• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polysaccharides Based Random and Unidirectional Aerogels for Thermal and Mechanical Stability

    2022-05-09 06:47:52CHAUDARYAneebaCHUDHARYTaybaFAROOQAmjadZHANGMeiling張美玲PATOARYMohammedKayesLIULifang劉麗芳
    關(guān)鍵詞:美玲

    CHAUDARY Aneeba, CHUDHARY Tayba, FAROOQ Amjad, ZHANG Meiling(張美玲), PATOARY Mohammed Kayes, LIU Lifang(劉麗芳)*

    1 College of Textiles, Donghua University, Shanghai 201620, China2 Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China3 Department of Chemistry, Zhejiang University, Hangzhou 310027, China

    Abstract: Owing to the increasing energy demands and the environmental constraints, the need for bio-based materials has been on the rise due to their variety of favorable properties like biocompatibility, cost-effectiveness, large specific surface area, high porosity, and non-toxicity. Thermal stability and mechanical strength of aerogels are highly dependent on their micro-porous structures. A three-dimensional structure based on cellulose nanofiber/chitosan (CNF/CS) aerogels was built using two different freezing methodologies, namely random freezing, and unidirectional freezing techniques, by changing mold shapes. The unidirectional aerogels ultimately resulted in high-temperature stability and mechanical strength. The results show that the unidirectional CNF/CS(u-CNF/CS) aerogels contain controlled micro porous orientation relative to random-CNF/CS (r-CNF/CS) aerogels with the disordered porous distribution. The high-temperature stability with an increase of glass transition temperature Tg from 275 ℃ (CNF) to 283 ℃ (CNF/CS), the ultra-low thermal conductivity of 0.030 W/(m ·K), and mechanical robustness of u-CNF/CS aerogels make them quite favorable for practical applications.

    Key words: aerogel; cellulose nanofiber (CNF); chitosan (CS); thermal stability; mechanical robustness

    Introduction

    Increasing thermal insulation demand causes huge energy loss in greenhouse gas emissions. To address this thermal insulation need, many porous materials have been introduced because of their lowest thermal insulation behavior. Mineral wood and polymers with their best thermal conductivity about 0.030-0.040 W/(m ·K) have been commercially popular lately[1]. Vacuum insulation panels contain the lowest thermal insulation about 0.007-0.008 W/(m ·K), but they are costly with poor mechanical stability[1]. Aerogels with the best thermal and mechanical performance are well known in superinsulation fields because of their mesoporosity (≥ 90%) and the lowest density (about 0.1 g/cm3).

    Polysaccharides, as abundantly available renewable carbohydrate polymers, hold abundant characteristics, such as biodegradability, non-toxicity, environment friendliness, and presence of large functional groups for example carboxylic groups and amino groups which help to form polysaccharides derivatives[2-3]. Cellulose nanofiber (CNF) and chitosan (CS) are natural polysaccharides with abundant presence in plants, fungi, and bacteria-containing amorphous and crystalline domains. Polysaccharides are carbohydrates of polymers in which glycosidic bonds are present[4-6].

    Cellulose has gained significant interest in the past years due to holding outstanding properties: renewability, biocompatibility, the lowest density, surface reactivity[7], good thermal properties[8-11], and mechanical characteristics[12]. CNF suspension holds gel-like properties at low concentrations[13]. However, the rheological properties of CNF depend on CNF concentration and pH[14-15]. CS adds strength to the structure when mixed in an aqueous form with another polysaccharide, and gives good structure stability with minimizing structural defects within the geometry[9, 16-17].

    CS is a natural polysaccharide obtained from seafood surpluses like shrimps, lobster, and crab shells. It possesses great physiochemical characteristics and has been applicable in extensive fields of research such as water purification, thermal insulation, and biomedical applications[18-21]. CS can form gels easily based on its active functional groups in the aqueous form[22]. Due to such characteristics, it is used in various areas such as catalysts and drug delivery[23-28].

    Aerogels as an ultra-porous material with the lowest density, large surface area, and mechanically robustness have been famous in recent years with plenty of applications. Composite aerogels based on nanotubes and graphene are used for thermal insulation[29-30]. However, the manufacturing of such aerogels is costly and complex, which restricts their practical usage. Therefore, researches are needed for fabricating cost-effective and low thermal insulated aerogels[31-32]. Many cellulose-based composite aerogels have already been reported for thermal insulation applications[33-34].

    Directional freezing affects the resulted characteristics of aerogels due to microstructure variation in anisotropic aerogels. Such anisotropic aerogels have been mentioned in Refs. [35-40]. Therefore, preparing nano-fibrillated aerogels with excellent performance is still a challenge. CS possesses superior biocompatibility and intrinsic antibacterial characteristics[41-43].

    Herein, a novel approach is ued to fabricate CNF/CS anisotropic aerogels employing random and unidirectional freezing. The structural behavior and its effect on resultant composite aerogels properties are observed. CS acts as a structural robustness material and provides mesoporosity within the geometry, whereas cellulose provides supportive bridges within the layers and results in good formability.

    1 Experiments

    1.1 Materials

    CNFs were provided by Liontec Biopharma Co., Ltd., Tianjin, China. CS was bought from Titan Technology Co., Ltd., Shanghai, China. Formaldehyde was purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Acetic acid and sodium hydroxide were provided by Aladdin Reagent Co., Ltd., Shanghai, China. All chemicals were analytically pure.

    1.2 Preparation of CNF/CS hydrogel

    The CNF solution has been prepared by the addition of deionized water into suspension, which is dispersed at 11 000 r/min using a high-speed homogenizer for 45 min. Meanwhile, CS solutions have been prepared by mixing CS in CNF suspension and glacial acetic acid solution with subsequent magnetic stirring in 80 ℃ heated oil bath for 40 min to get a translucent and uniform suspension. CNF/CS suspensions were further mixed for an additional 30 min to obtain a viscous suspension.

    1.3 Fabrication of aerogels

    The CNF/CS hydrogel was poured into a flat surface mold and directly placed into a liquid nitrogen bath for freezing, following a lyophilizing process for 48 h at -50 ℃ using a freeze dryer at a pressure of 1 Pa. The prepared aerogels were generally named as random-CNF/CS (r-CNF/CS) aerogels.

    The unidirectional freeze-dried aerogels were prepared by transferring suspension into the polytetrafluoroethylene (PTFE) mold while being placed on a copper square bar in the liquid nitrogen-filled bath for 20 min and lyophilized for 60 h. The prepared aerogels were named as unidirectional CNF/CS (u-CNF/CS) aerogels.

    2 Characterization

    2.1 Morphology observation

    The microscopic architecture of CNF/CS-based aerogels was observed by using scanning electron microscopy (SEM) (Hitachi S-4800, Japan).

    2.2 Fourier transform infrared (FTIR) spectroscopy

    The chemical structures of CNF, CS, and CNF/CS aerogels were observed by conducting FTIR testing with spectra range from 4 000 cm-1to 400 cm-1in the transmission mode at the resolution of 4 cm-1.

    2.3 Thermogravimetric analysis (TGA)

    Thermal stability of aerogels was studied by a thermogravimetric analyzer (PerkinElmer Inc., USA) at a nitrogen flow rate of 20 mL/min, a temperature range from 30 ℃ to 600 ℃, and a heating rate of 10 ℃/min.

    2.4 Thermal conductivity

    Thermal conductivityλwas obtained by using a hot disk thermal analyzer (TPS-2500S, Hot Disk AB Co., Sweden) following the transient plane source (TPS) method.

    2.5 Compression testing

    The compression experiments were conducted by using an Instron 5944 universal machine (Instron,USA) with 500 N load cells at a strain rate of 2 mm/min and a strain of 60%.

    3 Results and Discussion

    3.1 Structural characterization

    The crosslinking and hydrogel formation mechanism of CNF/CS aerogels is shown in Fig.1. The random aerogels were prepared by pouring CNF/CS hydrogel in the flat surface plastic mold, and directly frozen in liquid nitrogen as shown in Fig. 1(b). Whereas for u-CNF/CS aerogel, the hydrogel was transferred into a PTFE mold by putting on the iron mold, and frozen. The resultant aerogels contain entirely different micro-structures as shown in Fig.1(c).

    Fig. 1 Mechanism of r-CNF/CS and u-CNF/CS aerogels formation: (a) CNF/CS hydrogel; (b) random and unidirectional freezings; (c) r-CNF/CS and u-CNF/CS aerogels

    The structural morphology of CNF/CS aerogels has been observed by using SEM. It can be seen in Figs. 2(a) and 2(b) that the r-CNF/CS aerogels show similar morphology along axial and radial directions because of random temperature gradient during liquid nitrogen freezing and random size of pores forming within the geometry of aerogels. This structure shows the isotropic behavior along both orientations. However, in u-CNF/CS aerogels, the structural orientation is different along the axial and radial directions as shown in Figs. 2(c) and 2(d). This anisotropic morphology of aerogels is formed because of different temperature gradients along both directions. This structure is suitable for the thermal conductivity of aerogels. Along the radial direction, the passage of heat is slow because of the Knudsen effect, while the thermal conductivity within axial geometry of u-CNF/CS aerogels is much faster because of a favorable lamellar structure.

    Fig. 2 Schematic illustration of CNF/CS aerogels: (a) axial view of r-CNF/CS aerogels; (b) radial view of r-CNF/CS aerogels; (c) axial view of u-CNF/CS aerogels; (d) radial view of u-CNF/CS aerogels

    The addition of CS to the assembly of CNF controls the microstructure alignment and lets the layers be formed in anisotropic aerogels. This microstructure then becomes favorable for heat insulation[31]. CNFs provide fibrous support to the porous assembly, and CS particles add strength to the structure by forming linking bonds within the geometry. With the addition of CS particles to the CNF hydrogel, the structure is changed significantly.

    3.2 FTIR spectra of CNF/CS aerogels

    Figure 3 shows the FTIR spectra of CNF, CS, and CNF/CS aerogels, respectively. CS particles are doped into cellulose with formaldehyde crosslinking, and resulted in characteristic peaks. CNF and CS share the common functional groups because they are both polysaccharides. The stretching vibrations at 3 200 cm-1and 2 893 cm-1conform to —OH and C—H bonds, respectively.The peak at about 3 200 cm-1is stretching vibrations of —OH and —NH. The peak of CS aerogels at 1 500 cm-1is assigned to the amide group. However, in composite aerogels, the new peak at 1 400 cm-1is formed after crosslinking reaction which corresponds to the amide bond formation between formaldehyde and CS. In composite aerogels, the sharp peak at about 1 600 cm-1is evidence of cross-linked aerogels which corresponds to aldehyde group formation. Formaldehyde addition to aerogels develops structural stability and enhances the mechanical strength of final aerogels by providing strengthening units within the micro-orientation of aerogels.

    Fig. 3 FTIR spectra: (a) CNF aerogels; (b) CS aerogels; (c) CNF/CS aerogels

    3.3 Thermal stability of composite aerogels

    The thermal stability of CNF/CS aerogels has been observed from TGA as shown in Fig. 4. The TGA curve of CNF/CS aerogels shows that the weight loss rate is reduced to 90% compared to that of pure CNF and CS aerogels, and the mass retention percentage also improves to 80% in composite aerogels (Fig. 4(b)).

    Fig. 4 Thermal behavior of CS, CNF and CNF/CS aerogels: (a)TGA curve; (b) derivative thermogravimetry (DTG) curve

    The addition of CS to CNF enhances the thermal stability of CNF/CS aerogels and gives a more stable structure by adding bridges and nanopores to the structure. The microstructure of final aerogels contains nano-sheets that restrain the CNF/CS aerogels from combustion at low temperatures of about 275 ℃ by enhancing its glass transition temperatureTgto 283 ℃. As it can be seen in the endothermic histogram of CNF/CS aerogels, the peak increases significantly which shows the increase ofTgof final aerogels.

    The thermal conductivity values of aerogels were collected by using a hot disk apparatus. It was observed that CNF (0.034 W/(m ·K)) and CS (0.037 W/(m ·K)) with their less thermal conductivityλcombined in aerogel form, and resulted with the overall lowestλof composite aerogels (Fig. 5). The u-CNF/CS aerogels contain lowerλ(0.030 W/(m ·K)) as compared to r-CNF/CS aerogels (0.036 W/(m ·K)), because of micro-porous structural variation. The random pore orientation in randomly frozen aerogels results in a faster flow of heat through the assembly due to the fast heat conduction rate, as compared to the aligned lamellar structure of unidirectional frozen aerogels. The lamella in u-CNF/CS aerogels blocks heat conduction to pass through the geometry which results in the lowest thermal conductivity of the specific aerogels. It shows the thermal behavior of aerogels which makes CNF/CS aerogels promising in thermal insulation and flame retardancy applications.

    Fig. 5 Thermal conductivity of CNF, CS, r-CNF/CS and u-CNF/CS aerogels

    3.4 Mechanical properties of CNF/CS aerogels

    The stress-strain curves of CNF, CS and CNF/CS aerogels were collected at a strain of 60% as shown in Fig. 6. The stress-strain behavior of aerogels consists of three stages: the elastic stage at a low strain ratio, yield point, and final densification region. For r-CNF/CS aerogels as shown in Fig. 6(c), the curve is non-linear in the elastic region. However, there is an apparent linear regime in u-CNF/CS as shown in Fig. 6(d). When the stress is released, the strain reaches zero gradually, and the hysteresis loop area of unidirectional composite aerogels gets less relative to pure aerogels as shown in Figs. 6(a) and 6(b). The fast recovery rate of u-CNF/CS aerogels specifies their compressive strength and usability in stress sensors, shape memory alloys,etc.

    Fig. 6 Stress-strain curves: (a) CNF aerogels; (b) CS aerogels; (c) r-CNF/CS aerogels; (d) u-CNF/CS aerogels

    4 Conclusions

    In summary, the CNF/CS aerogels have been successfully fabricated by employing two different freeze-drying techniques: random freezing and unidirectional freezing. Aerogels behave differently on different microstructures. CS addition to CNF hydrogel is able to form the thermally resistant and mechanically robust aerogels. FTIR spectra show that CS can form hydrogen bonds with cellulose on the addition of formaldehyde, and reduce bending vibrations of —OH. TGA shows good thermal stability of CNF/CS aerogels because of strong intermolecular forces, andTgof CNF/CS aerogels increases to 283 ℃. The thermal conductivity test shows that the u-CNF/CS aerogels exhibit ultra-low thermal conductivity of around 0.030 W/(m ·K) compared to r-CNF/CS aerogels withλof 0.036 W/(m ·K). Whereas, the stress-strain curves display that u-CNF/CS aerogels are compressible because of the layered structure, and able to regain their original position on the removal of strain. The temperature stability, low thermal conductivity, and better mechanical strength make u-CNF/CS aerogels a safe choice for heat-resistant applications such as automobiles, aerospace, building, extreme environmental conditions, stress sensors, and shape memory alloys.

    猜你喜歡
    美玲
    長大以后做什么
    穿鐵馬甲的梁思成
    做人與處世(2022年2期)2022-05-26 22:34:53
    霜 降 蘇美玲
    My Childhood
    春天的早晨
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    我·小鳥·鈴鐺
    趙美玲
    春天的早晨
    777久久人妻少妇嫩草av网站| 校园春色视频在线观看| 久久久久精品国产欧美久久久| 国产成人免费无遮挡视频| 国产精品一区二区精品视频观看| av在线播放免费不卡| 国产av精品麻豆| 制服诱惑二区| 麻豆成人av在线观看| 精品一区二区三区视频在线观看免费 | 久久 成人 亚洲| 国产精品1区2区在线观看.| av天堂在线播放| 99在线人妻在线中文字幕| 国产精品偷伦视频观看了| svipshipincom国产片| 在线十欧美十亚洲十日本专区| 国产野战对白在线观看| 国产伦人伦偷精品视频| 首页视频小说图片口味搜索| 欧美精品啪啪一区二区三区| 天天影视国产精品| 国产成人精品无人区| 首页视频小说图片口味搜索| 色老头精品视频在线观看| 亚洲国产精品999在线| 午夜福利在线免费观看网站| 日本一区二区免费在线视频| 亚洲av片天天在线观看| 91字幕亚洲| 99在线人妻在线中文字幕| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 88av欧美| 久久精品亚洲av国产电影网| 国产精品一区二区免费欧美| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩精品久久久久久密| 久9热在线精品视频| 亚洲欧美日韩高清在线视频| 麻豆久久精品国产亚洲av | 亚洲精品国产色婷婷电影| 黄色怎么调成土黄色| 亚洲中文日韩欧美视频| 国产精品99久久99久久久不卡| 日韩精品中文字幕看吧| 久热爱精品视频在线9| 亚洲精品国产区一区二| 天天躁夜夜躁狠狠躁躁| 亚洲专区中文字幕在线| 无遮挡黄片免费观看| 两个人免费观看高清视频| 亚洲男人天堂网一区| 嫩草影院精品99| cao死你这个sao货| 国产熟女午夜一区二区三区| 亚洲欧美激情综合另类| 黄色丝袜av网址大全| 亚洲国产欧美网| www.自偷自拍.com| 成人亚洲精品一区在线观看| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| 久久人人精品亚洲av| av在线天堂中文字幕 | 午夜激情av网站| 好男人电影高清在线观看| 成人免费观看视频高清| 亚洲第一欧美日韩一区二区三区| 侵犯人妻中文字幕一二三四区| 国产精品久久久人人做人人爽| 亚洲国产欧美一区二区综合| 黄色a级毛片大全视频| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区三| av在线天堂中文字幕 | 国产精品乱码一区二三区的特点 | 国产精品香港三级国产av潘金莲| 国产精品偷伦视频观看了| 人人妻人人添人人爽欧美一区卜| 一进一出抽搐gif免费好疼 | av免费在线观看网站| 80岁老熟妇乱子伦牲交| 男人的好看免费观看在线视频 | 极品教师在线免费播放| 欧美另类亚洲清纯唯美| 国产无遮挡羞羞视频在线观看| 国产精品二区激情视频| 99久久精品国产亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 国产野战对白在线观看| 视频在线观看一区二区三区| 精品国内亚洲2022精品成人| 久久人人精品亚洲av| 亚洲国产精品一区二区三区在线| 久久久久精品国产欧美久久久| 热re99久久精品国产66热6| 十八禁网站免费在线| 别揉我奶头~嗯~啊~动态视频| 丁香六月欧美| 99re在线观看精品视频| 久久九九热精品免费| 人妻丰满熟妇av一区二区三区| 欧美国产精品va在线观看不卡| 无限看片的www在线观看| 午夜亚洲福利在线播放| 高清黄色对白视频在线免费看| 性少妇av在线| 老司机午夜十八禁免费视频| 熟女少妇亚洲综合色aaa.| 日韩精品中文字幕看吧| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 免费日韩欧美在线观看| 免费在线观看完整版高清| 真人一进一出gif抽搐免费| 日日摸夜夜添夜夜添小说| 国产精品影院久久| 欧美激情高清一区二区三区| 午夜成年电影在线免费观看| 老汉色∧v一级毛片| 美女高潮到喷水免费观看| 精品久久久久久电影网| 国产精品1区2区在线观看.| 午夜福利,免费看| av福利片在线| a级毛片黄视频| 国产一卡二卡三卡精品| 免费在线观看亚洲国产| www日本在线高清视频| 国产高清激情床上av| 在线观看免费日韩欧美大片| 好看av亚洲va欧美ⅴa在| 啦啦啦免费观看视频1| 日韩高清综合在线| 欧美乱码精品一区二区三区| 国产91精品成人一区二区三区| 麻豆国产av国片精品| 精品卡一卡二卡四卡免费| 国产一区在线观看成人免费| 十八禁人妻一区二区| 窝窝影院91人妻| 村上凉子中文字幕在线| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| av欧美777| 中文欧美无线码| 男男h啪啪无遮挡| 精品一区二区三卡| 国产精品成人在线| 老司机深夜福利视频在线观看| 国产主播在线观看一区二区| 国产成人av教育| 亚洲va日本ⅴa欧美va伊人久久| 80岁老熟妇乱子伦牲交| 桃色一区二区三区在线观看| 午夜两性在线视频| 亚洲欧美一区二区三区黑人| 看免费av毛片| 一区福利在线观看| 国产精品秋霞免费鲁丝片| 色老头精品视频在线观看| 久热这里只有精品99| 黑丝袜美女国产一区| 青草久久国产| 亚洲av片天天在线观看| 久久人人97超碰香蕉20202| 国产精品国产av在线观看| 午夜福利在线免费观看网站| 男女之事视频高清在线观看| 后天国语完整版免费观看| 久久精品亚洲av国产电影网| aaaaa片日本免费| www.熟女人妻精品国产| 无限看片的www在线观看| 一进一出抽搐gif免费好疼 | 黄片大片在线免费观看| 高清av免费在线| 一区二区三区国产精品乱码| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 久久久国产精品麻豆| 久久久国产成人免费| 亚洲精品av麻豆狂野| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久久久久久大奶| 女人爽到高潮嗷嗷叫在线视频| 另类亚洲欧美激情| 成人国语在线视频| 一进一出抽搐gif免费好疼 | 欧美一区二区精品小视频在线| 99热只有精品国产| 国产成人精品久久二区二区91| 操出白浆在线播放| 制服人妻中文乱码| 亚洲国产欧美网| 日韩中文字幕欧美一区二区| 黄色女人牲交| 国产单亲对白刺激| 久久人人97超碰香蕉20202| 夜夜爽天天搞| 咕卡用的链子| 免费av毛片视频| 三级毛片av免费| 欧美精品亚洲一区二区| av在线天堂中文字幕 | 亚洲国产精品999在线| 成人手机av| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美精品永久| 国产高清视频在线播放一区| 啪啪无遮挡十八禁网站| 国产成人精品久久二区二区免费| 国产一卡二卡三卡精品| 一级片'在线观看视频| 免费在线观看影片大全网站| 一边摸一边抽搐一进一小说| 免费日韩欧美在线观看| 国产午夜精品久久久久久| av网站在线播放免费| ponron亚洲| 欧美在线一区亚洲| 午夜福利影视在线免费观看| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美98| 国产精品亚洲一级av第二区| а√天堂www在线а√下载| 久久国产精品人妻蜜桃| 在线观看一区二区三区| 亚洲免费av在线视频| 在线观看免费视频日本深夜| 日韩av在线大香蕉| 91在线观看av| 啦啦啦 在线观看视频| 熟女少妇亚洲综合色aaa.| 天天躁夜夜躁狠狠躁躁| 国产av又大| 亚洲国产精品合色在线| 黑丝袜美女国产一区| 丰满迷人的少妇在线观看| 成人三级黄色视频| av片东京热男人的天堂| 男人舔女人的私密视频| 国产色视频综合| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 欧美丝袜亚洲另类 | 日韩欧美三级三区| 久久草成人影院| ponron亚洲| 一级,二级,三级黄色视频| 91在线观看av| 视频区欧美日本亚洲| 最新美女视频免费是黄的| 午夜影院日韩av| 一区在线观看完整版| 老熟妇乱子伦视频在线观看| 天天添夜夜摸| 黄色毛片三级朝国网站| 长腿黑丝高跟| 精品一区二区三区av网在线观看| 国产精品国产av在线观看| 国产单亲对白刺激| 国产亚洲精品第一综合不卡| 很黄的视频免费| 日韩中文字幕欧美一区二区| 国产成人精品无人区| 精品卡一卡二卡四卡免费| 男女床上黄色一级片免费看| 久久人妻av系列| 美女大奶头视频| bbb黄色大片| 久久精品91蜜桃| 国产精品久久久久久人妻精品电影| 男男h啪啪无遮挡| 88av欧美| 久久热在线av| 亚洲视频免费观看视频| 夫妻午夜视频| 国产不卡一卡二| 精品国产一区二区久久| 国产一区二区三区视频了| 亚洲精华国产精华精| 精品高清国产在线一区| 女性生殖器流出的白浆| 日日夜夜操网爽| 国产精品国产av在线观看| 精品久久蜜臀av无| 亚洲成人精品中文字幕电影 | 国产99白浆流出| 亚洲五月天丁香| 国产成+人综合+亚洲专区| 日韩欧美三级三区| 久久热在线av| 免费在线观看完整版高清| 午夜久久久在线观看| 久久人人精品亚洲av| 国产欧美日韩综合在线一区二区| 欧美一区二区精品小视频在线| 在线观看免费日韩欧美大片| 国产精品1区2区在线观看.| 精品免费久久久久久久清纯| 日韩国内少妇激情av| 亚洲狠狠婷婷综合久久图片| 看免费av毛片| 在线天堂中文资源库| 9色porny在线观看| 欧美黑人欧美精品刺激| 丰满迷人的少妇在线观看| 精品人妻在线不人妻| 国产成人欧美在线观看| av天堂在线播放| 女警被强在线播放| 日韩免费av在线播放| 日韩高清综合在线| 色综合婷婷激情| 精品一品国产午夜福利视频| 十八禁人妻一区二区| 免费观看精品视频网站| 韩国精品一区二区三区| av福利片在线| 欧美一区二区精品小视频在线| 成人手机av| 久久香蕉精品热| 国产精品久久久久久人妻精品电影| 欧美人与性动交α欧美软件| 国产亚洲精品久久久久5区| 久久久久久久久中文| 亚洲成人国产一区在线观看| 女警被强在线播放| 国产精品爽爽va在线观看网站 | 国产精品一区二区免费欧美| 日本免费一区二区三区高清不卡 | 午夜福利在线观看吧| 国产99久久九九免费精品| 日韩成人在线观看一区二区三区| 又大又爽又粗| 在线观看舔阴道视频| 久久天堂一区二区三区四区| 很黄的视频免费| 久久香蕉精品热| 日韩欧美免费精品| 精品第一国产精品| 亚洲精品一区av在线观看| 中国美女看黄片| 午夜激情av网站| 久久精品人人爽人人爽视色| 最近最新中文字幕大全电影3 | 成人影院久久| 欧美午夜高清在线| 欧美大码av| 精品国产美女av久久久久小说| 日本三级黄在线观看| 国产又色又爽无遮挡免费看| 日本 av在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲自拍偷在线| aaaaa片日本免费| 久久久久亚洲av毛片大全| 国产精品美女特级片免费视频播放器 | 97碰自拍视频| 女人精品久久久久毛片| 国产精品久久久av美女十八| 91麻豆av在线| 精品一品国产午夜福利视频| 天堂影院成人在线观看| 99精品欧美一区二区三区四区| 久久久久久久久免费视频了| 成年人免费黄色播放视频| av国产精品久久久久影院| 国产黄a三级三级三级人| 看免费av毛片| 淫秽高清视频在线观看| 国产成+人综合+亚洲专区| 国内毛片毛片毛片毛片毛片| 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 亚洲 欧美 日韩 在线 免费| 一级作爱视频免费观看| 伊人久久大香线蕉亚洲五| 18禁黄网站禁片午夜丰满| 韩国精品一区二区三区| 首页视频小说图片口味搜索| 国产精品香港三级国产av潘金莲| 国产激情久久老熟女| av欧美777| 夫妻午夜视频| 岛国视频午夜一区免费看| 50天的宝宝边吃奶边哭怎么回事| 五月开心婷婷网| 在线国产一区二区在线| 丝袜美腿诱惑在线| 男男h啪啪无遮挡| 亚洲激情在线av| 精品日产1卡2卡| 一级a爱片免费观看的视频| 真人一进一出gif抽搐免费| 国产成人欧美| 午夜精品久久久久久毛片777| 久久久久久免费高清国产稀缺| 国产av又大| 国产精品综合久久久久久久免费 | bbb黄色大片| 99久久久亚洲精品蜜臀av| 国产熟女午夜一区二区三区| 亚洲精品在线观看二区| 色综合欧美亚洲国产小说| 男女午夜视频在线观看| 色综合欧美亚洲国产小说| 日本 av在线| 国产精品一区二区在线不卡| 亚洲熟妇熟女久久| 搡老熟女国产l中国老女人| 久久人妻熟女aⅴ| 在线十欧美十亚洲十日本专区| 日韩av在线大香蕉| 亚洲三区欧美一区| 69精品国产乱码久久久| 99久久人妻综合| 国产区一区二久久| 久久亚洲精品不卡| 国产精品一区二区免费欧美| 欧美日韩中文字幕国产精品一区二区三区 | 校园春色视频在线观看| 宅男免费午夜| av国产精品久久久久影院| 久久精品人人爽人人爽视色| 亚洲va日本ⅴa欧美va伊人久久| 精品福利永久在线观看| 久久香蕉精品热| 国产熟女午夜一区二区三区| 国产精品影院久久| 欧美另类亚洲清纯唯美| 欧美黄色片欧美黄色片| 亚洲中文日韩欧美视频| 欧美成人性av电影在线观看| 一级黄色大片毛片| 亚洲人成电影免费在线| 国产野战对白在线观看| 久久伊人香网站| 黄片小视频在线播放| 久久青草综合色| 国产免费现黄频在线看| 99国产精品一区二区三区| 日韩人妻精品一区2区三区| 一边摸一边做爽爽视频免费| 19禁男女啪啪无遮挡网站| 国产成人免费无遮挡视频| 亚洲九九香蕉| 亚洲色图av天堂| 母亲3免费完整高清在线观看| 日韩免费高清中文字幕av| 久久久久久久午夜电影 | 免费av毛片视频| 老司机福利观看| 久久欧美精品欧美久久欧美| 成年人黄色毛片网站| 美女国产高潮福利片在线看| 亚洲狠狠婷婷综合久久图片| 日日夜夜操网爽| 国产精品二区激情视频| 国产人伦9x9x在线观看| 午夜福利欧美成人| 国产单亲对白刺激| 日本五十路高清| bbb黄色大片| 亚洲成人久久性| 久久午夜亚洲精品久久| 午夜两性在线视频| 亚洲精华国产精华精| www日本在线高清视频| 91av网站免费观看| 美国免费a级毛片| 成在线人永久免费视频| 一级毛片高清免费大全| 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 老汉色av国产亚洲站长工具| av电影中文网址| 亚洲精华国产精华精| 亚洲成人久久性| 亚洲一区高清亚洲精品| 一进一出好大好爽视频| 丁香六月欧美| 亚洲欧美一区二区三区黑人| 成人特级黄色片久久久久久久| 视频区图区小说| 免费少妇av软件| 国产日韩一区二区三区精品不卡| 午夜福利免费观看在线| 老熟妇乱子伦视频在线观看| 波多野结衣一区麻豆| 亚洲成人免费av在线播放| 伦理电影免费视频| 欧美一区二区精品小视频在线| 少妇的丰满在线观看| 宅男免费午夜| 久久精品国产综合久久久| 久久久久久久久久久久大奶| 女人被躁到高潮嗷嗷叫费观| 久久草成人影院| 午夜福利,免费看| 欧美日韩国产mv在线观看视频| 夜夜爽天天搞| 国产成人欧美| 欧美一级毛片孕妇| 99精品欧美一区二区三区四区| 午夜91福利影院| 一级片免费观看大全| 国产精品综合久久久久久久免费 | 国产高清国产精品国产三级| 成人免费观看视频高清| 真人做人爱边吃奶动态| 99精品欧美一区二区三区四区| 99精品在免费线老司机午夜| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看 | 天堂俺去俺来也www色官网| 99香蕉大伊视频| 美女大奶头视频| 久久人人爽av亚洲精品天堂| 俄罗斯特黄特色一大片| 又紧又爽又黄一区二区| 无人区码免费观看不卡| av欧美777| 丁香六月欧美| 久久久久久久久久久久大奶| 91字幕亚洲| 日本三级黄在线观看| 国产精品日韩av在线免费观看 | 国产av一区二区精品久久| 国产精品一区二区免费欧美| 免费观看人在逋| 激情视频va一区二区三区| 99久久精品国产亚洲精品| 日韩欧美一区二区三区在线观看| 亚洲国产欧美网| 久久久久国内视频| 免费看a级黄色片| av天堂久久9| 黄色视频,在线免费观看| 国产亚洲av高清不卡| 97超级碰碰碰精品色视频在线观看| 久久精品国产清高在天天线| 91在线观看av| 国产精品成人在线| 免费少妇av软件| 精品国内亚洲2022精品成人| а√天堂www在线а√下载| 久久久久久免费高清国产稀缺| 中文字幕色久视频| 天堂动漫精品| 岛国在线观看网站| 国产极品粉嫩免费观看在线| 少妇被粗大的猛进出69影院| 韩国av一区二区三区四区| 99riav亚洲国产免费| av天堂在线播放| 久久热在线av| 狠狠狠狠99中文字幕| 免费在线观看影片大全网站| 亚洲精品国产一区二区精华液| 久久久久久久午夜电影 | 视频区图区小说| 他把我摸到了高潮在线观看| 一本综合久久免费| 欧美成狂野欧美在线观看| 美女午夜性视频免费| 国产精品野战在线观看 | 好男人电影高清在线观看| 黄色丝袜av网址大全| 久久中文字幕一级| 精品一区二区三区视频在线观看免费 | 成人永久免费在线观看视频| 国产色视频综合| 精品一区二区三卡| 热re99久久国产66热| 超色免费av| 欧美av亚洲av综合av国产av| 可以在线观看毛片的网站| 午夜福利在线观看吧| 免费看a级黄色片| 亚洲欧美日韩高清在线视频| 啪啪无遮挡十八禁网站| 国产男靠女视频免费网站| 50天的宝宝边吃奶边哭怎么回事| 日韩av在线大香蕉| 午夜免费成人在线视频| 国产成人av激情在线播放| 欧美成人性av电影在线观看| 成人国产一区最新在线观看| 中文字幕最新亚洲高清| 精品免费久久久久久久清纯| 男人舔女人的私密视频| 国产日韩一区二区三区精品不卡| 欧美成人性av电影在线观看| 黑人巨大精品欧美一区二区蜜桃| 欧美久久黑人一区二区| 亚洲七黄色美女视频| 天天躁夜夜躁狠狠躁躁| 久久国产精品人妻蜜桃| 69av精品久久久久久| 精品人妻1区二区| 看免费av毛片| 视频在线观看一区二区三区| 一级a爱片免费观看的视频| 男男h啪啪无遮挡| 欧美成狂野欧美在线观看| 久久精品aⅴ一区二区三区四区| 欧美乱码精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区日韩欧美中文字幕| 日韩免费高清中文字幕av|