquid nitrogen bath for freezing, following a lyophilizing process for 48 h at -50 ℃ using a freeze dryer at a pressure of 1 Pa. The prepared aerogels were generally named as random-CNF/CS (r-CNF/CS) aerogels.

    The unidirectional freeze-dried aerogels were prepared by transferring suspension into the polytetrafluoroethylene (PTFE) mold while being placed on a copper square bar in the liquid nitrogen-filled bath for 20 min and lyophilized for 60 h. The prepared aerogels were named as unidirectional CNF/CS (u-CNF/CS) aerogels.

    2 Characterization

    2.1 Morphology observation

    The microscopic architecture of CNF/CS-based aerogels was observed by using scanning electron microscopy (SEM) (Hitachi S-4800, Japan).

    2.2 Fourier transform infrared (FTIR) spectroscopy

    The chemical structures of CNF, CS, and CNF/CS aerogels were observed by conducting FTIR testing with spectra range from 4 000 cm-1to 400 cm-1in the transmission mode at the resolution of 4 cm-1.

    2.3 Thermogravimetric analysis (TGA)

    Thermal stability of aerogels was studied by a thermogravimetric analyzer (PerkinElmer Inc., USA) at a nitrogen flow rate of 20 mL/min, a temperature range from 30 ℃ to 600 ℃, and a heating rate of 10 ℃/min.

    2.4 Thermal conductivity

    Thermal conductivityλwas obtained by using a hot disk thermal analyzer (TPS-2500S, Hot Disk AB Co., Sweden) following the transient plane source (TPS) method.

    2.5 Compression testing

    The compression experiments were conducted by using an Instron 5944 universal machine (Instron,USA) with 500 N load cells at a strain rate of 2 mm/min and a strain of 60%.

    3 Results and Discussion

    3.1 Structural characterization

    The crosslinking and hydrogel formation mechanism of CNF/CS aerogels is shown in Fig.1. The random aerogels were prepared by pouring CNF/CS hydrogel in the flat surface plastic mold, and directly frozen in liquid nitrogen as shown in Fig. 1(b). Whereas for u-CNF/CS aerogel, the hydrogel was transferred into a PTFE mold by putting on the iron mold, and frozen. The resultant aerogels contain entirely different micro-structures as shown in Fig.1(c).

    Fig. 1 Mechanism of r-CNF/CS and u-CNF/CS aerogels formation: (a) CNF/CS hydrogel; (b) random and unidirectional freezings; (c) r-CNF/CS and u-CNF/CS aerogels

    The structural morphology of CNF/CS aerogels has been observed by using SEM. It can be seen in Figs. 2(a) and 2(b) that the r-CNF/CS aerogels show similar morphology along axial and radial directions because of random temperature gradient during liquid nitrogen freezing and random size of pores forming within the geometry of aerogels. This structure shows the isotropic behavior along both orientations. However, in u-CNF/CS aerogels, the structural orientation is different along the axial and radial directions as shown in Figs. 2(c) and 2(d). This anisotropic morphology of aerogels is formed because of different temperature gradients along both directions. This structure is suitable for the thermal conductivity of aerogels. Along the radial direction, the passage of heat is slow because of the Knudsen effect, while the thermal conductivity within axial geometry of u-CNF/CS aerogels is much faster because of a favorable lamellar structure.

    Fig. 2 Schematic illustration of CNF/CS aerogels: (a) axial view of r-CNF/CS aerogels; (b) radial view of r-CNF/CS aerogels; (c) axial view of u-CNF/CS aerogels; (d) radial view of u-CNF/CS aerogels

    The addition of CS to the assembly of CNF controls the microstructure alignment and lets the layers be formed in anisotropic aerogels. This microstructure then becomes favorable for heat insulation[31]. CNFs provide fibrous support to the porous assembly, and CS particles add strength to the structure by forming linking bonds within the geometry. With the addition of CS particles to the CNF hydrogel, the structure is changed significantly.

    3.2 FTIR spectra of CNF/CS aerogels

    Figure 3 shows the FTIR spectra of CNF, CS, and CNF/CS aerogels, respectively. CS particles are doped into cellulose with formaldehyde crosslinking, and resulted in characteristic peaks. CNF and CS share the common functional groups because they are both polysaccharides. The stretching vibrations at 3 200 cm-1and 2 893 cm-1conform to —OH and C—H bonds, respectively.The peak at about 3 200 cm-1is stretching vibrations of —OH and —NH. The peak of CS aerogels at 1 500 cm-1is assigned to the amide group. However, in composite aerogels, the new peak at 1 400 cm-1is formed after crosslinking reaction which corresponds to the amide bond formation between formaldehyde and CS. In composite aerogels, the sharp peak at about 1 600 cm-1is evidence of cross-linked aerogels which corresponds to aldehyde group formation. Formaldehyde addition to aerogels develops structural stability and enhances the mechanical strength of final aerogels by providing strengthening units within the micro-orientation of aerogels.

    Fig. 3 FTIR spectra: (a) CNF aerogels; (b) CS aerogels; (c) CNF/CS aerogels

    3.3 Thermal stability of composite aerogels

    The thermal stability of CNF/CS aerogels has been observed from TGA as shown in Fig. 4. The TGA curve of CNF/CS aerogels shows that the weight loss rate is reduced to 90% compared to that of pure CNF and CS aerogels, and the mass retention percentage also improves to 80% in composite aerogels (Fig. 4(b)).

    Fig. 4 Thermal behavior of CS, CNF and CNF/CS aerogels: (a)TGA curve; (b) derivative thermogravimetry (DTG) curve

    The addition of CS to CNF enhances the thermal stability of CNF/CS aerogels and gives a more stable structure by adding bridges and nanopores to the structure. The microstructure of final aerogels contains nano-sheets that restrain the CNF/CS aerogels from combustion at low temperatures of about 275 ℃ by enhancing its glass transition temperatureTgto 283 ℃. As it can be seen in the endothermic histogram of CNF/CS aerogels, the peak increases significantly which shows the increase ofTgof final aerogels.

    The thermal conductivity values of aerogels were collected by using a hot disk apparatus. It was observed that CNF (0.034 W/(m ·K)) and CS (0.037 W/(m ·K)) with their less thermal conductivityλcombined in aerogel form, and resulted with the overall lowestλof composite aerogels (Fig. 5). The u-CNF/CS aerogels contain lowerλ(0.030 W/(m ·K)) as compared to r-CNF/CS aerogels (0.036 W/(m ·K)), because of micro-porous structural variation. The random pore orientation in randomly frozen aerogels results in a faster flow of heat through the assembly due to the fast heat conduction rate, as compared to the aligned lamellar structure of unidirectional frozen aerogels. The lamella in u-CNF/CS aerogels blocks heat conduction to pass through the geometry which results in the lowest thermal conductivity of the specific aerogels. It shows the thermal behavior of aerogels which makes CNF/CS aerogels promising in thermal insulation and flame retardancy applications.

    Fig. 5 Thermal conductivity of CNF, CS, r-CNF/CS and u-CNF/CS aerogels

    3.4 Mechanical properties of CNF/CS aerogels

    The stress-strain curves of CNF, CS and CNF/CS aerogels were collected at a strain of 60% as shown in Fig. 6. The stress-strain behavior of aerogels consists of three stages: the elastic stage at a low strain ratio, yield point, and final densification region. For r-CNF/CS aerogels as shown in Fig. 6(c), the curve is non-linear in the elastic region. However, there is an apparent linear regime in u-CNF/CS as shown in Fig. 6(d). When the stress is released, the strain reaches zero gradually, and the hysteresis loop area of unidirectional composite aerogels gets less relative to pure aerogels as shown in Figs. 6(a) and 6(b). The fast recovery rate of u-CNF/CS aerogels specifies their compressive strength and usability in stress sensors, shape memory alloys,etc.

    Fig. 6 Stress-strain curves: (a) CNF aerogels; (b) CS aerogels; (c) r-CNF/CS aerogels; (d) u-CNF/CS aerogels

    4 Conclusions

    In summary, the CNF/CS aerogels have been successfully fabricated by employing two different freeze-drying techniques: random freezing and unidirectional freezing. Aerogels behave differently on different microstructures. CS addition to CNF hydrogel is able to form the thermally resistant and mechanically robust aerogels. FTIR spectra show that CS can form hydrogen bonds with cellulose on the addition of formaldehyde, and reduce bending vibrations of —OH. TGA shows good thermal stability of CNF/CS aerogels because of strong intermolecular forces, andTgof CNF/CS aerogels increases to 283 ℃. The thermal conductivity test shows that the u-CNF/CS aerogels exhibit ultra-low thermal conductivity of around 0.030 W/(m ·K) compared to r-CNF/CS aerogels withλof 0.036 W/(m ·K). Whereas, the stress-strain curves display that u-CNF/CS aerogels are compressible because of the layered structure, and able to regain their original position on the removal of strain. The temperature stability, low thermal conductivity, and better mechanical strength make u-CNF/CS aerogels a safe choice for heat-resistant applications such as automobiles, aerospace, building, extreme environmental conditions, stress sensors, and shape memory alloys.

    猜你喜歡
    美玲
    長大以后做什么
    穿鐵馬甲的梁思成
    做人與處世(2022年2期)2022-05-26 22:34:53
    霜 降 蘇美玲
    My Childhood
    春天的早晨
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    我·小鳥·鈴鐺
    趙美玲
    春天的早晨
    一级二级三级毛片免费看| 免费播放大片免费观看视频在线观看| av.在线天堂| 不卡视频在线观看欧美| 欧美+日韩+精品| 80岁老熟妇乱子伦牲交| 精品一品国产午夜福利视频| 国产成人a区在线观看| 免费少妇av软件| 涩涩av久久男人的天堂| 精品国产三级普通话版| 三级经典国产精品| 搡女人真爽免费视频火全软件| 国产高潮美女av| 午夜福利在线观看免费完整高清在| 熟女av电影| 午夜视频国产福利| 男女无遮挡免费网站观看| 久久久久久久久久久丰满| 中文字幕亚洲精品专区| 一级av片app| 中文字幕精品免费在线观看视频 | 人妻夜夜爽99麻豆av| 国产有黄有色有爽视频| 久久国产精品大桥未久av | 国产伦理片在线播放av一区| 美女中出高潮动态图| 国产精品国产av在线观看| av在线老鸭窝| 伊人久久国产一区二区| 观看免费一级毛片| 男女无遮挡免费网站观看| 亚洲国产精品999| 尾随美女入室| 日日摸夜夜添夜夜添av毛片| 久久久欧美国产精品| 国产精品人妻久久久久久| 18+在线观看网站| 亚洲欧美成人精品一区二区| 18+在线观看网站| 伦精品一区二区三区| 成人午夜精彩视频在线观看| a级一级毛片免费在线观看| 美女中出高潮动态图| 大又大粗又爽又黄少妇毛片口| 精品一品国产午夜福利视频| 日韩电影二区| 欧美变态另类bdsm刘玥| kizo精华| 久久av网站| 色综合色国产| 亚洲国产高清在线一区二区三| 两个人的视频大全免费| 纵有疾风起免费观看全集完整版| 欧美日韩亚洲高清精品| 美女视频免费永久观看网站| 中文字幕亚洲精品专区| 久久精品国产a三级三级三级| 午夜精品国产一区二区电影| 亚洲美女搞黄在线观看| av在线老鸭窝| 80岁老熟妇乱子伦牲交| 精品少妇黑人巨大在线播放| 亚洲欧美日韩东京热| 免费av不卡在线播放| 黄色日韩在线| 最近中文字幕2019免费版| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久久人人人人人人| 寂寞人妻少妇视频99o| 日韩av在线免费看完整版不卡| 日本色播在线视频| 亚洲综合色惰| 精品久久国产蜜桃| 制服丝袜香蕉在线| 国产精品一区二区三区四区免费观看| 免费观看在线日韩| 久久久亚洲精品成人影院| 国产一区二区三区av在线| 久久精品久久久久久噜噜老黄| 搡女人真爽免费视频火全软件| 国产精品国产三级国产av玫瑰| 各种免费的搞黄视频| 国产精品免费大片| 深爱激情五月婷婷| 午夜福利视频精品| 一级毛片我不卡| 亚洲精品日本国产第一区| 成年人午夜在线观看视频| 午夜激情福利司机影院| 日韩 亚洲 欧美在线| 久久久久久久大尺度免费视频| 欧美成人精品欧美一级黄| 一级a做视频免费观看| 最近中文字幕高清免费大全6| 一级毛片我不卡| 久久精品久久久久久久性| 成人美女网站在线观看视频| 免费看光身美女| 永久免费av网站大全| av在线蜜桃| 亚洲欧美日韩无卡精品| 国产精品免费大片| 成人无遮挡网站| 亚洲av综合色区一区| 美女中出高潮动态图| 人人妻人人澡人人爽人人夜夜| 只有这里有精品99| 18禁裸乳无遮挡动漫免费视频| 久久精品久久精品一区二区三区| 国产精品99久久99久久久不卡 | 全区人妻精品视频| 看非洲黑人一级黄片| 免费av中文字幕在线| 午夜老司机福利剧场| 如何舔出高潮| 久热这里只有精品99| 国产精品久久久久久久电影| 精品久久久久久久久亚洲| 国产精品欧美亚洲77777| 最后的刺客免费高清国语| 如何舔出高潮| 欧美日本视频| 永久免费av网站大全| 日日撸夜夜添| 高清不卡的av网站| 99热全是精品| 国产淫语在线视频| 国产白丝娇喘喷水9色精品| 自拍偷自拍亚洲精品老妇| 午夜激情久久久久久久| 插阴视频在线观看视频| 亚洲精品中文字幕在线视频 | 狠狠精品人妻久久久久久综合| 人人妻人人看人人澡| 永久网站在线| 久久久久久久久大av| 久久97久久精品| 日本黄色片子视频| 午夜免费观看性视频| 熟女电影av网| 国内揄拍国产精品人妻在线| 18禁在线播放成人免费| 狂野欧美白嫩少妇大欣赏| 成人美女网站在线观看视频| 久久久久久久久久人人人人人人| 日本午夜av视频| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| 亚洲人成网站高清观看| 夫妻性生交免费视频一级片| 日本午夜av视频| 一级二级三级毛片免费看| 亚洲人与动物交配视频| 青春草视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲国产日韩| 精品少妇久久久久久888优播| 国产片特级美女逼逼视频| 老师上课跳d突然被开到最大视频| 内射极品少妇av片p| 在线观看av片永久免费下载| 亚洲一级一片aⅴ在线观看| 少妇猛男粗大的猛烈进出视频| 干丝袜人妻中文字幕| 欧美一级a爱片免费观看看| 老熟女久久久| 中文资源天堂在线| 男女免费视频国产| 人妻夜夜爽99麻豆av| 欧美日韩视频精品一区| 日韩精品有码人妻一区| 亚洲国产欧美在线一区| 2021少妇久久久久久久久久久| 精品人妻一区二区三区麻豆| 色综合色国产| 哪个播放器可以免费观看大片| 久久影院123| 黄色视频在线播放观看不卡| 夜夜爽夜夜爽视频| 精品熟女少妇av免费看| 少妇人妻久久综合中文| 91久久精品国产一区二区成人| 国产v大片淫在线免费观看| 国产午夜精品久久久久久一区二区三区| 只有这里有精品99| 激情 狠狠 欧美| 丝瓜视频免费看黄片| 亚洲精品aⅴ在线观看| 国产精品女同一区二区软件| 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| 水蜜桃什么品种好| 色综合色国产| 亚洲国产精品一区三区| 久久国产精品男人的天堂亚洲 | 丝瓜视频免费看黄片| 纵有疾风起免费观看全集完整版| 久久午夜福利片| 国产在线男女| 日韩大片免费观看网站| 青春草国产在线视频| 久久国产精品大桥未久av | 在线免费观看不下载黄p国产| 日韩,欧美,国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 人妻系列 视频| 99精国产麻豆久久婷婷| 免费观看性生交大片5| 国产成人精品一,二区| 亚洲熟女精品中文字幕| 久久久久网色| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区三区| 国产爽快片一区二区三区| 边亲边吃奶的免费视频| 久久国产亚洲av麻豆专区| 欧美97在线视频| 91aial.com中文字幕在线观看| 毛片女人毛片| 日韩国内少妇激情av| 亚洲欧美成人综合另类久久久| 日日摸夜夜添夜夜爱| 国产中年淑女户外野战色| 免费在线观看成人毛片| 国产淫语在线视频| 国产精品福利在线免费观看| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 亚洲最大成人中文| 日韩不卡一区二区三区视频在线| 91精品伊人久久大香线蕉| 国产深夜福利视频在线观看| 免费av不卡在线播放| 亚洲av男天堂| 一本一本综合久久| 久久这里有精品视频免费| 午夜福利高清视频| 成人影院久久| 天天躁日日操中文字幕| 久久久久国产精品人妻一区二区| 精品99又大又爽又粗少妇毛片| 成人一区二区视频在线观看| 国产在线免费精品| 午夜福利高清视频| 久久99热这里只有精品18| 青青草视频在线视频观看| av卡一久久| 色视频www国产| 美女中出高潮动态图| 国产免费福利视频在线观看| 丰满乱子伦码专区| 热re99久久精品国产66热6| 人妻一区二区av| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 国产69精品久久久久777片| 亚洲精品一二三| 日韩av在线免费看完整版不卡| 一级毛片电影观看| 一级av片app| 亚洲欧美日韩东京热| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 老熟女久久久| 欧美三级亚洲精品| 国产精品爽爽va在线观看网站| 免费黄色在线免费观看| 国产 一区 欧美 日韩| 内射极品少妇av片p| 亚洲va在线va天堂va国产| 亚洲精品第二区| 午夜视频国产福利| 国产高潮美女av| 精品一区在线观看国产| 人妻少妇偷人精品九色| 成人综合一区亚洲| 天堂中文最新版在线下载| 在线观看免费日韩欧美大片 | 免费久久久久久久精品成人欧美视频 | 如何舔出高潮| 伦理电影大哥的女人| 美女国产视频在线观看| 男人和女人高潮做爰伦理| 久久精品熟女亚洲av麻豆精品| 男的添女的下面高潮视频| 视频中文字幕在线观看| 欧美高清性xxxxhd video| 日本免费在线观看一区| 一边亲一边摸免费视频| 亚洲欧美日韩另类电影网站 | 国产精品福利在线免费观看| 卡戴珊不雅视频在线播放| 免费黄频网站在线观看国产| 日韩人妻高清精品专区| 国产综合精华液| 亚洲精品乱码久久久v下载方式| 欧美三级亚洲精品| 97在线视频观看| 如何舔出高潮| 三级国产精品欧美在线观看| 国产精品免费大片| 国产v大片淫在线免费观看| 高清午夜精品一区二区三区| 麻豆国产97在线/欧美| 婷婷色av中文字幕| av天堂中文字幕网| 2018国产大陆天天弄谢| 夜夜骑夜夜射夜夜干| 国产av国产精品国产| 国产 一区 欧美 日韩| 中文欧美无线码| 亚洲色图av天堂| 国产一区二区三区av在线| 少妇人妻 视频| 国产精品免费大片| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 日韩中文字幕视频在线看片 | 一个人看视频在线观看www免费| 日韩制服骚丝袜av| 99久久精品国产国产毛片| 内射极品少妇av片p| 一级片'在线观看视频| 午夜精品国产一区二区电影| 在线看a的网站| 久久青草综合色| 美女中出高潮动态图| 精品国产三级普通话版| 国产精品久久久久久精品电影小说 | 欧美xxⅹ黑人| 久久久久久久久大av| 成人18禁高潮啪啪吃奶动态图 | 免费观看a级毛片全部| 高清av免费在线| 精品久久久精品久久久| 午夜精品国产一区二区电影| 精品国产露脸久久av麻豆| 亚洲精品色激情综合| 日本一二三区视频观看| 亚洲精品一区蜜桃| 黄色一级大片看看| 中文欧美无线码| 国产精品免费大片| 国产老妇伦熟女老妇高清| 精品一品国产午夜福利视频| 国产精品国产三级专区第一集| 欧美bdsm另类| 亚洲精品乱码久久久久久按摩| 爱豆传媒免费全集在线观看| 五月天丁香电影| 久热这里只有精品99| 亚洲美女黄色视频免费看| 午夜老司机福利剧场| 国产午夜精品一二区理论片| 精品人妻视频免费看| 18禁裸乳无遮挡免费网站照片| 免费看不卡的av| 七月丁香在线播放| 久久99热6这里只有精品| 免费观看av网站的网址| 青春草亚洲视频在线观看| 国产在线一区二区三区精| 国内少妇人妻偷人精品xxx网站| 卡戴珊不雅视频在线播放| 日韩欧美一区视频在线观看 | 我的老师免费观看完整版| 最后的刺客免费高清国语| 黑丝袜美女国产一区| 一区二区三区免费毛片| 九九在线视频观看精品| 热99国产精品久久久久久7| 免费观看av网站的网址| 麻豆成人午夜福利视频| 亚洲精品自拍成人| 国产精品一二三区在线看| 亚洲精品,欧美精品| 久久精品国产亚洲网站| 久久国产乱子免费精品| 中文字幕亚洲精品专区| 菩萨蛮人人尽说江南好唐韦庄| 丝瓜视频免费看黄片| 亚洲美女视频黄频| 国产日韩欧美亚洲二区| 在线观看三级黄色| 国产在线男女| 天堂8中文在线网| 日韩成人伦理影院| 日韩成人av中文字幕在线观看| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 国产一区二区三区综合在线观看 | 夜夜看夜夜爽夜夜摸| 性色avwww在线观看| 熟女电影av网| 中文乱码字字幕精品一区二区三区| 国产高潮美女av| 国产美女午夜福利| 国产亚洲5aaaaa淫片| 啦啦啦啦在线视频资源| 欧美日韩精品成人综合77777| 欧美极品一区二区三区四区| 国产成人91sexporn| 精品亚洲成国产av| 九色成人免费人妻av| 日韩欧美一区视频在线观看 | 秋霞在线观看毛片| 欧美日韩视频精品一区| 久久精品国产亚洲av天美| 少妇人妻久久综合中文| 日韩视频在线欧美| 欧美另类一区| 一个人看视频在线观看www免费| 亚洲色图综合在线观看| 黑丝袜美女国产一区| 最近手机中文字幕大全| 男女免费视频国产| 国产中年淑女户外野战色| 黄片无遮挡物在线观看| 建设人人有责人人尽责人人享有的 | 国产熟女欧美一区二区| 一本色道久久久久久精品综合| 免费看av在线观看网站| 内射极品少妇av片p| 国产男女内射视频| 香蕉精品网在线| 在线天堂最新版资源| 丰满迷人的少妇在线观看| 日日啪夜夜爽| 亚洲欧美日韩无卡精品| 亚洲人与动物交配视频| 夜夜看夜夜爽夜夜摸| 日日摸夜夜添夜夜爱| 色5月婷婷丁香| 十分钟在线观看高清视频www | 大香蕉97超碰在线| 岛国毛片在线播放| 美女xxoo啪啪120秒动态图| 久久婷婷青草| 亚洲精品色激情综合| 高清毛片免费看| 99久久精品一区二区三区| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 亚洲国产高清在线一区二区三| 好男人视频免费观看在线| 国产在线免费精品| 欧美日韩视频高清一区二区三区二| 日韩欧美一区视频在线观看 | 黑人猛操日本美女一级片| 香蕉精品网在线| 国产91av在线免费观看| 汤姆久久久久久久影院中文字幕| 美女cb高潮喷水在线观看| 在线精品无人区一区二区三 | 美女主播在线视频| 国产av一区二区精品久久 | 久久久久国产网址| 多毛熟女@视频| 丝袜喷水一区| 九九久久精品国产亚洲av麻豆| 国产一级毛片在线| 日本av免费视频播放| 天堂俺去俺来也www色官网| 亚洲精品乱码久久久久久按摩| 成人漫画全彩无遮挡| 国产91av在线免费观看| 久久精品人妻少妇| 成人漫画全彩无遮挡| 最近最新中文字幕大全电影3| 看非洲黑人一级黄片| 久久精品国产亚洲网站| 91久久精品电影网| av不卡在线播放| 国产熟女欧美一区二区| 我要看日韩黄色一级片| 国产伦精品一区二区三区四那| 亚洲国产欧美在线一区| 在线观看人妻少妇| 久久99热这里只有精品18| 国产欧美日韩一区二区三区在线 | av黄色大香蕉| 日本wwww免费看| 国产深夜福利视频在线观看| 国产 一区精品| 秋霞在线观看毛片| 男人舔奶头视频| 人妻少妇偷人精品九色| 亚洲中文av在线| 国产女主播在线喷水免费视频网站| 天天躁日日操中文字幕| 亚洲久久久国产精品| 国产成人精品婷婷| 99热这里只有是精品50| 亚洲综合色惰| 精品亚洲乱码少妇综合久久| 久久久久精品久久久久真实原创| 亚洲国产成人一精品久久久| 日本色播在线视频| 亚洲人成网站在线播| 亚洲精品视频女| 亚洲欧洲国产日韩| 男人狂女人下面高潮的视频| 男女免费视频国产| 毛片女人毛片| 插逼视频在线观看| 精品久久久久久久末码| 小蜜桃在线观看免费完整版高清| 免费久久久久久久精品成人欧美视频 | 久久久久久久久久人人人人人人| 午夜激情久久久久久久| tube8黄色片| 国产成人免费观看mmmm| 亚洲精品一区蜜桃| 久久精品国产自在天天线| 三级国产精品片| 免费观看av网站的网址| 国产精品久久久久久av不卡| 国产精品99久久久久久久久| 欧美一区二区亚洲| 日韩在线高清观看一区二区三区| 国产视频首页在线观看| 日韩在线高清观看一区二区三区| 国产高清国产精品国产三级 | 亚洲欧洲日产国产| 秋霞伦理黄片| 国产精品三级大全| 少妇的逼水好多| 在线观看国产h片| 亚洲性久久影院| 一级毛片久久久久久久久女| 亚洲,欧美,日韩| 久久99热这里只频精品6学生| www.av在线官网国产| 国产成人a∨麻豆精品| 老司机影院毛片| 国语对白做爰xxxⅹ性视频网站| 免费观看av网站的网址| 国产老妇伦熟女老妇高清| 中文天堂在线官网| 欧美xxxx性猛交bbbb| 日韩人妻高清精品专区| 最近2019中文字幕mv第一页| 国产女主播在线喷水免费视频网站| 亚洲四区av| 色网站视频免费| 亚洲高清免费不卡视频| 国产一区二区三区综合在线观看 | 成人国产麻豆网| 嘟嘟电影网在线观看| 欧美亚洲 丝袜 人妻 在线| 熟女人妻精品中文字幕| 久久久亚洲精品成人影院| 欧美xxxx性猛交bbbb| 欧美激情极品国产一区二区三区 | 亚洲一区二区三区欧美精品| 麻豆精品久久久久久蜜桃| 亚洲精品日韩av片在线观看| 国产爽快片一区二区三区| 视频区图区小说| 又爽又黄a免费视频| 一区二区av电影网| 18禁裸乳无遮挡免费网站照片| 亚洲精品乱码久久久v下载方式| 日韩精品有码人妻一区| 丝瓜视频免费看黄片| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 七月丁香在线播放| 夜夜爽夜夜爽视频| 精品一区在线观看国产| 日日摸夜夜添夜夜添av毛片| 日本av手机在线免费观看| 岛国毛片在线播放| 卡戴珊不雅视频在线播放| 美女脱内裤让男人舔精品视频| 国产精品熟女久久久久浪| 亚洲精品自拍成人| 国产精品久久久久久精品古装| 精品国产三级普通话版| 最近最新中文字幕大全电影3| 国产男女内射视频| kizo精华| 亚洲欧美日韩卡通动漫| 国产av精品麻豆| a 毛片基地| 精品人妻视频免费看| 蜜桃久久精品国产亚洲av| 国产一区亚洲一区在线观看| 久久久欧美国产精品| 啦啦啦中文免费视频观看日本| 99视频精品全部免费 在线| 久久久久精品性色| 国产午夜精品久久久久久一区二区三区| 久热久热在线精品观看| 欧美日韩在线观看h| www.色视频.com| 精品亚洲成a人片在线观看 | 男人狂女人下面高潮的视频| 九九久久精品国产亚洲av麻豆| 成人综合一区亚洲| 高清不卡的av网站| 国产探花极品一区二区| 亚洲,一卡二卡三卡| 国产av精品麻豆| 毛片女人毛片| 亚洲精品视频女| 18禁动态无遮挡网站| 亚洲精品乱久久久久久| 秋霞伦理黄片| 精品少妇久久久久久888优播| 色网站视频免费| 乱系列少妇在线播放| 国产午夜精品久久久久久一区二区三区| 亚洲不卡免费看|