• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual Variational Generation Based ResNeSt for Near Infrared-Visible Face Recognition

    2022-05-09 06:48:14DINGXiangwu丁祥武LIUChaoQINYanxia秦彥霞

    DING Xiangwu(丁祥武), LIU Chao(劉 超), QIN Yanxia(秦彥霞)

    College of Computer Science and Technology, Donghua University, Shanghai 201620, China

    Abstract: Near infrared-visible (NIR-VIS) face recognition is to match an NIR face image to a VIS image. The main challenges of NIR-VIS face recognition are the gap caused by cross-modality and the lack of sufficient paired NIR-VIS face images to train models. This paper focuses on the generation of paired NIR-VIS face images and proposes a dual variational generator based on ResNeSt (RS-DVG). RS-DVG can generate a large number of paired NIR-VIS face images from noise, and these generated NIR-VIS face images can be used as the training set together with the real NIR-VIS face images. In addition, a triplet loss function is introduced and a novel triplet selection method is proposed specifically for the training of the current face recognition model, which maximizes the inter-class distance and minimizes the intra-class distance in the input face images. The method proposed in this paper was evaluated on the datasets CASIA NIR-VIS 2.0 and BUAA-VisNir, and relatively good results were obtained.

    Key words: near infrared-visible face recognition; face image generation; ResNeSt; triplet loss function; attention mechanism

    Introduction

    Face recognition has always been a hot topic in computer vision. Although conventional face recognition is relatively mature, it is sensitive to illumination environment and cannot properly perform face recognition in low light or dark environment[1]. In contrast, near infrared (NIR) imaging can capture high-quality face images in low light or even dark environment, so the robustness of NIR imaging to light can largely compensate for the shortcomings of conventional face recognition.

    Near infrared-visible (NIR-VIS) face recognition is a branch of heterogeneous face recognition (HFR), and current NIR-VIS face recognition faces two major challenges. (1) Cross-modality gap: NIR face images are captured under infrared imaging device and VIS face images are captured under visible imaging sensor. And this difference leads to a significant gap between face images from the same identity in different modalities. (2) Lack of sufficient paired NIR-VIS face images: one of the reasons that traditional face recognition is relatively well developed is a large number of VIS face images available. However, the size of the currently available NIR-VIS face images is relatively small, and using small-scale datasets to train the HFR is prone to overfitting. Obtaining pairs of NIR-VIS face images is a time-consuming and expensive task.

    The current NIR-VIS face recognition methods can be mainly categorized into three classes[1]: invariant feature learning, subspace learning, and image synthesis. Invariant feature learning is used to learn identity-related features only between NIR face images and VIS face images, such as the deep transfer convolutional neural network for NIR-VIS face recognition proposed by Liuetal.[2], which learns invariant features on NIR-VIS face images by fine-tuning a model pre-trained with VIS face images. Yangetal.[3]combined adversarial learning to integrate modality-level and class-level alignments into a quadratic framework. Modality-level alignment in the framework is used to eliminate modality-related information and retain modality-invariant features, and class-level alignment is used to minimize the intra-class distance and to maximize the inter-class distance. The subspace learning approach focuses on learning identity discrimination features by mapping NIR face image features and VIS face image features into a common subspace. For example, Heetal.[4]used Wasserstein distance to minimize the feature distance between the NIR face image and VIS face image of the same person in a common subspace. Huangetal.[5]proposed a discriminative spectrum algorithm that minimized the feature distance between NIR face image and VIS face image from the same person in the subspace and maximized the feature distance between NIR face image and VIS face image of different identities. The image synthesis method is to synthesize cross-modality face images from the source domain to the target domain, thus transforming a cross-modality recognition problem into a single modality recognition problem. For example, a method for reconstructing VIS face images in the NIR modality is proposed by Juefei-Xuetal.[6]. Heetal.[7]used an end-to-end depth framework based on generative adversarial networks (GAN)[8]to convert NIR face images into VIS face images. Fuetal.[9]proposed an image synthesis method based on dual variational generation (DVG) from the perspective of expanding the training set, which could generate a large number of paired NIR-VIS face images from noise, thus effectively increasing the size of the training set.

    To tackle the challenges in NIR-VIS face recognition, a DVG based on ResNeSt[10](RS-DVG) is proposed in this paper, which adopts the idea of DVG[9]and focuses on generating paired NIR-VIS face images. RS-DVG can generate a large number of paired NIR-VIS face images from noise, and is only concerned with the identity consistency between the generated NIR-VIS face images in pairs. Moreover, a triplet loss function which maximizes the inter-class distance and minimizes the intra-class distance in the input face images is introduced, and a novel triplet selection method is proposed specifically for the training of NIR-VIS face recognition model.

    1 Proposed Method

    This section is a detailed introduction to the RS-DVG proposed in this paper. Firstly, the ResNeSt used in this paper will be introduced, followed by a detailed introduction to the RS-DVG and its associated loss function, and finally the RS-DVG based NIR-VIS face recognition and the corresponding loss function will be introduced.

    1.1 ResNeSt

    ResNet[11]is a widely used convolutional neural network, which is proposed to reduce the difficulty of training deep neural networks, but ResNet has a limited receptive field size and lacks interaction between cross-feature map channels. ResNeSt[10]compensates for the shortcomings of ResNet by introducing a split attention module. The ResNeSt and ResNet structures are shown in Fig. 1. The Conv in Fig. 1 indicates the convolutional layer in the network.

    Fig. 1 Structures: (a) ResNet; (b) ResNeSt; (c) split attention unit

    ResNet improves the efficiency of information propagation in the network by adding a skip connection between multiple convolutional layers, as shown in Fig. 1(a), but it does not take into account the interaction between input feature map channels. ResNeSt introduces a split-attention module based on ResNet, as shown in Fig. 1(b). ResNeSt splits the input feature map intoKcardinal groups along the channel dimension and splits each cardinal group intoRsplits. So the total number of feature splits isG=K×R. The intermediate representation of a split can be defined asUi=i(X), whereidenotes the transformations performed on the inputXin spliti,i∈{1, 2,…,G}. The representation of each cardinal group can be defined ask∈{1, 2,…,K},C′=C/K, andH,W, andCdenote the feature map size of the input of ResNeSt block. Besides, the global average pooling operation across the spatial dimensionsk∈RC′is used to obtain the global contextual representation information of the statistical information of each channel, for example, the formula for thec-th component can be expressed as(i,j).

    (1)

    1.2 Dual variational generation based ResNeSt

    The RS-DVG structure proposed in this paper is the same as DVG[9], which consists of two encodersENandEV, and a decoderDI, as shown in Fig. 2.Fipis the face image feature extractor, as seen in section 1.3. The encoder and decoder network structure in DVG is based on ResNet, but the encoder and decoder network structure in RS-DVG is based on ResNeSt, as shown in Fig. 3, where Fig. 3(a) represents the network structure ofENandEV, and Fig. 3(b) represents the network structure ofDI.

    Fig. 2 Structure of RS-DVG

    Fig. 3 Structures in RS-DVG: (a) encoder; (b) decoder

    The two encoders in RS-DVG are used to map the input NIR face imagexNand VIS face imagexVto the distributionsq?N(zN|xN) andq?V(zV|xV), respectively, where ?Nand ?Vare the parameters learned by the encoder. The encoder is trained so that the encoding resultsq?N(zN|xN) andq?V(zV|xV) can sufficiently approximate the distributionp(zi) corresponding to the latent variablezi, wherei∈{N,V}. In this paper, the distributionsp(zN) andp(zV) are set to be multivariate standard Gaussian distributions. The meanμiand standard deviationσi(i∈{N,V}) can be obtained from the output of the encoder. Since the backpropagation operation cannot be performed directly onμiandσi, to train the decoder, a reparameterization operation is adoped in this paper:zi=μi+σi⊙, wherei∈{N,V},is the standard Gaussian distribution sampling value, and ⊙ in this paper is the Hadamard product. The decoder is used to reconstruct the joint distributionpθ(xN,xV|zI) of the NIR face image and the VIS face image, wherezIis the result of combiningzNandzVobtained by sampling fromq?N(zNxN) andq?V(zVxV), respectively, andθdenotes the parameter learned by the decoder.

    1.3 Loss function in RS-DVG

    This subsection provides a detailed description of the loss functions involved in the training process of the RS-DVG.

    For training the encoder, Eq. (2) is used as

    (2)

    whereDKLdenotes the KL divergence, and both the distributionsp(zN) andp(zV) are multivariate standard Gaussian distributions. To enable the decoder to reconstruct the face imagesxNandxV, the following equation is used

    (3)

    wherepθ(xN,xV|zI) is the joint distribution fitted by the decoder, andq?V(zV|xV)∪q?N(zN|xN)denotes the joint distribution of the distributions fitted by the two encoders, separately.

    (4)

    (5)

    (6)

    whereλ1andλ2are the trade-off parameters.

    1.4 NIR-VIS face recognition based RS-DVG

    This paper uses LightCNN-29[13]as the feature extractorF, as shown in Fig. 4, whereDIis the decoder in the trained RS-DVG.

    Fig. 4 Structure of NIR-VIS face recognition

    The structure ofFis shown in Fig. 5, where MFM is the activation function max-feature-map which is an extension of the maxout activation function. Maxout uses enough hidden neurons to be infinitely close to a convex function, but MFM makes the convolutional neural network lighter and more robust by suppressing a small number of neurons.

    Fig. 5 Structure of LightCNN-29

    (7)

    1.5 Loss function in NIR-VIS face recognition

    In this paper, real data and generated data constitute the training set for NIR-VIS face recognition. What the generated data and the real data have in common is the identity consistency between every paired NIR-VIS face images, while the difference is that the generated face images do not belong to a specific category, while the real face images have their corresponding identity categories. Therefore, different loss functions were used in the training for both generated and real data, which were described in detail in this subsection.

    (8)

    (9)

    (10)

    whereα1is the trade-off parameters.

    2 Experiments Evaluation

    In this section, some experiments will be carried out on two challenging datasets, including CASIA NIR-VIS 2.0[14]and BUAA-VisNir[15], to illustrate the effectiveness of RS_DVG framework in paired NIR-VIS face images generation. Then, the accuracy of RS_DVG’s NIR-VIS is evaluated against state-of-the-art heterogeneous face recognition on these datasets.

    2.1 Datasets and protocol

    The total number of the subjects in CASIA NIR-VIS 2.0 dataset is 725. Each subject has 1-22 VIS and 5-50 NIR face images. This training follows the View2[14]protocol and includes tenfold cross-validation, where the training set includes nearly 6 100 NIR face images and 2 500 VIS face images from about 360 identities, and the testing set contains 358 VIS face images and 6 000 NIR face images from 358 identities. There was no intersection between training and testing sets. The final evaluation metrics were Rank-1 accuracy and verification rate at a false acceptance rate of 0.1%(i.e.,VR@FAR=0.1%).

    The BUAA-VisNir dataset consists of NIR face images and VIS face images from 150 identities. The training set consists of approximately 1 200 face images from 50 identities, and the test set is approximately 1 300 face images from the remaining 100 identities. The test was conducted using NIR face images to match VIS face images. The final evaluation metrics were Rank-1 accuracy,VR@FAR=1.0%, andVR@FAR=0.1%, respectively.

    2.2 Experimental settings

    The backbone for the encoder and decoder in RS-DVG is ResNeSt, with a parameterKof 2 and a parameterRof 1. The feature extractor used in RS-DVG is LightCNN-29[13], pre-trained on the dataset MS-Celeb-1M[16], with an optimizer Adam and an initial learning rate of 2×10-4. The NIR-VIS face recognition backbone is LightCNN-29 with a stochastic gradient descent optimizer and an initial learning rate of 10-3, which decreases to 5×10-4as the model is trained.

    2.3 Experimental results

    2.3.1 Datageneration

    For experimental comparison, the VAE[17]was trained with CASIA NIR-VIS 2.0 dataset. Samples drawn from it after training are shown in Fig. 6(a). The proposed RS-DVG was trained with CASIA NIR-VIS 2.0 dataset, and then 100 000 paired NIR-VIS face images were generated by it. Generated samples(128×128) are shown in Fig. 6(b). With BUAA-VisNir dataset, RS-DVG was trained, and also generated 100 000 paired NIR-VIS face images. Part samples are shown in Fig. 6(c).

    Fig. 6 NIR-VIS face images generated from: (a) VAE trained with CASIA NIR-VIS 2.0 dataset; (b) RS-DVG trained with CASIA NIR-VIS 2.0 dataset; (c) RS-DVG trained with BUAA-VisNir dataset(the first row shows the NIR face image and the second row shows the corresponding VIS face image)

    These experiments show that RS-DVG outperforms its competitors, especially on CASIA NIR-VIS 2.0 dataset. RS-DVG generates new paired images with clear outline, and abundant intraclass diversity (e.g., the pose and the expression).

    2.3.2 NIR-VISfacerecognition

    The recognition performance of our proposed RS-DVG is demonstrated in this section on two heterogeneous face recognition datasets. The performance of state-of-the-art methods, such as transfer NIR-VIS heterogeneous face recognition network (TRIVET)[2], Wasserstein CNN (W-CNN)[4], invariant deep representation (IDR)[18], coupled deep learning (CDL)[19], disentangled variational representation (DVR)[20], and DVG is compared in Table 1.

    Table 1 shows that on CASIA NIR-VIS 2.0 dataset, RS-DVG achieves 99.9% and 99.8% recognition rates in the Rank-1 andVR@FAR=0.1%, respectively. And compared to DVG, it improves Rank-1 accuracy from 99.8% to 99.9%. On BUAA-VisNir dataset, RS-DVG also achieves the highest Rank-1 accuracy. Compared to DVG, RS-DVG improvesVR@FAR=0.1% from 97.3% to 97.5% and improvesVR@FAR=1% from 98.5% to 98.6%.

    Table 1 Experimental results of NIR-VIS face recognition

    3 Conclusions

    In this paper, a dual variational generator based ResNeSt is proposed, which can generate a large amount of pairwise heterogeneous data from noise, which can effectively expand the training set size of heterogeneous face recognition. A triplet loss function is introduced and a novel triplet selection method is proposed specifically for the training of the current heterogeneous face recognition, which maximizes the inter-class distance and minimizes the intra-class distance in the input face images. The experimental results on two datasets demonstrate the effectiveness of the method proposed in this paper.

    国产精品亚洲一级av第二区| 美女大奶头视频| 国产精品影院久久| 成人三级黄色视频| 国产欧美日韩精品亚洲av| 午夜视频精品福利| 亚洲国产精品sss在线观看| 搡老岳熟女国产| 国产真人三级小视频在线观看| 国产蜜桃级精品一区二区三区| 国产精品九九99| 男女之事视频高清在线观看| 亚洲成av人片免费观看| www国产在线视频色| 91麻豆av在线| 日韩高清综合在线| 国产精品美女特级片免费视频播放器 | 国产高清有码在线观看视频 | 国产午夜精品论理片| 曰老女人黄片| 亚洲 国产 在线| 国产又色又爽无遮挡免费看| 亚洲av日韩精品久久久久久密| 日本a在线网址| 桃红色精品国产亚洲av| 亚洲免费av在线视频| 亚洲第一欧美日韩一区二区三区| 成人18禁高潮啪啪吃奶动态图| 少妇熟女aⅴ在线视频| 999久久久精品免费观看国产| av天堂在线播放| 国产av一区二区精品久久| 亚洲精品国产精品久久久不卡| 18禁美女被吸乳视频| 高清毛片免费观看视频网站| 久久草成人影院| 黑人欧美特级aaaaaa片| 国产精品国产高清国产av| 999精品在线视频| 欧美av亚洲av综合av国产av| 91成年电影在线观看| 夜夜爽天天搞| 欧美色欧美亚洲另类二区| 久久久久精品国产欧美久久久| 91九色精品人成在线观看| 亚洲av成人精品一区久久| 人人妻人人看人人澡| 日韩国内少妇激情av| 动漫黄色视频在线观看| 久久久国产欧美日韩av| 久久久久久国产a免费观看| 欧美在线一区亚洲| 欧美日韩一级在线毛片| 一卡2卡三卡四卡精品乱码亚洲| 黑人欧美特级aaaaaa片| 女人爽到高潮嗷嗷叫在线视频| 99国产精品99久久久久| 不卡av一区二区三区| 制服人妻中文乱码| 久久久精品国产亚洲av高清涩受| 亚洲精品国产一区二区精华液| 欧美绝顶高潮抽搐喷水| 神马国产精品三级电影在线观看 | 国产精品亚洲av一区麻豆| 制服人妻中文乱码| 国产黄片美女视频| 久久久久国产精品人妻aⅴ院| 精品少妇一区二区三区视频日本电影| 97人妻精品一区二区三区麻豆| 中文字幕人妻丝袜一区二区| 久久香蕉国产精品| 91成年电影在线观看| 69av精品久久久久久| 午夜免费激情av| 首页视频小说图片口味搜索| 看黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 久久久久亚洲av毛片大全| 黄片小视频在线播放| 狠狠狠狠99中文字幕| 国产真实乱freesex| 成年人黄色毛片网站| 欧美一级毛片孕妇| 韩国av一区二区三区四区| 欧美大码av| 9191精品国产免费久久| 亚洲一区二区三区色噜噜| 女人高潮潮喷娇喘18禁视频| 十八禁网站免费在线| av视频在线观看入口| 久99久视频精品免费| 国产精品 欧美亚洲| 9191精品国产免费久久| 日韩欧美 国产精品| av欧美777| 中文字幕熟女人妻在线| 亚洲成人久久爱视频| 丰满人妻熟妇乱又伦精品不卡| 在线观看舔阴道视频| 亚洲精品在线美女| 日韩欧美三级三区| 女生性感内裤真人,穿戴方法视频| 制服丝袜大香蕉在线| 丝袜人妻中文字幕| 校园春色视频在线观看| 国产精品1区2区在线观看.| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清 | 免费一级毛片在线播放高清视频| 欧美+亚洲+日韩+国产| 黄色视频不卡| 久久久久久久午夜电影| 久久久久性生活片| 岛国在线观看网站| 美女大奶头视频| 91成年电影在线观看| 91国产中文字幕| 美女扒开内裤让男人捅视频| 欧美精品啪啪一区二区三区| 成人三级黄色视频| 香蕉国产在线看| 国产激情久久老熟女| 麻豆成人av在线观看| 国产成人系列免费观看| 香蕉丝袜av| 三级毛片av免费| 黑人操中国人逼视频| 日韩欧美 国产精品| 深夜精品福利| 最近最新免费中文字幕在线| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩东京热| 欧美三级亚洲精品| 在线永久观看黄色视频| 我要搜黄色片| x7x7x7水蜜桃| 亚洲av片天天在线观看| 不卡一级毛片| 香蕉丝袜av| 美女 人体艺术 gogo| 国产99久久九九免费精品| 精品少妇一区二区三区视频日本电影| 99热只有精品国产| 国产精品av久久久久免费| bbb黄色大片| 精品一区二区三区av网在线观看| 亚洲中文字幕日韩| 国产精品一及| 性色av乱码一区二区三区2| 蜜桃久久精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻福利社区极品人妻图片| 成年女人毛片免费观看观看9| 麻豆成人av在线观看| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 亚洲电影在线观看av| av有码第一页| 日韩欧美在线二视频| 日本黄色视频三级网站网址| 在线观看美女被高潮喷水网站 | 欧美中文综合在线视频| 熟妇人妻久久中文字幕3abv| 搡老岳熟女国产| 日韩欧美免费精品| 亚洲欧美激情综合另类| 在线观看舔阴道视频| 男女午夜视频在线观看| 亚洲九九香蕉| 男人的好看免费观看在线视频 | 老熟妇仑乱视频hdxx| 两个人免费观看高清视频| 免费观看人在逋| 在线观看免费午夜福利视频| 夜夜躁狠狠躁天天躁| 亚洲午夜理论影院| 亚洲国产看品久久| 国产亚洲欧美在线一区二区| 在线播放国产精品三级| 精品人妻1区二区| 99精品欧美一区二区三区四区| 精品久久久久久久末码| 成人亚洲精品av一区二区| 国产亚洲精品一区二区www| 黄色 视频免费看| 免费电影在线观看免费观看| 啪啪无遮挡十八禁网站| 老司机午夜福利在线观看视频| 中文字幕av在线有码专区| 熟女电影av网| 少妇被粗大的猛进出69影院| 狠狠狠狠99中文字幕| 一级作爱视频免费观看| 成人一区二区视频在线观看| 少妇粗大呻吟视频| 天堂√8在线中文| 禁无遮挡网站| 欧美久久黑人一区二区| 在线a可以看的网站| 男人舔女人下体高潮全视频| a级毛片在线看网站| 成人三级做爰电影| 又黄又粗又硬又大视频| 亚洲乱码一区二区免费版| av有码第一页| 无人区码免费观看不卡| 啦啦啦韩国在线观看视频| 久久精品91蜜桃| 国产精品一及| 狂野欧美白嫩少妇大欣赏| 99精品在免费线老司机午夜| 成人国产一区最新在线观看| 黄色视频,在线免费观看| xxxwww97欧美| 香蕉久久夜色| 99国产极品粉嫩在线观看| 欧美一区二区国产精品久久精品 | 精品久久久久久成人av| 国产精品一区二区三区四区免费观看 | 国产成人精品无人区| 最新在线观看一区二区三区| 黄色成人免费大全| 亚洲av成人av| 99精品久久久久人妻精品| 成人欧美大片| 免费看a级黄色片| 黄频高清免费视频| 亚洲欧洲精品一区二区精品久久久| 黄色 视频免费看| 淫秽高清视频在线观看| 桃色一区二区三区在线观看| 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 久99久视频精品免费| 天天一区二区日本电影三级| 亚洲欧美成人综合另类久久久 | 青青草视频在线视频观看| 别揉我奶头 嗯啊视频| 日本免费一区二区三区高清不卡| 精品久久久久久久末码| 青春草视频在线免费观看| av国产免费在线观看| 哪个播放器可以免费观看大片| 天美传媒精品一区二区| 成人二区视频| 美女脱内裤让男人舔精品视频 | 久久人人爽人人片av| 看黄色毛片网站| 中文欧美无线码| 69人妻影院| 精品99又大又爽又粗少妇毛片| 国产精品一区二区在线观看99 | 亚洲av不卡在线观看| 久久国产乱子免费精品| 一进一出抽搐gif免费好疼| 伦理电影大哥的女人| 亚洲精品久久久久久婷婷小说 | 国产激情偷乱视频一区二区| 天堂av国产一区二区熟女人妻| 99久久九九国产精品国产免费| 22中文网久久字幕| avwww免费| 在线免费观看的www视频| 久久久精品欧美日韩精品| 亚洲va在线va天堂va国产| 国产精品一二三区在线看| 又黄又爽又刺激的免费视频.| 一个人看视频在线观看www免费| 日本黄色视频三级网站网址| eeuss影院久久| 亚州av有码| 91在线精品国自产拍蜜月| av女优亚洲男人天堂| 亚洲欧美精品综合久久99| 成人美女网站在线观看视频| 亚洲自拍偷在线| av视频在线观看入口| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| 精品免费久久久久久久清纯| 尤物成人国产欧美一区二区三区| 91久久精品电影网| 一夜夜www| 国产乱人偷精品视频| 1000部很黄的大片| 中国国产av一级| 欧美成人精品欧美一级黄| 啦啦啦韩国在线观看视频| 2021天堂中文幕一二区在线观| 欧美bdsm另类| 亚洲真实伦在线观看| 黄色一级大片看看| 亚洲精品久久久久久婷婷小说 | 午夜免费激情av| 大香蕉久久网| 99国产精品一区二区蜜桃av| 国产探花极品一区二区| 中国国产av一级| av专区在线播放| 91麻豆精品激情在线观看国产| 蜜桃亚洲精品一区二区三区| 国产一区二区三区av在线 | av免费观看日本| 韩国av在线不卡| 国产精品1区2区在线观看.| 搡老妇女老女人老熟妇| 欧美日韩国产亚洲二区| 美女xxoo啪啪120秒动态图| 99久久精品一区二区三区| 久久中文看片网| 性欧美人与动物交配| 欧美不卡视频在线免费观看| 日韩中字成人| 亚洲四区av| 久久久久国产网址| 成年女人永久免费观看视频| 老司机福利观看| 亚洲中文字幕日韩| 噜噜噜噜噜久久久久久91| 午夜激情欧美在线| 免费人成在线观看视频色| 中文字幕av成人在线电影| 我要看日韩黄色一级片| 免费黄网站久久成人精品| 亚洲国产高清在线一区二区三| 亚洲精品国产成人久久av| 精品久久久久久成人av| 日韩一本色道免费dvd| 天堂√8在线中文| 午夜激情福利司机影院| 国产精品国产高清国产av| 国产精品一区二区三区四区久久| 久久精品国产亚洲网站| 亚洲经典国产精华液单| 久久久久久国产a免费观看| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 听说在线观看完整版免费高清| 在线播放国产精品三级| 亚洲激情五月婷婷啪啪| 日韩av在线大香蕉| 天天一区二区日本电影三级| 欧美zozozo另类| 欧美激情国产日韩精品一区| 最近中文字幕高清免费大全6| 国产伦在线观看视频一区| 舔av片在线| 天堂av国产一区二区熟女人妻| 人人妻人人看人人澡| 久久久久久久久大av| 色视频www国产| 亚洲精品乱码久久久久久按摩| 精品欧美国产一区二区三| 女同久久另类99精品国产91| 免费搜索国产男女视频| 免费无遮挡裸体视频| 中国国产av一级| 91精品一卡2卡3卡4卡| 国产一区二区亚洲精品在线观看| 久久久欧美国产精品| a级毛片免费高清观看在线播放| 啦啦啦观看免费观看视频高清| av又黄又爽大尺度在线免费看 | 欧美最黄视频在线播放免费| 天堂√8在线中文| 成人综合一区亚洲| 哪里可以看免费的av片| 国产av麻豆久久久久久久| 亚洲欧洲日产国产| 免费av观看视频| 综合色av麻豆| 亚洲,欧美,日韩| 免费观看人在逋| 成人永久免费在线观看视频| av视频在线观看入口| 黄色配什么色好看| 亚洲婷婷狠狠爱综合网| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产色片| 国内少妇人妻偷人精品xxx网站| 精品人妻熟女av久视频| 日产精品乱码卡一卡2卡三| 韩国av在线不卡| 亚洲真实伦在线观看| 美女高潮的动态| 久久国产乱子免费精品| 欧美高清性xxxxhd video| 草草在线视频免费看| 内地一区二区视频在线| 美女国产视频在线观看| 午夜精品一区二区三区免费看| 国产av不卡久久| 午夜精品一区二区三区免费看| 长腿黑丝高跟| 免费av观看视频| 18禁在线播放成人免费| 国产毛片a区久久久久| 天天躁日日操中文字幕| 亚洲国产高清在线一区二区三| 日本欧美国产在线视频| 国产精品综合久久久久久久免费| 麻豆精品久久久久久蜜桃| 国产午夜精品久久久久久一区二区三区| 性欧美人与动物交配| 五月伊人婷婷丁香| av黄色大香蕉| 又粗又硬又长又爽又黄的视频 | 在线免费观看的www视频| 久久久精品大字幕| 综合色av麻豆| 久久鲁丝午夜福利片| 99国产精品一区二区蜜桃av| 九九在线视频观看精品| 在线免费十八禁| 男人舔奶头视频| 欧美3d第一页| 男女下面进入的视频免费午夜| 久久久久久久久久久丰满| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av免费观看日本| 内地一区二区视频在线| 深夜精品福利| 国产午夜精品一二区理论片| 嫩草影院新地址| 欧美激情久久久久久爽电影| 插阴视频在线观看视频| 1000部很黄的大片| 久久99热6这里只有精品| 婷婷色综合大香蕉| 国内久久婷婷六月综合欲色啪| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产亚洲av香蕉五月| 一本精品99久久精品77| 国产国拍精品亚洲av在线观看| 国产午夜精品一二区理论片| 亚洲七黄色美女视频| 亚洲色图av天堂| 在线观看午夜福利视频| 午夜福利高清视频| 色视频www国产| 国产色婷婷99| 有码 亚洲区| 中文资源天堂在线| 亚洲av熟女| 欧美最新免费一区二区三区| 18禁裸乳无遮挡免费网站照片| 两个人的视频大全免费| 久久精品久久久久久久性| 少妇丰满av| 99久久成人亚洲精品观看| 在线免费观看的www视频| 国产精品野战在线观看| 免费大片18禁| 亚洲成人av在线免费| 国产淫片久久久久久久久| 亚洲精品自拍成人| 亚洲av电影不卡..在线观看| 免费电影在线观看免费观看| 欧美变态另类bdsm刘玥| 一夜夜www| 日本成人三级电影网站| 日韩 亚洲 欧美在线| 久久人人精品亚洲av| 欧美3d第一页| 亚洲av.av天堂| 国产av麻豆久久久久久久| 久久综合国产亚洲精品| 一个人看的www免费观看视频| 午夜精品在线福利| 自拍偷自拍亚洲精品老妇| 亚洲av不卡在线观看| 国产精品免费一区二区三区在线| 国产乱人偷精品视频| 亚洲国产欧美在线一区| 在线国产一区二区在线| 午夜亚洲福利在线播放| 在线天堂最新版资源| 狂野欧美白嫩少妇大欣赏| 亚洲成人中文字幕在线播放| 亚洲人成网站高清观看| 18禁在线播放成人免费| 在线观看免费视频日本深夜| 国产人妻一区二区三区在| 国产一区二区三区av在线 | 成人特级av手机在线观看| 国产精品99久久久久久久久| 搡老妇女老女人老熟妇| 内射极品少妇av片p| 欧美性猛交╳xxx乱大交人| 国内精品久久久久精免费| 国产一区亚洲一区在线观看| 久久久a久久爽久久v久久| 亚洲成人中文字幕在线播放| 婷婷色av中文字幕| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 日韩欧美精品v在线| 国产视频内射| 亚洲乱码一区二区免费版| 夜夜夜夜夜久久久久| 亚洲欧美精品专区久久| 午夜激情福利司机影院| 在线观看av片永久免费下载| 日本欧美国产在线视频| 亚洲电影在线观看av| 免费观看的影片在线观看| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 国产熟女欧美一区二区| 亚洲欧美清纯卡通| 国产午夜福利久久久久久| 给我免费播放毛片高清在线观看| 久久精品91蜜桃| 国内精品宾馆在线| 寂寞人妻少妇视频99o| 好男人在线观看高清免费视频| 国产午夜福利久久久久久| 日韩亚洲欧美综合| 国产成人精品久久久久久| 国产精品嫩草影院av在线观看| 在线a可以看的网站| 亚洲婷婷狠狠爱综合网| 精品不卡国产一区二区三区| 97热精品久久久久久| 网址你懂的国产日韩在线| 一个人免费在线观看电影| 亚洲欧美成人精品一区二区| 舔av片在线| 国产午夜精品一二区理论片| 国产黄色小视频在线观看| 美女脱内裤让男人舔精品视频 | av.在线天堂| 国产视频内射| 亚州av有码| 精品少妇黑人巨大在线播放 | 男女那种视频在线观看| 中文字幕熟女人妻在线| 亚洲成人av在线免费| 99热全是精品| 日韩欧美一区二区三区在线观看| 日韩欧美在线乱码| 国产成人影院久久av| 亚洲乱码一区二区免费版| 男女那种视频在线观看| 69人妻影院| 国产高潮美女av| 精品99又大又爽又粗少妇毛片| 色哟哟·www| 婷婷精品国产亚洲av| 亚洲成人久久爱视频| 男女做爰动态图高潮gif福利片| 人人妻人人看人人澡| 最后的刺客免费高清国语| 神马国产精品三级电影在线观看| 久久久久久久久久久丰满| av又黄又爽大尺度在线免费看 | 国产精品久久久久久久电影| 婷婷色av中文字幕| 国产国拍精品亚洲av在线观看| 99久久九九国产精品国产免费| 在线免费十八禁| 亚洲美女视频黄频| 波多野结衣巨乳人妻| 国产成人a∨麻豆精品| 亚洲精品日韩在线中文字幕 | 国产一区二区三区在线臀色熟女| 夫妻性生交免费视频一级片| 国产亚洲欧美98| 五月玫瑰六月丁香| 国产精品一区二区三区四区免费观看| 国产黄色视频一区二区在线观看 | 午夜免费激情av| 美女大奶头视频| 成人欧美大片| 国产精品久久久久久av不卡| 日产精品乱码卡一卡2卡三| 国产高清三级在线| 岛国在线免费视频观看| 精品一区二区三区人妻视频| 亚洲美女搞黄在线观看| 国产精品精品国产色婷婷| 夜夜看夜夜爽夜夜摸| 男人狂女人下面高潮的视频| 国产一区二区在线av高清观看| av天堂中文字幕网| 麻豆精品久久久久久蜜桃| 五月玫瑰六月丁香| 白带黄色成豆腐渣| 三级毛片av免费| 亚洲综合色惰| 免费看光身美女| 最近的中文字幕免费完整| 我的女老师完整版在线观看| 亚洲最大成人中文| 亚洲成人久久爱视频| 日韩精品有码人妻一区| 欧美日本视频| 在线观看午夜福利视频| 国产午夜精品久久久久久一区二区三区| 国产探花在线观看一区二区| 国产精品久久视频播放| 亚洲国产精品sss在线观看| 精品国内亚洲2022精品成人| 国产成人a∨麻豆精品| 亚洲乱码一区二区免费版| 国产色婷婷99| 一个人观看的视频www高清免费观看| 国产av在哪里看| 亚洲在线自拍视频| 久久久久久久久久黄片| 国产av麻豆久久久久久久| 久久久久九九精品影院| 国产一区二区在线观看日韩| 国产亚洲精品av在线|