封慕茵, 鄭阿秀▲, 白建榮, 曾玉梅, 羅泊濤, 申志華△, 揭偉,2,3△
組蛋白甲基化轉(zhuǎn)移酶SETD4對(duì)鼻咽癌細(xì)胞增殖和遷移的影響*
封慕茵1, 鄭阿秀1▲, 白建榮1, 曾玉梅4, 羅泊濤1, 申志華1△, 揭偉1,2,3△
(1廣東醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院病理學(xué)系,廣東 湛江 524023;2海南醫(yī)學(xué)院第一附屬醫(yī)院腫瘤內(nèi)科,海南 海口 570102;3海南醫(yī)學(xué)院腫瘤研究所,海南 ???571199;4中山市人民醫(yī)院病理科,廣東 中山 528400)
明確組蛋白甲基化轉(zhuǎn)移酶含SET結(jié)構(gòu)域蛋白4 (SET-domain-containing protein 4, SETD4)在臨床鼻咽癌(nasopharyngeal carcinoma, NPC)組織中的表達(dá),分析SETD4對(duì)NPC細(xì)胞增殖和遷移的影響。采用免疫組織化學(xué)法檢測(cè)86例臨床NPC標(biāo)本與對(duì)照組30例鼻咽黏膜慢性炎癥(nasopharyngeal chronic inflammation, NPI)組織中SETD4蛋白的表達(dá);基于CRISPR/Cas9技術(shù)敲除CNE2細(xì)胞中基因,DNA測(cè)序結(jié)合半定量RT-PCR進(jìn)行鑒定;以敲除前后的CNE2細(xì)胞為研究對(duì)象,于倒置顯微鏡下觀察細(xì)胞形態(tài),采用CCK-8實(shí)驗(yàn)分析細(xì)胞增殖活性、Transwell實(shí)驗(yàn)觀察細(xì)胞遷移能力變化、Western blot檢測(cè)增殖細(xì)胞核抗原(proliferating cell nuclear antigen, PCNA)、細(xì)胞周期相關(guān)蛋白、上皮-間充質(zhì)轉(zhuǎn)化標(biāo)志物和組蛋白賴氨酸甲基化的變化,并通過(guò)生物信息學(xué)富集相關(guān)聯(lián)的功能和信號(hào)通路。SETD4蛋白主要定位于NPC細(xì)胞核中,NPC組織中SETD4陽(yáng)性表達(dá)率顯著低于NPI對(duì)照組(<0.01)?;贑RISPR/Cas9技術(shù)成功敲除了CNE2細(xì)胞的基因,獲得基因敲除的純合子細(xì)胞。與野生型(wild-type, WT)細(xì)胞株相比,敲除(knockout, KO)細(xì)胞株呈現(xiàn)更明顯的梭形和多角形,增殖活性和遷移能力均顯著增加(<0.01),E-cadherin和p21蛋白表達(dá)顯著下調(diào)(<0.05),而cyclin D1、cyclin E1、N-cadherin和vimentin蛋白表達(dá)則顯著上調(diào)(<0.05)。此外,與WT組相比,KO組細(xì)胞中H3K4me2、H3K4me3、H3K9me1、H3K27me3、H3K79me2和H4K20me2水平顯著降低(<0.05)。基因集富集結(jié)果顯示,與細(xì)胞周期的功能和信號(hào)通路相關(guān)。臨床NPC組織中SETD4蛋白的表達(dá)減弱或缺失;SETD4表達(dá)減弱通過(guò)上調(diào)細(xì)胞周期相關(guān)蛋白促進(jìn)NPC細(xì)胞增殖,通過(guò)誘導(dǎo)上皮-間充質(zhì)轉(zhuǎn)化而促進(jìn)細(xì)胞遷移;SETD4影響NPC細(xì)胞中H3K4、H3K9、H3K27、H3K79和H4K20多個(gè)位點(diǎn)的甲基化。
鼻咽癌;組蛋白甲基轉(zhuǎn)移酶;含SET結(jié)構(gòu)域蛋白4;細(xì)胞增殖;細(xì)胞遷移;基因集富集
鼻咽癌 (nasopharyngeal carcinoma, NPC)是起源于鼻咽黏膜上皮的惡性腫瘤。遺傳易感性和腫瘤微環(huán)境因素的脅迫與NPC發(fā)病和進(jìn)展有很強(qiáng)的相關(guān)性[1-2],而環(huán)境脅迫往往帶來(lái)表觀遺傳修飾的改變[3-4]。組蛋白甲基化修飾被認(rèn)為是表觀遺傳修飾中重要的方式之一[5]。含SETD結(jié)構(gòu)域蛋白4(SET domain-containing protein 4, SETD4)作為組蛋白甲基化的重要成員之一,主要由位于羧基末端的SET結(jié)構(gòu)域和位于氨基末端的底物結(jié)合結(jié)構(gòu)域組成。其中SET結(jié)構(gòu)域因其共同存在于果蠅的三個(gè)調(diào)節(jié)因子Su(var)3-9、E(z)、和Trithorax的羧基末端而得名,而含SET結(jié)構(gòu)域的蛋白統(tǒng)稱為 SET 家族蛋白[6]。SET家族蛋白普遍具有組蛋白和非組蛋白甲基化轉(zhuǎn)移酶的功能,通過(guò)甲基化的修飾作用能夠調(diào)控基因表達(dá)。課題組前期的研究提示對(duì)組蛋白H3K4,H4K20的甲基化有影響[7],但迄今對(duì)基因的功能研究相對(duì)較少,特別是有關(guān)與腫瘤關(guān)系的報(bào)道不多[8-9],本研究首次探討基因與NPC的關(guān)系,旨在基于表觀遺傳修飾角度為NPC的發(fā)病機(jī)制提供新的證據(jù)。
穩(wěn)定表達(dá)Epstein-Barr病毒潛伏膜蛋白1的低分化NPC細(xì)胞系CNE2為我室構(gòu)建。86例NPC和30例鼻咽黏膜慢性炎(chronical nasopharyngeal inflammation,NPI) 患者的石蠟包埋組織來(lái)自2017~2019年中山市人民醫(yī)院病理科保存的標(biāo)本蠟塊。NPC患者組織學(xué)類型均為非角化型未分化性癌,患者均為首次就診且未接受任何治療。NPC患者平均年齡(46±6)周歲,對(duì)照NPI患者平均年齡(45±4)周歲。臨床石蠟包埋組織標(biāo)本使用符合中山市人民醫(yī)院有關(guān)倫理規(guī)定。
RPMI-1640培養(yǎng)液(HyClone);胎牛血清(GIBCO);人Cas9過(guò)表達(dá)質(zhì)粒(賽業(yè)生物科技有限公司);SETD4 Ⅰ抗(Novus biological);β-actin Ⅰ抗(Santa Cruz);PCNA Ⅰ抗(CST);E-cadherin、N-cadherin、vimentin、cyclinA2、cyclinD1、cyclinB1、cyclinE1、細(xì)胞周期蛋白依賴性激酶(cyclin-dependent kinases)2、CDK4、CDK6、p21等Ⅰ抗均為武漢三鷹生物技術(shù)有限公司產(chǎn)品;組蛋白相關(guān)H4K20me1、H4K20me2、H4K20me3、H3K4me2、H3K4me3、H3K9me1、H3K9me2、H3K9me3、H3K27me3、H3K36me1、H3K36me2、H3K36me3、H3K79me1、H3K79me2和H3K79me3等Ⅰ抗均為Abcam產(chǎn)品;H3、H4、H3K4me1、H3K27me1和H3K27me2等Ⅰ抗均為南京Bioword產(chǎn)品。PCR引物(生工生物工程股份有限公司);細(xì)胞培養(yǎng)箱(Espec);熒光定量PCR儀(Light Cycler 480 Ⅱ);凝膠成像分析系統(tǒng)( Tanon);倒置顯微鏡(Micro Star AO)。
3.1免疫組織化學(xué)染色參照既往方法進(jìn)行[10]。簡(jiǎn)言之,臨床NPC組織與對(duì)照NPI組織標(biāo)本的石蠟包埋切片后經(jīng)系列二甲苯脫蠟和乙醇處理,切片置檸檬酸鹽緩沖液中行熱抗原修復(fù),用3% H2O2阻斷內(nèi)源性過(guò)氧化物酶阻斷劑,PBS緩沖液洗滌后滴加SETD4 Ⅰ抗(1∶500),置于4 ℃冰箱中過(guò)夜孵育,PBS溶液沖洗3 min×3次,滴加適量辣根酶標(biāo)記的羊抗小鼠/兔IgG聚合物,室溫孵育30 min,PBS溶液沖洗2 min×3次,DAB顯色;蘇木精復(fù)染;1%鹽酸分化;自來(lái)水沖洗返藍(lán);脫水,封片,鏡檢。SETD4表達(dá)評(píng)分如下,首先按陽(yáng)性細(xì)胞數(shù)評(píng)分:無(wú)陽(yáng)性細(xì)胞為0分,<10%為1分,≥10%但<50%為2分,≥50%為3分,≥75%為4分;其次按顯色強(qiáng)度評(píng)分:無(wú)著色為0分,淡黃色為1分,棕黃色為2分,棕褐色為3分。數(shù)據(jù)分析時(shí),綜合兩者分?jǐn)?shù)相乘總分≥6分為高表達(dá)。
3.2NPC細(xì)胞培養(yǎng)及基因敲除CNE2細(xì)胞用含10%胎牛血清、RPMI-1640完全培養(yǎng)液重懸,置于37 ℃、體積分?jǐn)?shù)為5%的CO2飽和濕度培養(yǎng)箱內(nèi)培養(yǎng)。每2 d換液,待貼壁細(xì)胞融合率達(dá)80%以上后,用0.25%胰酶消化傳代,待細(xì)胞擴(kuò)增至對(duì)數(shù)生長(zhǎng)期后用于相關(guān)實(shí)驗(yàn)。設(shè)計(jì)針對(duì)人基因的sgRNA并排除脫靶現(xiàn)象。CNE2細(xì)胞接種于6孔板中,待細(xì)胞生長(zhǎng)匯合至60%左右,采用電轉(zhuǎn)染法將sgRNA、Cas9過(guò)表達(dá)質(zhì)粒共轉(zhuǎn)染至CNE2細(xì)胞中。sgRNA信息:sgRNA-#1為5’-TAAAGTCCACGGTGCTCTTTAGG-3’, sgRNA-#2為5’-CATGAGACCCCTCATACTCTTGG-3’。72 h后將細(xì)胞胰酶消化后以每孔一個(gè)細(xì)胞接種于96孔板,常規(guī)換液,待細(xì)胞長(zhǎng)出單克隆后進(jìn)行基因型鑒定。對(duì)初步鑒定為純合子的2B9和2C10克隆再次進(jìn)行DNA測(cè)序驗(yàn)證。提取2B9和2C10細(xì)胞mRNA,再進(jìn)行mRNA表達(dá)的檢測(cè)。后續(xù)細(xì)胞學(xué)實(shí)驗(yàn)均以被敲除的2B9細(xì)胞為敲除(knock out,KO)組、以未敲除的CNE2細(xì)胞為野生型(wild type,WT)組進(jìn)行。
3.3CCK-8法檢測(cè)細(xì)胞的增殖活性參考既往方法進(jìn)行操作[11]。細(xì)胞按每孔2×103個(gè)/接種于96孔板內(nèi),過(guò)夜孵育貼壁。按貼壁后培養(yǎng)時(shí)間0 h、24 h、48 h及72 h每孔加入10 μL CCK-8試劑,37 ℃繼續(xù)孵育2 h,酶標(biāo)儀上讀取450 nm 吸光度(),每組5個(gè)復(fù)孔,實(shí)驗(yàn)重復(fù)3次。
3.4Transwell實(shí)驗(yàn)參考既往方法進(jìn)行操作[11]。用含0.5%胎牛血清的RMPI-1640培養(yǎng)液重懸細(xì)胞,取2×104個(gè)細(xì)胞接種于Transwell小室上室,總體積200 μL,下室中加含10%胎牛血清的RPMI-1640培養(yǎng)液500 μL;將24孔板置于37 ℃、5% CO2、飽和濕度的培養(yǎng)箱內(nèi)孵育24 h,棄去培養(yǎng)液,用PBS洗2次,4%多聚甲醛固定20 min,吸走多聚甲醛,用干凈的棉簽擦拭小室內(nèi)表面,加入0.1%結(jié)晶紫染液染色30 min;用棉簽小心擦除小室的上室面細(xì)胞,顯微鏡下觀察并拍照。以穿膜的細(xì)胞數(shù)差異代表細(xì)胞運(yùn)動(dòng)能力的改變。每張膜選5個(gè)固定視野,計(jì)算平均細(xì)胞數(shù),每組重復(fù)3孔。
3.5PCR采用哺乳動(dòng)物基因組DNA提取試劑盒提取細(xì)胞DNA,PCR檢測(cè)基因的DNA片段以分析細(xì)胞的基因型。PCR反應(yīng)引物F1:5'-CTCACAGGAACAGCTGGAG-3'; R1:5'-ACAAGGCTGAAGCTGGATGT-3';F2:5'-CAGGTTGTGGGTCTTGGAAC-3';R2:5'-CATATGTACACATCTGAGTGCAAG-3';PCR反應(yīng)Tm值為62 ℃,按F1-R1,F(xiàn)2-R2和F1-R2引物組進(jìn)行PCR反應(yīng)。提取細(xì)胞總RNA,取1.0 μg總RNA逆轉(zhuǎn)錄為cDNA,采用半定量RT-PCR鑒定基因敲除單克隆細(xì)胞中mRNA水平。SETD4上游引物為5'-CTGAAGAGCAGAGAGCCCAC-3',下游引物為5'-ACGCTGCTTTTACCTGGACAT-3',產(chǎn)物長(zhǎng)度260 bp。β-actin上游引物為5'-GGGAAATCGTGCGTGACATT-3',下游引物為5'-ACAGGACTCCATGCCCAGG-3',產(chǎn)物長(zhǎng)度200 bp, Tm值均為60 ℃。采用定量PCR檢測(cè)PCNA mRNA的水平,PCNA上游引物為5'-TCCCTTACGCAAGTCTCAGC-3',下游引物為5'-GAGTCCATGCTCTGCAGGTT-3',Tm值為60 ℃;內(nèi)參照β-actin引物同上。
3.6Western blot參考既往方法進(jìn)行操作[12-13]。提取細(xì)胞總蛋白,用BCA法定量,取50.0 μg蛋白用于凝膠電泳;待凝膠中的蛋白轉(zhuǎn)移至PVDF膜后,用5%封閉液封閉1 h后加入Ⅰ抗,抗體稀釋比例如下:PCNA(1∶500)、cyclin A2(1∶500)、cyclin B1(1∶500)cyclin D1,(1∶500)、cyclin E1(1∶500)、CDK2(1∶500)、CDK4(1∶500)、CDK6(1∶500)、p21(1∶500)、E-cadherin(1∶500)、N-cadherin(1∶500)、vimentin(1∶500)、H4(1∶800)、H4K20me1(1∶5 000)、H4K20me2(1∶2 000)、H4K20me3,(1∶1 000)、H3(1∶500)、H3K4me1(1∶1 000)、H3K4me2(1∶2 000)、H3K4me3(1∶1 000)、H3K9me1(1∶20 000)、H3K9me2(1∶1 000)、H3K9me3(1∶1 000)、H3K27me1(1∶1 000)、H3K27me2(1∶1 000)、H3K27me3(1∶1 000)、H3K36me1(1∶1 000)、H3K36me2(1∶10 000)、H3K36me3(1∶5 000)、H3K79me1(1∶10 000)、H3K79me2(1∶2 500)、H3K79me3(1∶1 000)、β-actin(1∶500)。條帶置于4 ℃條件下過(guò)夜孵育,TBST洗滌3遍后加入HRP標(biāo)記的IgG(1∶2 000)置于搖床上室溫孵育1 h,洗滌后經(jīng)ECL發(fā)光液顯影,凝膠成像分析系統(tǒng)掃描獲得目的蛋白條帶。實(shí)驗(yàn)重復(fù)3次。
3.7基因集富集分析由于TCGA數(shù)據(jù)庫(kù)中缺乏鼻咽癌這一組織類型,本研究選取TCGA數(shù)據(jù)庫(kù)頭頸部鱗癌中患者的表達(dá)數(shù)據(jù),使用R語(yǔ)言計(jì)算與所有基因的相關(guān)性,以<0.05和矯正后<0.25為閾值,使用R語(yǔ)言clusterprofiler包(4.1.3版本)進(jìn)行基因集富集分析,包括GO(gene oncology)功能和KEGG(Kyoto Encyclopedia of Genes and Genomes)信號(hào)通路,將排名前20的GO功能和KEGG信號(hào)以波浪圖展示。
采用統(tǒng)計(jì)軟件GraphPad Prism 8.0進(jìn)行統(tǒng)計(jì)分析。臨床標(biāo)本中SETD4蛋白表達(dá)情況的比較采用卡方檢驗(yàn)。體外實(shí)驗(yàn)各組數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,兩組間比較采用非配對(duì)檢驗(yàn),以<0.05為差異有統(tǒng)計(jì)學(xué)意義?;蚣患治鲋袘?yīng)用R語(yǔ)言包將每個(gè)基因集的富集分?jǐn)?shù)標(biāo)準(zhǔn)化,通過(guò)計(jì)算偽發(fā)現(xiàn)率(false discovery rate, FDR) 值來(lái)控制假陽(yáng)性率,以<0.05且FDR<0.25為差異有統(tǒng)計(jì)學(xué)意義。
對(duì)86例NPC和30例NPI組織進(jìn)行免疫組化檢測(cè),結(jié)果如圖1所示,SETD4蛋白表達(dá)為細(xì)胞核、細(xì)胞質(zhì)出現(xiàn)陽(yáng)性信號(hào),以細(xì)胞核表達(dá)為主;臨床 NPC組織中SETD4強(qiáng)陽(yáng)性表達(dá)率(16/86,18.6%)顯著低于NPI對(duì)照組(22/30,73.3%),差異有統(tǒng)計(jì)學(xué)意義(<0.01)。鑒于NPC中SEDT4蛋白表達(dá)較對(duì)照組明顯下降且總體陽(yáng)性率不高,故本研究中未進(jìn)一步分析SETD4蛋白與NPC患者臨床參數(shù)的相關(guān)性。
Figure 1. The expression of SETD4 protein in clinical nasopharyngeal carcinoma and control tissues was detected by immunohistochemistry staining. A: representative cases with different levels of SETD4 protein expression [SETD4 protein was mainly localized in the nuclei of the epithelial cells of nasopharyngeal mucosa and nasopharyngeal carcinoma tumor cells; the lower panels (scale bar=50 μm) are the magnified visual field of the boxes in the upper panels (scale bar=100 μm)]; B: number of cases with high and low expression of SETD4 protein in NPC and NPI tissues (Chi square test; data were expressed as the sample's numbers; **P<0.01).
應(yīng)用CRISPR/Cas9技術(shù)對(duì)NPC細(xì)胞中基因進(jìn)行編輯后挑選單克隆細(xì)胞進(jìn)行DNA測(cè)序和半定量PCR驗(yàn)證,結(jié)果顯示,成功篩選到2株基因敲除的純合子細(xì)胞(2B9和2C10),選擇其中的2B9細(xì)胞作為KO組進(jìn)行后續(xù)實(shí)驗(yàn),見圖2。
Figure 2. Construction of SETD4 gene knockout NPC cell lines using CRISPR/Cas9 technique. A: schematic diagram of targeted knockout of exon 4 of SETD4 gene and genotype identification; B: genotyping strategy and PCR product size of SETD4 knockout cell lines [the wild type (WT, +/+), heterozygote (+/-) and homozygote (-/-) were determined according to the size of PCR products using different primer groups]; C: agarose electrophoresis image of PCR products for genotype identification of monoclonal cell lines; D: DNA sequencing results of typical SETD4 knockout monoclonal cell lines (the number in red font indicates the length of the deleted DNA fragment of SETD4 gene in these two monoclonal cell lines); E: semi-quantitative RT-PCR detection of SETD4 mRNA levels in SETD4 knockout monoclonal cell lines and wild-type cells (no target bands in PCR product indicates the SETD4 knockout monoclonal cells).
CCK-8實(shí)驗(yàn)結(jié)果表明,KO組細(xì)胞的增殖活性除第24 h較WT組有所減緩?fù)?,隨著培養(yǎng)時(shí)間的延長(zhǎng),KO組細(xì)胞增殖活性顯著高于WT組(<0.01)。進(jìn)一步通過(guò)定量PCR檢測(cè)了細(xì)胞增殖標(biāo)志物PCNA的表達(dá),結(jié)果提示KO組PCNA mRNA水平高于WT組(<0.01)。通過(guò)Western blot檢測(cè)PCNA和細(xì)胞周期相關(guān)蛋白的表達(dá),結(jié)果顯示KO組PCNA、cyclin D1和cyclin E1水平較WT組顯著增加(<0.05),p21水平下降(<0.05),見圖3。
Figure 3. Knockout of SETD4 gene in NPC cells promoted cell proliferation. A: the cell proliferation in SETD4 KO group and WT group was detected by CCK-8 assay; B: quantitative RT-PCR was used to detect the level of PCNA mRNA in WT and SETD4 KO cell lines; C: the expression levels of cell cycle-associated proteins were detected by Western blot. Mean±SD. n=3. *P<0.05, **P<0.01 vs WT group.
KO組細(xì)胞的形態(tài)較WT組出現(xiàn)更明顯的多角形和短梭形(圖4A)。通過(guò)Western blot檢測(cè)上皮-間充質(zhì)轉(zhuǎn)化相關(guān)蛋白的表達(dá),觀察到KO后顯著增加了N-cadherin和vimentin蛋白的表達(dá)(<0.05),顯著減少了E-cadherin蛋白的表達(dá)(<0.05)。功能上,KO細(xì)胞較WT組細(xì)胞遷移能力顯著增加(<0.01),見圖4。
Figure 4. SETD4 gene knockout induced epithelial-mesenchymal transition in NPC cells. A: representative morphological images of WT group and SETD4 knockout group (compared with WT cells, SETD4 knockout cells showed more obviously spindle and polygonal morphology); B: Western blot detection of protein levels of epithelial-mesenchymal transition-related markers including E-cadherin, N-cadherin and vimentin; C: representative images and quantification analysis for cell migration in WT and SETD4 knockout cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs WT group.
采用Western blot對(duì)常見組蛋白H3和H4的某些位點(diǎn)的賴氨酸甲基化水平進(jìn)行了檢測(cè),結(jié)果表明,表達(dá)缺失顯著減弱了NPC細(xì)胞中H3K4me2、H3K4me3、H3K9me1、H3K27me3、H3K79me2和H4K20me2蛋白水平,而對(duì)其他位點(diǎn)如H3K39me1、H3K39me2、H3K39me3、H3K4me1、H3K9me2、H3K9me3、H3K27me1、H3K39me2、H3K79me1、H3K79me3、H4K20me1和H4K20me3蛋白表達(dá)無(wú)明顯影響,見圖5。
Figure 5. The effect of SETD4 knockout on methylation of histone lysine sites in NPC cells detected by Western blot. Mean±SD. n=3. *P<0.05 vs WT group.
與關(guān)聯(lián)的GO功能主要有DNA復(fù)制(DNA replication)、姐妹染色體分離(sister chromatid segregation)、細(xì)胞周期檢查點(diǎn)信號(hào)(cell cycle checkpoint signaling)、有絲分裂細(xì)胞周期(mitotic cell cycle)、有絲分裂細(xì)胞周期G2/M轉(zhuǎn)換(G2/M transition of mitotic cell cycle)和有絲分裂細(xì)胞周期G1/S轉(zhuǎn)換(G1/S transition of mitotic cell cycle)等。KEGG信號(hào)主要涉及錯(cuò)配修復(fù)(mismatch repair)、細(xì)胞周期(cell cycle)、同源重組(homologous recombination)、泛素化介導(dǎo)的蛋白降解(ubiquitin mediated proteolysis)等,見圖6。
Figure 6. SETD4-related GO annotations and KEGG signaling pathways in head and neck squamous cell carcinoma (HNSC). Datasets of HSNC patients in TCGA database were selected, the correlation between SETD4 and genes were calculated using R language cluster profiler package (version 4.13), and those genes with P<0.05 were extracted for GSEA enrichment analysis of GO annotations (A) and KEGG signaling pathways (B), and the top 20 results based on p.adjust values and normalize enrichment scores were displayed.
基因位于第21號(hào)染色體q22.12上,它編碼的SETD4蛋白為全細(xì)胞分布,以胞核和胞質(zhì)為主,且SETD4蛋白在多種細(xì)胞中均有表達(dá),因其種屬及組織來(lái)源的不同表達(dá)特征有所差別[14],可通過(guò)調(diào)節(jié)多種基因的表達(dá)影響細(xì)胞功能并參與多種疾病的發(fā)生發(fā)展[15]??傮w上,目前對(duì)基因的功能研究甚少,有研究揭示了其在鹵蟲滯育形成期間發(fā)揮著重要作用[16]。而在哺乳動(dòng)物體內(nèi),研究人員觀察到通過(guò)上調(diào)炎癥細(xì)胞因子的產(chǎn)生,在宿主抵抗感染的先天免疫反應(yīng)中發(fā)揮重要作用[17]。有關(guān)與腫瘤關(guān)系的報(bào)道不多。有報(bào)道顯示表達(dá)異常與乳腺癌有關(guān)[8-9],最近研究表明,成年小鼠的缺失延長(zhǎng)了輻射誘導(dǎo)的T淋巴瘤的生存期[18]。截止當(dāng)前尚未見有關(guān)與NPC關(guān)系的研究。因此,闡明表達(dá)異常與NPC的關(guān)系,可能為基于表觀遺傳角度NPC的發(fā)病機(jī)制提供新的實(shí)驗(yàn)依據(jù)。
本研究首次顯示,SETD4蛋白在臨床NPI標(biāo)本中普遍呈高表達(dá),陽(yáng)性信號(hào)以胞核定位為主。相反,NPC組織中SETD4蛋白則呈低水平表達(dá)或不表達(dá),這一結(jié)果提示NPC中SETD4蛋白表達(dá)丟失可能在NPC病理生理過(guò)程中發(fā)揮重要作用。從蛋白的表達(dá)定位來(lái)看,SETD4主要定位于胞核,這與其組蛋白甲基化調(diào)控功能所需的細(xì)胞核定位是一致的。為進(jìn)一步明確在NPC中的生物學(xué)功能,應(yīng)用課題組前期已經(jīng)掌握的CRISPR/Cas9基因組編輯技術(shù)[19],我們對(duì)CNE2細(xì)胞中的基因進(jìn)行了敲除。CRISPR/Cas9 基因編輯系統(tǒng)可以靶向剪切DNA雙鏈從而獲得特定基因敲除的模式細(xì)胞或動(dòng)物,也可進(jìn)行基因特異位點(diǎn)的敲入,從而獲得特異基因過(guò)表達(dá)模式細(xì)胞或動(dòng)物[20]。實(shí)驗(yàn)結(jié)果證實(shí)成功獲得了基因敲除的NPC細(xì)胞,且未發(fā)現(xiàn)其他的脫靶效應(yīng)(未發(fā)表資料),這為后續(xù)研究奠定了細(xì)胞模型基礎(chǔ)。
實(shí)驗(yàn)從多個(gè)角度對(duì)基因敲除后的NPC細(xì)胞的增殖活性進(jìn)行了探討。首先,基于CCK-8實(shí)驗(yàn)檢測(cè)到敲除后有利于細(xì)胞的增殖活性增加;其次從增殖細(xì)胞的代表性標(biāo)志基因的表達(dá)上看,基因敲除從轉(zhuǎn)錄和翻譯水平上均上調(diào)了mRNA和蛋白的表達(dá);再次,考慮到細(xì)胞周期與細(xì)胞增殖的密切關(guān)系,本研究中檢測(cè)了細(xì)胞周期相關(guān)蛋白的表達(dá),結(jié)果顯示基因敲除增加了NPC細(xì)胞中cyclinD1和cyclinE1并下調(diào)了P21蛋白的表達(dá);因此,表達(dá)缺失可以通過(guò)調(diào)節(jié)細(xì)胞周期相關(guān)因子的表達(dá)參與細(xì)胞增殖的調(diào)控。2013年Faria等[9]首先報(bào)道在乳腺癌細(xì)胞中SETD4蛋白表達(dá)可以通過(guò)調(diào)控cyclinD1的表達(dá)而介導(dǎo)細(xì)胞的增殖;然而有研究指出,分化成熟的乳腺癌細(xì)胞中SETD4蛋白表達(dá)水平低,而靜止期的乳腺癌干細(xì)胞中SETD4蛋白表達(dá)水平顯著增加[8]。也有報(bào)道進(jìn)一步提示,基因敲除有利于骨髓干細(xì)胞的增殖從而恢復(fù)放射損傷后的骨髓功能[21],這些前期報(bào)道提示表達(dá)增加與干細(xì)胞的增殖活性增強(qiáng)有關(guān)。我們當(dāng)前的研究支持表達(dá)缺失促進(jìn)NPC細(xì)胞的增殖的現(xiàn)象,但我們猜測(cè)與NPC干細(xì)胞也存在某種聯(lián)系。因此,很可能調(diào)節(jié)細(xì)胞增殖的功能存在細(xì)胞類型或微環(huán)境的差異。
侵襲和轉(zhuǎn)移是惡性腫瘤的基本特征[22],而上皮-間充質(zhì)轉(zhuǎn)化是上皮細(xì)胞惡性腫瘤侵襲和轉(zhuǎn)移的早期事件。本研究表明,基因敲除后賦予了NPC細(xì)胞更明顯的間充質(zhì)細(xì)胞形態(tài);從基因表達(dá)上顯示敲除有利間充質(zhì)表型基因的上調(diào)表達(dá);從功能上看,基因敲除增強(qiáng)了NPC的遷移能力。因此,NPC細(xì)胞中表達(dá)缺陷可能通過(guò)誘導(dǎo)腫瘤細(xì)胞出現(xiàn)上皮-間充質(zhì)轉(zhuǎn)化而促進(jìn)其侵襲和轉(zhuǎn)移。但相關(guān)機(jī)制目前尚不清楚,很可能組蛋白的甲基化修飾程度的差異在基因的轉(zhuǎn)錄調(diào)控上發(fā)揮了重要的作用。
組蛋白甲基轉(zhuǎn)移酶可將甲基轉(zhuǎn)移到組蛋白的賴氨酸殘基上,被添加的甲基基團(tuán)主要位于H3K4、H3K9、H3K27、H3K36、H3K79及H4K20上。本研究顯示,基因敲除后伴隨H3K4me2、H3K4me3、H3K9me1、H3K27me3、H3K79me2和H4K20me2的表達(dá)水平的顯著下降,提示NPC中參與了H3K4、H3K9、H3K36、H3K79及H4K20等多個(gè)賴氨酸位點(diǎn)的甲基化修飾,而這些組蛋白賴氨酸甲基化同時(shí)涉及了單甲基化、二甲基化和三甲基化。有關(guān)SETD4調(diào)控H4K20和H3K4的甲基化程度已有報(bào)道[9, 16-17],本研究結(jié)果提示可能參與調(diào)控除H4K20和H3K4外其他多個(gè)位點(diǎn)的組蛋白賴氨酸的甲基化,拓展了SETD4靶點(diǎn)的研究。有觀點(diǎn)認(rèn)為,H3K27、H3K9、H4K20、H3K79和H2BK5的單甲基化都與基因激活有關(guān),而H3K27、H3K9和H3K79的三甲基化與基因抑制有關(guān)[23-24]。因此,NPC細(xì)胞中基因敲除后對(duì)基因組表達(dá)調(diào)控非常復(fù)雜,具體基因的表達(dá)調(diào)控后期可以通過(guò)ChIP測(cè)序?qū)嶒?yàn)來(lái)進(jìn)行篩選。
最后,進(jìn)一步采用TCGA數(shù)據(jù)庫(kù),實(shí)驗(yàn)分析了可能涉及的功能和信號(hào)通路。由于TCGA數(shù)據(jù)庫(kù)缺乏鼻咽癌這一組織類型,我們以頭頸部鱗癌為例進(jìn)行了探討,結(jié)果顯示,關(guān)聯(lián)的功能大多數(shù)與細(xì)胞有絲分裂、細(xì)胞周期轉(zhuǎn)換有關(guān),且在信號(hào)通路中也富集到細(xì)胞周期這一信號(hào),這些結(jié)果充分提示與細(xì)胞增殖活性存在一定的關(guān)系??紤]到NPC是頭頸部鱗癌的一種特殊類型,因此我們推斷,表達(dá)異??赏ㄟ^(guò)干擾細(xì)胞周期來(lái)影響NPC的增殖與活性。
總之,本研究首次觀察到,相對(duì)于良性對(duì)照組織,臨床NPC組織中SEDT4蛋白表達(dá)呈明顯的減弱或缺失狀態(tài),而SETD4蛋白的表達(dá)不足顯著促進(jìn)了NPC細(xì)胞增殖和遷移。表達(dá)不足影響NPC細(xì)胞基因表達(dá)可能與其影響多個(gè)組蛋白賴氨酸甲基化修飾有關(guān),并可能重點(diǎn)影響了細(xì)胞的周期進(jìn)程。后期還需要優(yōu)化體外細(xì)胞學(xué)實(shí)驗(yàn)和增加動(dòng)物實(shí)驗(yàn)來(lái)進(jìn)一步驗(yàn)證。
[1] Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192):64-80.
[2] Wong KCW, Hui EP, Lo KW, et al. Nasopharyngeal carcinoma: an evolving paradigm[J]. Nat Rev Clin Oncol, 2021, 18(11):679-695.
[3] García-Giménez JL, Garcés C, Romá-Mateo C, et al. Oxidative stress-mediated alterations in histone post-translational modifications[J]. Free Radic Biol Med, 2021, 170:6-18.
[4] Kubota T. Epigenetic alterations induced by environmental stress associated with metabolic and neurodevelopmental disorders[J]. Environ Epigenet, 2016, 2(3):dvw017.
[5] Zhang Y, Sun Z, Jia J, et al. Overview of histone modification[J]. Adv Exp Med Biol, 2021, 1283:1-16.
[6]邢敬慈, 揭偉. 甲基轉(zhuǎn)移酶SET結(jié)構(gòu)域家族及其在心血管發(fā)育和疾病中的作用[J]. 浙江大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2022, 51(2):251-260.
Xing JC, Jie W. Methyltransferase SET domain family and its relationship with cardiovascular development and diseases[J]. J Zhejiang Univ (Med Sci), 2022, 51(2):251-260.
[7] Liao X, Wu C, Shao Z, et al. SETD4 in the proliferation, migration, angiogenesis, myogenic differentiation and genomic methylation of bone marrow mesenchymal stem cells[J]. Stem Cell Rev Rep, 2021, 17(4):1374-1389.
[8] Ye S, Ding YF, Jia WH, et al. SET domain-containing protein 4 epigenetically controls breast cancer stem cell quiescence[J]. Cancer Res, 2019, 79(18):4729-4743.
[9] Faria JA, Corrêa NC, de Andrade C, et al. SET domain-containing protein 4 (SETD4) is a newly identified cytosolic and nuclear lysine methyltransferase involved in breast cancer cell proliferation[J]. J Cancer Sci Ther, 2013, 5(2):58-65.
[10] Wu Y, Shen Z, Wang K, et al. High FMNL3 expression promotes nasopharyngeal carcinoma cell metastasis: role in TGF-β1-induced epithelia-to-mesenchymal transition[J]. Sci Rep, 2017, 7:42507.
[11] Shen Z, Liao X, Shao Z, et al. Short-term stimulation with histone deacetylase inhibitor trichostatin a induces epithelial-mesenchymal transition in nasopharyngeal carcinoma cells without increasing cell invasion ability[J]. BMC Cancer, 2019, 19(1):262.
[12]袁建玲, 邵鐘銘, 鄒園, 等. 血清反應(yīng)因子N端片段對(duì)鼻咽癌細(xì)胞增殖及遷移能力的影響[J]. 中國(guó)病理生理雜志, 2022, 38(3):535-542.
Yuan JL, Sao ZM, Zou Y, et al. Effects of N-terminal fragment of serum response factor on proliferation and migration of nasopharyngeal carcinoma cells[J]. Chin J Pathophysiol, 2022, 38(3):535-542.
[13] 邵鐘銘, 王可可, 廖曉敏, 等. 低氧誘導(dǎo)c-Kit+骨髓間充質(zhì)干細(xì)胞增殖及旁分泌中ROCK信號(hào)的作用[J]. 中國(guó)組織工程研究, 2019, 23(21):3281-3288.
Shao ZM, Wang KK, Liao XM, et al. Roles of ROCK signaling in proliferation and paracrine action of hypoxia-induced c-Kit+bone marrowmesenchymal stem cells[J]. Chin J Tis Eng Res, 2019, 23(21):3281-3288.
[14] 葉萍, 蔡軍偉, 付曉霞, 等. p38信號(hào)通路對(duì)SETD4在細(xì)胞中的表達(dá)和定位的影響[J]. 中國(guó)病理生理雜志, 2012, 28(5):878-883.
Ye P, Cai JW, Fu XX, et al. Effects of p38 MAPK on SETD4 expression and location in p38+/+and p38-/-cells treated with sodium arsenite[J]. Chin J Pathophysiol 2012, 28(5):878-883.
[15] Tran K, Jethmalani Y, Jaiswal D, et al. Set4 is a chromatin-associated protein, promotes survival during oxidative stress, and regulates stress response genes in yeast[J]. J Biol Chem, 2018, 293(37):14429-14443.
[16] Dai L, Ye S, Li HW, et al. SETD4 regulates cell quie-scence and catalyzes the trimethylation of H4K20 during diapause formation in artemia[J]. Mol Cell Biol, 2017, 37(7):e00453-16.
[17] Zhong Y, Ye P, Mei Z, et al. The novel methyltransfe-rase SETD4 regulates TLR agonist-induced expression of cytokines through methylation of lysine 4 at histone 3 in macrophages[J]. Mol Immunol, 2019, 14:179-188.
[18] Feng X, Lu H, Yue J, et al. Loss of Setd4 delays radiation-induced thymic lymphoma in mice[J]. DNA Repair (Amst), 2020, 86:102754.
[19] 王思思, 廖曉敏, 邵鐘銘, 等. 基于CRISPR/Cas9技術(shù)構(gòu)建SETD2基因敲除鼻咽癌細(xì)胞株并分析其增殖特性[J]. 中國(guó)病理生理雜志, 2018, 34(12):2172-2179.
Wang SS, Liao XM, Shao ZZ, et al. Construction ofgene knockout nasopharyngeal carcinoma cell strains using CRISPR/Cas9 technique and analysis of their proliferation property[J]. Chin J Pathophysiol, 2018, 34(12):2172-2179.
[20] Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405):866-869.
[21] Feng X, Lu H, Yue J, et al. Deletion of mouse Setd4 promotes the recovery of hematopoietic failure[J]. Int J Radiat Oncol Biol Phys, 2020, 107(4):779-792.
[22] Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1):31-46.
[23] Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome[J]. Cell, 2007, 129(4):823-837.
[24] Kimura H. Histone modifications for human epigenome analysis[J]. J Hum Genet, 2013, 58(7):439-445.
Effect of histone methyltransferase SETD4 on proliferation and migration of nasopharyngeal carcinoma cells
FENG Muyin1, ZHENG Axiu1▲, BAI Jianrong1, ZENG Yumei4, LUO Botao1, SHEN Zhihua1△, JIE Wei1,2,3△
(1,,,524023,;2,,570102,;3,571199,;4,,528400,)
To clarify the expression of histone methyltransferase SET-domain-containing protein 4 (SETD4) in clinical nasopharyngeal carcinoma (NPC) tissues, and to analyze the effect of SETD4 on the proliferation and migration of NPC cells.The protein levels of SETD4 in clinical 86 cases of NPC and 30 cases of control nasopharyngeal chronic inflammation (NPI) tissues was detected by immunohistochemistry. Thegene in CNE2 cells was knocked out based on CRISPR/Cas9 technology. The genotypes were identified by DNA sequencing and semi-quantitative RT-PCR. The morphology of cells was observed by inverted microscope, the proliferation activity of cells was analyzed by CCK-8 assay, and the changes in cell migration ability were assessed by Transwell assay. Proliferating cell nuclear antigen (PCNA),cell cycle-related proteins, markers of epithelial-mesenchymal transition and histone lysine methylationwere detected by Western blot. Finally, SETD4-associated functions and signaling pathways were enriched by bioinformatics.SETD4 protein was mainly localized in the nuclei of NPC cells, and the positive expression rate of SETD4 protein in NPC tissue was significantly lower than that in NPI control group (<0.01). Based on CRISPR/Cas9 technology, thegene in CNE2 was successfully knocked out, and homozygous cell lines were obtained. Compared with wild type (WT) cells,knock out (KO)cells showed more obvious spindle and polygonal shapes, and the proliferation and migration ability were significantly increased (<0.01), the expression of E-cadherin and p21 protein were significantly down-regulated (<0.05), while cyclin D1, cyclin E1, N-cadherin, and vimentin protein expressions were significantly up-regulated (<0.05). In addition, the levels of H3K4me2,H3K4me3, H3K9me1,H3K27me3, H3K79me2 and H4K20me2 were decreased in KO group compared with WT group (<0.05).Gene sets enrichment results showed thatwas associated with functions and signaling pathways related to cell cycle.The expression of SETD4 in clinical NPC tissues is generally attenuated or absent. The SETD4 mainly promotes NPC cell proliferation by mediating cell cycle-related proteins, and provokes cell migration by inducing epithelial-mesenchymal transition. The SETD4mainly affects the methylation of H3K4, H3K9, H3K27, H3K79 and H4K20 in NPC cells.
nasopharyngeal carcinoma; histone methyltransferase; SET domain-containing protein 4; cell proliferation; cell migration; gene set enrichment
R363.2; R739.6
A
10.3969/j.issn.1000-4718.2023.02.008
1000-4718(2023)02-0259-10
2022-07-15
2022-11-29
[基金項(xiàng)目]廣東省揚(yáng)帆計(jì)劃高層次人才項(xiàng)目(No. 4YF16007G)
申志華 Tel: 0759-2388587; E-mail: szh75@126.com; 揭偉 Tel: 0898-66968217; E-mail: wei_jie@hainmc.edu.cn
▲并列共同第一作者:第一作者
(責(zé)任編輯:余小慧,李淑媛)