• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules

    2023-03-13 09:18:30ChenLing凌晨YalingYin尹亞玲YangLiu劉泱LinLi李林andYongXia夏勇
    Chinese Physics B 2023年2期
    關鍵詞:李林

    Chen Ling(凌晨) Yaling Yin(尹亞玲) Yang Liu(劉泱) Lin Li(李林) and Yong Xia(夏勇)

    1State Key Laboratory of Precision Spectroscopy,School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China

    2School of Physics and Astronomy,Sun Yat-sen University,Zhuhai 519082,China

    3Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    Keywords: metamaterials,beam characteristics,trapping of molecules

    1.Introduction

    A metasurface can precisely control the degrees of freedom of the phase, polarization and amplitude of an incident light field.[1-3]It provides a new way to develop the next generation of experimental platforms for atomic and/or molecular quantum-state manipulation on chips by virtue of the tight spatial confinement and high local intensities.Currently, varieties of novel optical components, such as lenses, mirrors,waveguides, gratings and polarization controllers, have been successfully developed using a metasurface structure.[4-6]So,the miniaturization of ultra-cold atomic experimental devices has become possible,and an all-optical metasurface route for an atom (or molecule) chip has been proved to be a good platform for building a robust quantum laboratory.[7-12]For example, atomic magneto-optical trap (MOT) schemes based on metasurfaces have been reported.In 2013, a reflectiontype atomic MOT experiment based on a metasurface grating was reported and 6×107Rb atoms were trapped.[7]In 2020,a metasurface transmission-type atomic MOT was reported,which trapped 107Rb atoms at about 35μK.[8]In 2021,using planar optical elements for beam launching,beam shaping and polarization control,a grating-type MOT for Rb was realized,which captured 2.8×106atoms below 200μK.[9]

    One important application of metasurfaces is metalenses.[13]For example, metal- and dielectric-type metalenses have been used to focus light to the near or far field in the visible or infrared region.[14-18]Previously, our group proposed a two-dimensional subwavelength silicongrating reflector with strong focusing capability, resulting in an intensely focused spot and ring at the focal plane of the metalens.[19-21]The molecules were drawn to the maximum in the red-detuned light field under the influence of the optical dipole force, which serves as a dipole trap.In comparison,when the light field is blue detuned,the interaction potential is repulsive,and the molecules will be repelled to the minimum in the light field.In this case, molecules will be trapped or guided in a blue-detuned hollow beam.[22,23]A hollow beam storage ring based on this effect has unique advantages: the deep potential enables trapping of molecular wave packets whose average velocity is not zero; the low photon scattering rate and long trap lifetime enables the interaction of molecules with other molecules or electromagnetic fields many times at the specific location and time.Such features of the storage ring provide an effective way to study high-resolution molecular spectroscopy,ultra-cold collisions and reactions.[24-27]In contrast to electric or magnetic field storage rings, an optical storage ring can trap any molecule regardless of its dipole polarity and paramagnetism.Although the scheme of the blue-detuned metasurface storage ring possesses some unique advantages,it has not been fully realized until now.

    Herein,we present a new scheme for generating a focused hollow beam storage ring on a subwavelength silicon-grating metasurface with potential application as an optical dipole trap for cold molecules.This paper is organized as follows.We first give a detailed description of the design principle of the storage ring,determine the high transmission rate by optimizing the height, cycle and duty rate of the structural element and then design the hybrid phase with a combination of the focusing phase and theπphase.Then, we construct a threedimensional focused hollow beam storage ring at the focal plane of the metalens, and study the intensity distributions of the storage ring in free space and its propagation characteristics.Finally, we use Monte Carlo simulation to study the dynamics of MgF molecules in the storage ring.

    2.Design of the metasurface structural element

    The desired phase modulation was achieved by modifying the effective index within each cell based on effective medium theory.[28]The phase jumps of the electromagnetic wave at the metasurface can be written as Δφ=2πneffd/λ, whereλis the incident wavelength,drepresents the thickness of the element andneffrepresents the effective refractive index of the element.Since a phase-transmitting-type metasurface is nearly two-dimensional and the thicknessdis generally kept unchanged in the manufacturing process, the phase accumulationφis realized by changing the effective refractive indexneffat different positions.[20,22]Change inneffis generally achieved by constructing a material microstructure of a higher refractive index on a substrate of a lower refractive index.

    Figure 1(a)shows the periodic structural element applied in the metasurface.The substrate is SiO2material and the microstructure is Si, which grows on the substrate.To achieve the desired blue-detuned hollow beam storage ring, the incident wavelength is chosen to be 300 nm.The width of the SiO2substrate in one period is set asP=150 nm, the width of the Si column is set asWand the height is set asH.Note that the duty cycle isW/P.By varying the structure of the Si column, the effective refractive indexneffat different positions on the metasurface can be adjusted.The thicknessHcan be kept constant.To satisfy the phase requirement for the hollow beam intensity distribution,the phase of the grating is designed to have a focusing effect and a completely destructive interference function at the focal plane;the phase distribution should cover the range-πtoπ.So,we scan different ranges of structural parameters to find the optimalH.Meanwhile,we keep the transmissivity of the structure as high as possible.

    Fig.1.(a) Design of the structural Si column element with a width W and height H on the SiO2 substrate with a period P=150 nm.Dependence of the corresponding phase(b)and transmissivity(d)of the light on the parameters of the height and duty cycle of the structure,respectively.(c)The transmissivity(black curve)and phase(red curve)as a function of duty rate.

    By changing the height and duty cycle of the grating,the phase and the transmissivity of the light can be modulated, as shown in Figs.1(b) and 1(d), respectively.When the heightHis around 151 nm, by simply changing the duty cycle we can cover the range-πtoπof the phase distribution with high transmissivity.Then,taking the optimal heightH=151 nm,the simulated results by changing the silicon duty cycle are obtained,as shown in Fig.1(c).The red curve indicates that the phase covers the range-πtoπwhen the duty cycle of the grating changes from 0.1-0.4 and 0.5-0.6.The black curve indicates that the cell structure maintains a transmittance of more than 90%when the duty cycle changes from 0.1-0.4 and 0.5-0.6.In this way,we finally determine the optimal structural parameters of the periodic cell:P=150 nm,H=151 nm, duty cycle between 0.1-0.4 and 0.5-0.6, all of which will be used to tune the transmission phase.

    3.Intensity distribution of the metasurface storage ring

    The structure of the metasurface storage ring comprises a concentric silicon grating and a SiO2substrate.The design principle is that the phase arrangement of the concentric grating array in the radial direction can focus the incident light to the focal plane to form a hollow optical ring, as shown in Fig.2.Figure 2(a)shows a schematic diagram of the formation of a metasurface hollow ring.Figure 2(b)shows a picture of a crossed section of the designed grating in the radial direction.Such a one-dimensional grating array can be expanded into a two-dimensional grating ring array by rotating one circle,and then incident light can converge to the focal plane, forming a focusing ring.In order to generate the hollow beam distribution,the hybrid phase of the grating is designed to have a focusing effect and a completely destructive interference function at the focal plane.For a grating structure with focusing capability,the phase shift of the transmitted light needs to satisfy the phase distribution equation of the convex lens.Using the finite element simulation,an optimal concentric grating array is found comprising 107 elements with 53 elements symmetrically distributed to each side of the central element.Here,we use the phase distribution of the metalens to converge the light to one point, then combine the phase of Fig.3(a) with aπphase plate,shown as a grey annulus in Fig.3(b)with an inner radiusraand an outer radiusrb.The solid grey annulus has the same area as the remaining white area, but there is aπphase difference between the grey and white parts.When the light first passes through the focusing phase regime(in Fig.3(a)),it will form a convergent light field.Then,through theπ-phase regime(in Fig.3(b)),two parts of the light will result in a completely destructive interference effect at the focal plane.Two kinds of phases can be combined into a new one(in Fig.3(c)).Therefore,the optical intensity near the focal point will be reduced to a minimum and a focused hollow ring beam is generated above the grating metasurface.

    Fig.2.Diagram of the design principle of the metasurface storage ring.(a) Three-dimensional schematic of the formation of a metasurface ring light field.The blue arrows represent the incident direction of the beam and the black arrow represents the radially polarized direction.(b)View of the cross section of the half grating(shown as the red rectangle).The red circle is the focal hollow beam formed by the half grating,rc is the center position of the half metasurface grating and rn is the center position of each metasurface structure element in Fig.1(a).(c)The corresponding phase distribution: the red solid curve is the required phase and the blue dot is the discrete phase value required by the structure.

    Fig.3.(a)Phase distribution of the focusing lens.(b)Phase plate with a phase difference of π.(c)Hybrid phase distribution of(a)and(b).

    The specific phase distribution in Fig.3(c)can be written as

    wherercis the center position of the half metasurface grating in Fig.2(b),rnis the center position of each metasurface structural element in Fig.1(a),raandrbare,respectively,the inner and outer radii of the grey annulus in Fig.3(b),fis the focal length,λis the wavelength of incident light,Pis the width of the SiO2substrate in one period andφnis the phase value needed for the metasurface structural element with central positionrn.

    Taking the focal lengthf=7.8 μm as an example, we calculate the required phase distribution for each metasurface structural element according to Eqs.(1) and (2).We set the central position of the first metasurface structural element asr1=2.65μm and the central position of the 107th element asr107=18.55μm.As shown in Fig.2(c),the solid red curve is the required continuous phase curve,indicating that the phase required to form the metalens is between 0 and 2π.If the phaseφnis greater than 2π, it can be mapped to a value between 0 and 2πwhich gives the same results.In this way,according to the corresponding curves of phase in Fig.1(c),the duty cycle of each structural element can be obtained.Then, the widthWof each structural element is acquired.Thus, we can get the structural parameters required for the design of the whole grating array.The blue dots in Fig.2(c) represent the actual discrete phase values corresponding to the 107 elements.

    The final parameters designed for the storage ring arermin= 2.575 μm,rmax= 18.625μm, annular widthRw=rmax-rmin= 16.05 μm.We define the numerical aperture of the annular metasurface asNA=sin(tan-1(Rw/2f)).The expected focal lengthf0is 7.8 μm, the radiusr'is 10.5 μm andNAof the grating is around 0.717.

    Figure 4(a)shows the optical intensity distribution of the hollow optical ring at the focal plane.The radius of the ringr'is defined as the distance between the position of the minimum light intensity in the hollow ring beam and the center of the meatsurface grating,which is 10.5μm.Figure 4(b)shows the corresponding one-dimensional light intensity distribution along any one of the diameters at the focal plane.There is a closed hollow area in the intensity profile at the focal point.In the focal plane,the intensity distribution looks like a valley,as seen in Fig.4(b), and the two peaks are on either side of the hollow profile.We define the highest peak asEmaxand the bottom of the valley asEmin.It can be seen from Fig.4 that the maximum light intensity of the ring is 10.4(relative to the minimum intensity in the center of the ring.

    Fig.4.Intensity distribution of a ring light field on the focal plane of the metasurface storage ring: (a) two-dimensional and (b) one-dimensional intensity distribution at the focal plane,respectively.The insets in(b)are the two-dimensional light intensity distributions shown in the red rectangle in(a).

    Due to machining errors in the period and duty cycle parameters of the grating strips when processing the grating,aberration inevitably occurs when the metalens focuses the light.We study the influence of the missing number of round grating strips on the focusing performance of the storage ring.We randomly select the missing grating strips to investigate the corresponding light intensity at the focal plane,and the results are shown in Fig.5.We can see that for a concentric grating,a focal length of~7.8μm remains but the ratio of|Emax|2to|Emin|2at the focal plane generally decreases as the number of missing grating strips increases.This means that the depth of the optical potential well would not be large enough to trap molecules with many missing strips.

    Fig.5.Relative light intensity(left y-axis)and corresponding focal length(right y-axis) of the optical ring as a function of the number of missing grating strips.

    4.Monte-Carlo simulation of optical storage rings

    A variety of techniques, such as Stark/Zeeman deceleration, electric/magnetic trapping and storage rings, have been developed to manipulate molecules in both position and velocity space.[24-27]A characteristic of the electrostatic potential well of polar molecules is that there is a lowest point of potential energy in space with which to form a circle in space.The advantage of a storage ring is that it can manipulate molecular wave packets whose average velocity is not zero;these molecules can repeatedly interact with other molecules or electromagnetic fields at the specific locations and times.However,all existing methods are only applicable for trapping cold polar or paramagnetic molecules,not molecules without a permanent electric or magnetic dipole moment.In contrast,an all-optical storage ring of cold molecules does not require the molecule to possess a permanent electric or magnetic dipole moment but induces an electric dipole moment to generate gradient forces to confine molecules into a potential trap.[20,22]Moreover,it is naturally immune to Majorana-type spin flips,which lead to the loss of trapped molecules.Therefore,the optical storage ring could have a broader range of applications.

    Previously, we have proposed such an all-optical storage ring by shining an incident red-detuned laser on a metasurface.[21]Despite having the above-mentioned advantages over a traditional electric/magnetic storage ring, the trapped molecules will be subjected to an obvious heating effect and consequent decoherence, as the molecules are attracted to the position with the highest light intensity.Here,we propose an optical storage ring utilizing blue-detuned light and the metasurface.For the blue-detuned traps,generally the molecules are trapped in the minima of the optical field, and the photon scattering rate is very low,[22]leading to the minimum heating effect and a long coherence time.Herein, we will discuss the feasibility of this blue-detuned storage ring,which can indeed form a deep optical potential for trapping cold molecules.

    Fig.6.Trapped MgF molecules in the focused hollow beam formed by the metasurface grating: (a)optical potential curve,(b)dispersive dipole force curve.

    We chose the MgF molecule as an example; this a typical alkali-earth fluoride molecule that has recently been laser cooled in our lab.[29-34]We calculated the optical dipole potential and its dipole force for MgF molecules.When a neutral molecule enters a blue-detuned inhomogeneous light field,it experiences an optical dipole force described by an optical trapping potential

    Here,αis the polarizability of the molecule,pis the dipole moment andI(r)is the optical intensity distribution.The average polarizability of MgF isα=4.56×10-40C·m2·V-1andkis the Boltzmann constant.The dipole force is a conservative force, proportional to the intensity gradient of the field.When the light field is blue detuned, the interaction potential is repulsive and the molecules will be pushed to the minima of the light field.Therefore, molecules will be trapped in a blue-detuned hollow beam.The blue-detuned laser wavelength is 300 nm relative to the resonant energy level of the MgF molecule.[29]The metasurface grating has a widthRw=16.05 μm and focal lengthf=7.8 μm.At the focal plane, the optical potential and the dipole force along the radius direction are shown in Fig.6.The optical potential of the blue-detuned hollow beam for MgF molecules at the focal plane is calculated from Eq.(3), and the result is shown in Fig.6(a).The effective optical potential is 90 μK at the focal plane, high enough to trap cold MgF molecules from a gray molasses at temperatures as low as a few μK.In addition, the maximum photon scattering rate of MgF molecules in the optical trap is lower than 1 s-1.Due to the minimum light field in the central region of a hollow beam, the heating of trapped molecules is low,leading to long trapping lifetime.It can be seen from Fig.6(b)that the maximum dipole is 9.8×10-21N,which is at least 1.3×104times greater than the gravity force for MgF molecules.This shows that the dipole force is strong enough to balance the action of the gravity force on the molecules.The red dashed line in Fig.6(b)corresponds toFdip=0,and the red point represents the center of the potential well whose coordinate isr=10.5 μm at the focal plane,which is exactly the point of the minimum intensity at the center of storage ring.

    To analyze the longitudinal motion of molecules and their transverse stability in the storge ring, a three-dimensional Monte Carlo simulation is performed.[34]The schematic diagram is shown in the inset of Fig.7.The simulation conditions are as follows:105cold MgF molecules are loaded from a single pulse of a laser-slowed beam with a mean velocity threedimensional translational temperature of 50 μK and incident direction along the tangential direction of the storage ring,as shown in Fig.7.In the simulation,the detection volume is approximated by a cylinder,which represents the intersection between the detection Gaussian beam and the half-circumference relative to the entrance of molecular beam on the storage ring.The number of molecules evolving over time in the detection region is investigated and the results are shown in Fig.7.Due to the finite width of the velocity distribution in the molecular beam,the beam extends along the circumference and becomes elongated.This leads to an early arrival at the detection region by the fast portion of the loaded molecular beam.In the first two rounds of encirclement,the number of detected molecules reaches a maximum of 6.2×103and 3.0×103att1=0.34 ms andt2=1.02 ms,respectively,instead of the expected 0.55 ms and 1.65 ms,according to the mean velocity.Afterwards,the loaded molecular wave packet quickly spreads out along the circumference,as is evident from the simulated time-of-flight spectrum in Fig.7.Then, the number of detected molecules starts to follow an exponential decay with an estimated lifetime of more than 35 s due to further spreading with time.The loading efficiency is estimated to be 6% due to a large velocity distribution compared with the mean velocity.This can be greatly improved by transversely focusing the molecular beam, for example by a standing wave.Figure 8 shows a three-dimensional diagram of the trajectory of a single MgF molecule in the storage ring.The motion of the molecule in thezdirection is within the range of 0.4 μm near the focal plane.The red curve is the projection of the trajectory onto thex-yplane,and the molecule moves in therdirection near the radius of the storage ring.These results demonstrate that the proposed storage ring has excellent properties for trapping cold molecules and maintaining their quantum state coherence due to a negligible heating effect and a very long lifetime of trapped molecules.

    Fig.7.Time-of-flight spectra of the MgF molecular beam circling in the storage ring.The inset is a schematic diagram of molecule detection.

    Fig.8.Three-dimensional motional trajectory of a single MgF molecule in the surface storage ring.The red curve is the projection of the molecular trajectory on the x-y plane.

    5.Conclusion

    In this paper we have proposed a new scheme for generating a focusing hollow ring beam by using a transmission-type metasurface and have calculated the intensity distributions and the focusing characteristics.We found that under the incident polarized 300 nm laser illumination the metasurface can generate a hollow ring with a focal length of 7.8 μm and a linewidth of 0.4μm.At the focal plane,the maximum intensity of the hollow beam is over 10.4 times its minimum intensity.The effective optical potential is 90μK at the focal plane,large enough to trap cold molecules from a gray molasses at temperatures as low as a few μK.The blue-detuned hollow beam storage ring possesses many unique features, such as a low photon scattering rate and long trap lifetime for a variety of molecular species that can be laser cooled.Finally,we use the Monte Carlo method to simulate the dynamics of the MgF molecules in the optical storage ring.After loading the molecules in the storage ring for about 1 ms, the number of molecules tends to be stable at about 3.0×103and they spread to the whole optical storage ring space.Moreover,the blue-detuned storage ring is expected to have many applications in high-resolution molecular spectroscopy and ultra-cold collisions and reactions.[34]

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.12174115,11974434,91836103,and 11374100), the Natural Science Foundation of Guangdong Province, China (Grant No.2020A1515011159), the Science and Technology Program of Guangzhou (Grant No.202102080380), and Shanghai Pujiang Program (Grant No.20PJ1403400).

    猜你喜歡
    李林
    In situ temperature measurement of vapor based on atomic speed selection
    李林作品
    山東陶瓷(2021年6期)2022-01-09 11:03:10
    王一丹、陳通、李林優(yōu)秀作品賞析
    ViVi美眉(2020年3期)2020-10-20 18:36:40
    禪 悟
    寶藏(2019年1期)2019-03-20 02:29:30
    李林栽芋
    北方文學(2017年19期)2017-08-01 00:43:40
    成靜、李林、栗麗鑫、尹臻作品
    習 慣
    東方劍(2017年12期)2017-03-14 01:32:28
    我老婆的事我會不知道
    故事林(2013年22期)2013-05-14 17:30:20
    愛是一筆賬
    故事林(2010年9期)2010-05-14 17:29:35
    你啥時回來
    昭通文學(2009年4期)2009-04-13 10:00:34
    成人手机av| www日本在线高清视频| 亚洲国产高清在线一区二区三| 色在线成人网| 亚洲性夜色夜夜综合| 久久性视频一级片| 人妻久久中文字幕网| 看免费av毛片| 我的老师免费观看完整版| 国产又色又爽无遮挡免费看| 日韩av在线大香蕉| 国产成人啪精品午夜网站| 亚洲自偷自拍图片 自拍| 国产三级中文精品| 亚洲av日韩精品久久久久久密| 给我免费播放毛片高清在线观看| 国产成人av激情在线播放| 一级黄色大片毛片| 国产免费av片在线观看野外av| 岛国在线免费视频观看| 国产成人欧美在线观看| 在线十欧美十亚洲十日本专区| 欧美又色又爽又黄视频| 视频区欧美日本亚洲| 亚洲欧美日韩高清专用| 国产激情偷乱视频一区二区| 亚洲全国av大片| АⅤ资源中文在线天堂| 黄色片一级片一级黄色片| 国产探花在线观看一区二区| 天天躁夜夜躁狠狠躁躁| 99在线人妻在线中文字幕| 午夜精品在线福利| 淫妇啪啪啪对白视频| 国产精品久久久久久久电影 | 国产三级中文精品| 国产亚洲欧美在线一区二区| 给我免费播放毛片高清在线观看| 日日爽夜夜爽网站| 欧美又色又爽又黄视频| 18禁美女被吸乳视频| 久久久久久亚洲精品国产蜜桃av| 少妇熟女aⅴ在线视频| 午夜福利18| 日韩欧美免费精品| 国产精品久久电影中文字幕| 熟女电影av网| 精品乱码久久久久久99久播| 好男人在线观看高清免费视频| 久久久久久久久免费视频了| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 免费在线观看黄色视频的| 久久午夜综合久久蜜桃| 老汉色∧v一级毛片| 国产成年人精品一区二区| 99riav亚洲国产免费| 国产av一区在线观看免费| 亚洲欧美精品综合一区二区三区| 美女高潮喷水抽搐中文字幕| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添小说| 悠悠久久av| 老汉色av国产亚洲站长工具| x7x7x7水蜜桃| 欧美日韩瑟瑟在线播放| 亚洲国产精品999在线| 丝袜美腿诱惑在线| 美女扒开内裤让男人捅视频| 中文亚洲av片在线观看爽| 男女做爰动态图高潮gif福利片| cao死你这个sao货| 精品第一国产精品| 国内少妇人妻偷人精品xxx网站 | 亚洲五月婷婷丁香| 欧美丝袜亚洲另类 | 99精品欧美一区二区三区四区| a级毛片在线看网站| 久久伊人香网站| av免费在线观看网站| 丰满的人妻完整版| 午夜免费激情av| 级片在线观看| 色哟哟哟哟哟哟| 久久久水蜜桃国产精品网| 欧美人与性动交α欧美精品济南到| 国内精品久久久久精免费| 亚洲中文字幕一区二区三区有码在线看 | 国产黄片美女视频| 88av欧美| 国产真实乱freesex| 亚洲av中文字字幕乱码综合| 少妇人妻一区二区三区视频| 久久精品91无色码中文字幕| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久久久亚洲av鲁大| 99国产精品一区二区蜜桃av| 日本一本二区三区精品| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 最新在线观看一区二区三区| 国内精品一区二区在线观看| 中文字幕人妻丝袜一区二区| 国产亚洲欧美98| 搞女人的毛片| 香蕉av资源在线| 欧美乱妇无乱码| 可以在线观看毛片的网站| 国产一级毛片七仙女欲春2| 床上黄色一级片| 非洲黑人性xxxx精品又粗又长| 搡老熟女国产l中国老女人| 日韩欧美精品v在线| 大型av网站在线播放| 日本三级黄在线观看| 在线观看66精品国产| 黄片小视频在线播放| 久久久国产成人免费| 亚洲中文日韩欧美视频| avwww免费| 丝袜人妻中文字幕| 99国产精品99久久久久| av在线播放免费不卡| 1024视频免费在线观看| 一区二区三区国产精品乱码| 国产三级在线视频| 啪啪无遮挡十八禁网站| 啦啦啦观看免费观看视频高清| 精品电影一区二区在线| 在线观看美女被高潮喷水网站 | 亚洲真实伦在线观看| 日日干狠狠操夜夜爽| 国内久久婷婷六月综合欲色啪| 精品国产超薄肉色丝袜足j| 国产精品九九99| 最新在线观看一区二区三区| 亚洲 欧美 日韩 在线 免费| 国产亚洲精品久久久久5区| 午夜成年电影在线免费观看| 12—13女人毛片做爰片一| 中文字幕熟女人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 天天躁夜夜躁狠狠躁躁| 中亚洲国语对白在线视频| 亚洲欧美日韩高清在线视频| 亚洲国产精品999在线| 精品久久久久久久末码| 亚洲av片天天在线观看| 久久天堂一区二区三区四区| 国内精品久久久久久久电影| 激情在线观看视频在线高清| 国产黄a三级三级三级人| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| 久久人妻福利社区极品人妻图片| 国产精品一区二区免费欧美| 亚洲全国av大片| 亚洲七黄色美女视频| 亚洲第一电影网av| 麻豆成人av在线观看| 少妇被粗大的猛进出69影院| 欧美人与性动交α欧美精品济南到| 女人爽到高潮嗷嗷叫在线视频| 一a级毛片在线观看| 禁无遮挡网站| 久久精品亚洲精品国产色婷小说| 亚洲精品美女久久久久99蜜臀| 狂野欧美白嫩少妇大欣赏| 欧美乱色亚洲激情| 久久精品aⅴ一区二区三区四区| 男人的好看免费观看在线视频 | 视频区欧美日本亚洲| 老司机福利观看| 久热爱精品视频在线9| 中文字幕人妻丝袜一区二区| 无人区码免费观看不卡| 不卡av一区二区三区| 免费av毛片视频| 国产成人aa在线观看| 亚洲最大成人中文| 亚洲熟妇熟女久久| 国产精品 欧美亚洲| 国产一区二区三区视频了| 天天添夜夜摸| 九色国产91popny在线| 午夜视频精品福利| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久久久久久电影 | 亚洲18禁久久av| 老司机午夜十八禁免费视频| 白带黄色成豆腐渣| 91成年电影在线观看| 校园春色视频在线观看| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 国产成人精品久久二区二区免费| 黄片小视频在线播放| 国产亚洲欧美98| 全区人妻精品视频| 性色av乱码一区二区三区2| 最近最新中文字幕大全电影3| 伊人久久大香线蕉亚洲五| 日韩av在线大香蕉| 欧美乱码精品一区二区三区| 天堂动漫精品| www.精华液| 91字幕亚洲| 一级片免费观看大全| 一级毛片女人18水好多| 18禁黄网站禁片免费观看直播| 午夜免费激情av| 国产伦一二天堂av在线观看| 麻豆国产97在线/欧美 | 美女大奶头视频| 欧美乱妇无乱码| 老司机深夜福利视频在线观看| 午夜免费观看网址| 成熟少妇高潮喷水视频| 国产爱豆传媒在线观看 | 日韩中文字幕欧美一区二区| 国产成人精品久久二区二区91| 黑人欧美特级aaaaaa片| 国产精品久久久av美女十八| 久久这里只有精品19| 国产精品98久久久久久宅男小说| 精品国产乱码久久久久久男人| 精品久久久久久久久久免费视频| 国产免费av片在线观看野外av| 免费在线观看亚洲国产| 亚洲熟女毛片儿| 午夜亚洲福利在线播放| 亚洲av中文字字幕乱码综合| 国产高清视频在线观看网站| 欧美国产日韩亚洲一区| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 国产精品久久久久久久电影 | 国产亚洲欧美在线一区二区| 久久久久精品国产欧美久久久| 久久久久亚洲av毛片大全| 高清毛片免费观看视频网站| 激情在线观看视频在线高清| 黄频高清免费视频| 亚洲国产欧美网| 免费av毛片视频| 性欧美人与动物交配| 免费在线观看影片大全网站| 日本一二三区视频观看| 国产乱人伦免费视频| 露出奶头的视频| 伦理电影免费视频| avwww免费| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕日韩| 麻豆av在线久日| 欧美乱码精品一区二区三区| 视频区欧美日本亚洲| 最新美女视频免费是黄的| 18禁黄网站禁片免费观看直播| 欧美日韩福利视频一区二区| 久久香蕉精品热| 国产黄色小视频在线观看| 午夜精品一区二区三区免费看| 色噜噜av男人的天堂激情| 18禁黄网站禁片午夜丰满| 国产精品98久久久久久宅男小说| 最近最新中文字幕大全免费视频| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区三区四区久久| 熟女少妇亚洲综合色aaa.| 日韩免费av在线播放| 啪啪无遮挡十八禁网站| 亚洲国产精品合色在线| 久久人妻福利社区极品人妻图片| 亚洲午夜理论影院| 视频区欧美日本亚洲| 久久国产精品人妻蜜桃| 久久精品国产亚洲av香蕉五月| 国产麻豆成人av免费视频| 亚洲欧美精品综合一区二区三区| 久久久久久久精品吃奶| 亚洲国产日韩欧美精品在线观看 | 男女下面进入的视频免费午夜| 在线看三级毛片| 悠悠久久av| 日韩大码丰满熟妇| 精品不卡国产一区二区三区| 国产精品 国内视频| 中文字幕av在线有码专区| 美女高潮喷水抽搐中文字幕| 亚洲欧洲精品一区二区精品久久久| av中文乱码字幕在线| 麻豆国产av国片精品| 又紧又爽又黄一区二区| 久久亚洲真实| 国产黄片美女视频| 久久亚洲真实| 国产乱人伦免费视频| 国产精品av久久久久免费| 怎么达到女性高潮| 男女床上黄色一级片免费看| 最近最新中文字幕大全电影3| av欧美777| 少妇的丰满在线观看| 国产三级中文精品| 精品无人区乱码1区二区| 两个人的视频大全免费| 香蕉国产在线看| 变态另类成人亚洲欧美熟女| 欧美黑人巨大hd| www日本在线高清视频| 听说在线观看完整版免费高清| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 日本在线视频免费播放| 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 亚洲精品一区av在线观看| 女警被强在线播放| 欧美+亚洲+日韩+国产| 久久香蕉激情| 欧美一区二区精品小视频在线| 黄片大片在线免费观看| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 日本黄大片高清| 男插女下体视频免费在线播放| 在线观看66精品国产| 亚洲黑人精品在线| 免费无遮挡裸体视频| 51午夜福利影视在线观看| 女人爽到高潮嗷嗷叫在线视频| 91成年电影在线观看| 黄色毛片三级朝国网站| 九九热线精品视视频播放| 国产av麻豆久久久久久久| 亚洲精品色激情综合| 最新美女视频免费是黄的| 国产精品久久久久久精品电影| 欧美日韩亚洲国产一区二区在线观看| 亚洲片人在线观看| 伦理电影免费视频| 免费在线观看完整版高清| 国产精品永久免费网站| 国产精品久久久人人做人人爽| 99热这里只有精品一区 | 国产精品一区二区三区四区久久| 一级毛片女人18水好多| 亚洲中文av在线| 欧美一级a爱片免费观看看 | 欧美日韩瑟瑟在线播放| 免费搜索国产男女视频| 国产精品免费视频内射| 男人的好看免费观看在线视频 | 三级毛片av免费| 999久久久国产精品视频| 亚洲免费av在线视频| 欧美又色又爽又黄视频| 亚洲一区高清亚洲精品| 美女大奶头视频| 精品久久蜜臀av无| 久久精品夜夜夜夜夜久久蜜豆 | 无遮挡黄片免费观看| e午夜精品久久久久久久| 婷婷精品国产亚洲av在线| 亚洲人与动物交配视频| 女人高潮潮喷娇喘18禁视频| 亚洲一区高清亚洲精品| 亚洲自拍偷在线| 性欧美人与动物交配| 成人三级黄色视频| 亚洲精品国产一区二区精华液| 男人舔女人下体高潮全视频| 欧美国产日韩亚洲一区| 99热只有精品国产| 成人欧美大片| 舔av片在线| 精品高清国产在线一区| 久久人妻福利社区极品人妻图片| 国内精品一区二区在线观看| 色精品久久人妻99蜜桃| 欧美三级亚洲精品| 精品熟女少妇八av免费久了| 99国产极品粉嫩在线观看| 精品一区二区三区四区五区乱码| 久久人人精品亚洲av| 又爽又黄无遮挡网站| 美女大奶头视频| 成熟少妇高潮喷水视频| 免费av毛片视频| 久久人妻av系列| 久久中文看片网| 黄色a级毛片大全视频| www.999成人在线观看| 精品欧美一区二区三区在线| 久久欧美精品欧美久久欧美| 两人在一起打扑克的视频| 亚洲专区中文字幕在线| 在线观看午夜福利视频| 欧美日韩精品网址| 日本一二三区视频观看| 日韩免费av在线播放| 午夜激情福利司机影院| 久久人人精品亚洲av| 国产v大片淫在线免费观看| 日韩 欧美 亚洲 中文字幕| 法律面前人人平等表现在哪些方面| 日韩欧美一区二区三区在线观看| 久久国产精品人妻蜜桃| 亚洲中文av在线| 欧美日本视频| 亚洲一码二码三码区别大吗| 女同久久另类99精品国产91| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久久久亚洲av鲁大| 少妇的丰满在线观看| 男人舔女人下体高潮全视频| 成人18禁高潮啪啪吃奶动态图| 亚洲精品美女久久久久99蜜臀| 亚洲av中文字字幕乱码综合| 黄频高清免费视频| 麻豆成人av在线观看| 给我免费播放毛片高清在线观看| 伊人久久大香线蕉亚洲五| 人妻久久中文字幕网| 亚洲成人中文字幕在线播放| 天堂影院成人在线观看| 香蕉av资源在线| 日韩大尺度精品在线看网址| 亚洲人成77777在线视频| 好看av亚洲va欧美ⅴa在| av视频在线观看入口| 久热爱精品视频在线9| 欧美乱妇无乱码| 亚洲 国产 在线| 久久久国产成人精品二区| av欧美777| 精品第一国产精品| 九九热线精品视视频播放| 无限看片的www在线观看| 啪啪无遮挡十八禁网站| 久久精品91蜜桃| 女警被强在线播放| av国产免费在线观看| 国产精品 欧美亚洲| 99热只有精品国产| 久久久久久久久中文| 搡老妇女老女人老熟妇| 亚洲欧美精品综合一区二区三区| 欧美人与性动交α欧美精品济南到| 国产精品影院久久| 一卡2卡三卡四卡精品乱码亚洲| 露出奶头的视频| 色播亚洲综合网| 在线国产一区二区在线| 51午夜福利影视在线观看| 真人做人爱边吃奶动态| 狠狠狠狠99中文字幕| 在线观看66精品国产| 麻豆国产av国片精品| 国产av在哪里看| 亚洲精品国产一区二区精华液| 免费电影在线观看免费观看| 波多野结衣巨乳人妻| 男女之事视频高清在线观看| 在线观看免费视频日本深夜| 狂野欧美白嫩少妇大欣赏| 国产成人系列免费观看| 观看免费一级毛片| 亚洲无线在线观看| 成人国产综合亚洲| 后天国语完整版免费观看| av天堂在线播放| 欧美日韩亚洲国产一区二区在线观看| 日本精品一区二区三区蜜桃| 亚洲午夜理论影院| 亚洲国产欧美一区二区综合| 国产精品综合久久久久久久免费| 中出人妻视频一区二区| 国产91精品成人一区二区三区| 国产激情偷乱视频一区二区| 国产成人精品久久二区二区91| 久久精品91蜜桃| 很黄的视频免费| 男人舔女人下体高潮全视频| 免费观看精品视频网站| 黄色视频,在线免费观看| 亚洲色图av天堂| 最近在线观看免费完整版| 亚洲精品一区av在线观看| 亚洲国产精品久久男人天堂| 哪里可以看免费的av片| 不卡av一区二区三区| 欧美在线一区亚洲| 亚洲精品中文字幕在线视频| 欧美中文日本在线观看视频| 免费在线观看完整版高清| 99热这里只有是精品50| 欧美一区二区国产精品久久精品 | 国产一区在线观看成人免费| 最新美女视频免费是黄的| 久久精品综合一区二区三区| 熟妇人妻久久中文字幕3abv| 啪啪无遮挡十八禁网站| 午夜福利高清视频| 国产精品亚洲av一区麻豆| 男人舔女人下体高潮全视频| 99精品在免费线老司机午夜| 亚洲av熟女| 亚洲精品在线美女| 国产成人欧美在线观看| 亚洲精品色激情综合| 国产午夜精品论理片| 中国美女看黄片| 嫩草影视91久久| 法律面前人人平等表现在哪些方面| 亚洲男人天堂网一区| 好看av亚洲va欧美ⅴa在| 又大又爽又粗| 人人妻人人澡欧美一区二区| 中文在线观看免费www的网站 | 国产乱人伦免费视频| 成人av在线播放网站| 最好的美女福利视频网| 欧美大码av| 一个人免费在线观看的高清视频| 在线观看66精品国产| 久久久精品国产亚洲av高清涩受| 少妇被粗大的猛进出69影院| 99久久99久久久精品蜜桃| 久久精品国产亚洲av高清一级| 亚洲一区二区三区色噜噜| 国产成人欧美在线观看| 波多野结衣高清作品| 久久精品亚洲精品国产色婷小说| 给我免费播放毛片高清在线观看| 精品久久久久久,| 91老司机精品| 日本a在线网址| 人妻夜夜爽99麻豆av| xxxwww97欧美| 国产精品一及| 欧美乱色亚洲激情| 1024手机看黄色片| 在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 夜夜爽天天搞| 国产三级中文精品| 天堂影院成人在线观看| 国内毛片毛片毛片毛片毛片| 亚洲中文字幕日韩| 成年女人毛片免费观看观看9| 欧美黄色片欧美黄色片| 欧美绝顶高潮抽搐喷水| 别揉我奶头~嗯~啊~动态视频| 国产一区二区在线观看日韩 | 可以在线观看的亚洲视频| 日韩精品免费视频一区二区三区| 国产激情偷乱视频一区二区| 午夜福利在线观看吧| 最好的美女福利视频网| 50天的宝宝边吃奶边哭怎么回事| av视频在线观看入口| 999久久久国产精品视频| 成人18禁在线播放| 国产午夜精品久久久久久| 国产乱人伦免费视频| 免费在线观看成人毛片| 美女黄网站色视频| 又黄又粗又硬又大视频| 一本一本综合久久| 久久精品夜夜夜夜夜久久蜜豆 | 老汉色av国产亚洲站长工具| 老熟妇乱子伦视频在线观看| 国产欧美日韩一区二区精品| 午夜a级毛片| 久久久久久久久中文| 久久久久九九精品影院| 18禁黄网站禁片免费观看直播| 亚洲精品av麻豆狂野| 麻豆av在线久日| 午夜福利18| 啦啦啦韩国在线观看视频| 国产精品 国内视频| 人人妻人人澡欧美一区二区| 久久久精品大字幕| 母亲3免费完整高清在线观看| 日本五十路高清| 午夜精品一区二区三区免费看| 人成视频在线观看免费观看| 日本免费一区二区三区高清不卡| 亚洲欧洲精品一区二区精品久久久| 在线观看美女被高潮喷水网站 | 嫁个100分男人电影在线观看| 97人妻精品一区二区三区麻豆| 亚洲精品av麻豆狂野| 免费看十八禁软件| 精品久久久久久,| 一级毛片精品| 久久天躁狠狠躁夜夜2o2o| 久久国产乱子伦精品免费另类| 国产99久久九九免费精品| 麻豆av在线久日| 国产精品久久久av美女十八| 麻豆一二三区av精品| 高清毛片免费观看视频网站| 国产一区在线观看成人免费| 亚洲国产欧美网| 精品欧美国产一区二区三| 午夜a级毛片| 国产伦在线观看视频一区| av福利片在线| 香蕉av资源在线| 久久久久国产精品人妻aⅴ院| 非洲黑人性xxxx精品又粗又长|