王壯壯,董邵云,周琪,苗晗,劉小萍,徐奎鵬,顧興芳,張圣平
黃瓜果實維生素C合成關(guān)鍵基因克隆與分析
1中國農(nóng)業(yè)科學院蔬菜花卉研究所/農(nóng)業(yè)農(nóng)村部園藝作物生物學與種質(zhì)創(chuàng)制重點實驗室/蔬菜生物育種全國重點實驗室,北京 100081;2青島農(nóng)業(yè)大學園藝學院,山東青島 266000
【目的】鑒定調(diào)控黃瓜果實中L-半乳糖途徑維生素C(Vc)合成相關(guān)基因的位置、數(shù)量及表達特征,同時對關(guān)鍵基因進行克隆分析,旨在為黃瓜果實中Vc合成調(diào)控研究奠定基礎(chǔ)?!痉椒ā扛鶕?jù)已報道的擬南芥中L-半乳糖途徑合成Vc相關(guān)基因,利用蛋白編碼的氨基酸序列在黃瓜9930_V2參考基因組數(shù)據(jù)庫中進行BLAST比對,確定黃瓜中的同源基因,借助TBtools軟件繪制基因在染色體上的位置。通過qRT-PCR分析上述基因在果實Vc含量差異顯著的兩份黃瓜材料中的表達量。利用PCR擴增對限速酶GDP-L-半乳糖磷酸化酶(GGP)及GDP-甘露糖-3′ 5′-差向酶(GME)同源基因進行克隆,測序分析這些基因在高Vc含量與低Vc含量黃瓜果實中的序列差異。構(gòu)建系統(tǒng)進化樹,分析黃瓜果實GME、GGP與其他物種中同源基因的親緣關(guān)系?!窘Y(jié)果】在黃瓜基因組中比對到21個參與L-半乳糖途徑合成Vc相關(guān)酶PMI、PMM、GMPase、GME、GGP、GPP、GalDH、GalLDH的同源基因,7條染色體均有分布,在5號染色體和1號染色體上分布最多。通過對21個基因在兩份果實Vc含量高低差異顯著的兩份材料CG45(高Vc含量)和R48(低Vc含量)的表達量分析,發(fā)現(xiàn)調(diào)控PMI、PMM、GMPase、GME、GalLDH這5個酶的基因在CG45和R48中有極顯著的表達差異。對Vc合成限速酶GGP和GME相關(guān)基因在CG45和R48兩份材料中進行克隆發(fā)現(xiàn),在R48中基因全長為3 537 bp,在CG45中基因全長為3 541 bp,該基因在兩份材料存在多個SNP位點差異和Indel差異,有一個突變位點位于CDS區(qū),且導致了氨基酸序列的改變。通過對調(diào)控Vc合成限速酶GME、GGP蛋白性質(zhì)分析,發(fā)現(xiàn)限速酶GME、GGP在不同物種的蛋白性質(zhì)差異不大,均為親水性蛋白,功能相對保守。進化樹分析發(fā)現(xiàn)不同物種親緣關(guān)系較近的聚類在一起,進化過程高度保守?!窘Y(jié)論】鑒定出21個分布于7條染色體上的黃瓜果實Vc合成的L-半乳糖途徑相關(guān)基因,推測關(guān)鍵酶PMI、PMM、GMPase、GME、GalLDH、GGP可能影響黃瓜果實中Vc含量變化,調(diào)控Vc合成限速步驟關(guān)鍵酶GME、GGP功能相對保守,Vc合成限速步驟關(guān)鍵酶GME基因在高Vc和低Vc兩份材料中的一個SNP位點變異導致氨基酸序列的變化。
黃瓜;Vc;基因克??;表達分析
【研究意義】維生素C(Vc)是一種水溶性維生素,廣泛存在于植物體內(nèi),參與植物細胞分裂和細胞膨大等生長發(fā)育過程[1],在植物抗逆如抗鹽[2]、抗旱[3]、抗寒[4]等方面發(fā)揮著重要作用。Vc是人體維持正常生命活動不可缺少的營養(yǎng)元素,由于人體編碼Vc生物合成最后一步酶的基因突變或缺失已演變?yōu)闊o功能狀態(tài),因此只能依賴飲食供應[5],因Vc還原態(tài)具有治療壞血病的作用,因此又稱其抗壞血酸(ascorbic acid,AsA)。植物普遍都能合成Vc,不同植物的Vc含量并不相同,且同類植物不同品種、不同發(fā)育階段Vc含量也有很大差異[6-7]。由于Vc極易被氧化,蒸煮會導致蔬菜Vc破壞嚴重[8],生食蔬果是補充Vc的最佳途徑。黃瓜是我國重要的蔬菜產(chǎn)品,2021年,我國黃瓜年均播種面積129.25萬hm2、產(chǎn)量7 559.77萬t[9],生產(chǎn)規(guī)模位居世界前列。黃瓜以生食為主,生食可以使黃瓜中的Vc最大程度被人體攝入。提高果實中Vc含量的目的是提高人體Vc攝入量,對黃瓜而言,花后10 d左右的瓜是人們最佳食用的商品瓜,鑒定該階段限制黃瓜果實中Vc含量關(guān)鍵基因?qū)μ岣唿S瓜中Vc含量有重要意義。【前人研究進展】目前,植物體Vc合成途徑研究較為深入,L-半乳糖途徑[10]、肌醇途徑[11]、D-半乳糖醛酸途徑[12]和L-古洛糖途徑[13]是被眾多學者論證的途徑。大量研究表明,L-半乳糖途徑顯著影響植物中Vc含量,很多學者也都在圍繞此途徑展開對植物體Vc合成機制的研究。隨著編碼L-半乳糖-1-磷酸化酶(GGP)的兩個基因和的發(fā)現(xiàn)[14-15],L-半乳糖途徑的所有關(guān)鍵酶基因都已確定,途徑涉及的酶包括甘露糖-6-磷酸異構(gòu)酶(PMI)、甘露糖磷酸變位酶(PMM)、GDP-甘露糖焦磷酸化酶(GMPase)、GDP-甘露糖-3′5′-差向酶(GME)、GDP-L-半乳糖磷酸化酶(GGP)、L-半乳糖-1-磷酸化酶(GPP)、L-半乳糖脫氫酶(GalDH)、L-1,4-半乳糖內(nèi)酯脫氫酶(GalLDH)。L-半乳糖途徑中,GGP是L-半乳糖途徑最主要的限速酶[16],GME是Vc合成過程中唯一的差向異構(gòu)酶,在擬南芥[17]、獼猴桃中[18]的研究表明GME和GGP協(xié)同調(diào)控Vc含量。目前黃瓜Vc相關(guān)的研究主要對植株研究較多,有學者克隆出黃瓜中L-半乳糖-1,4-內(nèi)酯脫氫酶cDNA全長,并進行了遺傳轉(zhuǎn)化[19];在研究UV-B對黃瓜幼苗AsA及其基因表達的影響時發(fā)現(xiàn),UV-B誘導了與L-半乳糖和肌醇途徑以及抗壞血酸-谷胱甘肽系統(tǒng)有關(guān)的基因表達,從而增加了Vc水平[20];Zhang等[21]從轉(zhuǎn)錄水平和酶活性水平研究了缺氮條件下黃瓜幼苗抗壞血酸生物合成和循環(huán)途徑中關(guān)鍵酶的變化,結(jié)果表明參與黃瓜葉片抗壞血酸-谷胱甘肽循環(huán)途徑和肌醇途徑中的抗壞血酸氧化酶(AO)、谷胱甘肽還原酶(GR)和肌醇加氧酶(MIOX)可能在AsA積累中發(fā)揮作用。【本研究切入點】關(guān)于黃瓜果實Vc合成關(guān)鍵酶基因的克隆與表達分析尚未見報道。本研究以擬南芥中Vc合成的L-半乳糖途徑為參考,研究黃瓜果實中Vc合成的L-半乳糖途徑?!緮M解決的關(guān)鍵問題】鑒定黃瓜果實中參與Vc合成的L-半乳糖途徑相關(guān)酶的基因。利用qRT-PCR技術(shù)分析這些基因在高含量Vc黃瓜果實與低含量Vc黃瓜果實中的表達情況??寺∠匏倜富颍治鲞@些基因在不同材料中的序列差異。
本研究試驗材料為黃瓜果實Vc含量高低差異顯著的自交系R48(低)和CG45(高),材料均為歐洲類型黃瓜,遺傳背景清晰。試驗材料于2021年3月定植在連棟大棚(山東壽光),田間正常管理。材料來源于中國農(nóng)業(yè)科學院蔬菜花卉研究所黃瓜遺傳育種課題組。
1.2.1 黃瓜Vc合成相關(guān)基因鑒定及染色體定位 根據(jù)文獻[22]獲得12個擬南芥中參與Vc合成的關(guān)鍵酶基因,在TAIR數(shù)據(jù)庫(https://www.arabidopsis.org)獲得相關(guān)基因蛋白序列。通過在葫蘆科基因組網(wǎng)站(http://cucurbitgenomics.org)利用BLAST方法從黃瓜基因組(9930-_V2)比對同源基因,利用TBtools軟件繪制基因在黃瓜染色體的位置。
1.2.2 樣品取樣和Vc含量測定 CG45與R48在盛瓜期取中間節(jié)位果實,每份材料3個生物學重復,每個重復取3條商品瓜(花后10 d,單性結(jié)實)。每條瓜橫向取中間位置兩片,每片厚度約0.5 cm,液氮冷凍,放于-80℃冰箱冷藏,用于后續(xù)提取RNA、DNA。每條瓜橫向切取上、中、下3個部位共100 g,迅速用打漿機粉碎,取5 g勻漿精細研磨,利用Vc在紫外區(qū)265 nm處有最大吸收,快速測定[23]。
1.2.3 黃瓜果實總RNA提取 將冷藏的樣品放于組織研磨儀中研磨,根據(jù)TIANGEN植物總RNA提取試劑盒提取果實RNA,具體按照試劑盒操作說明進行。提取后取2 μL RNA用于瓊脂糖凝膠電泳檢測RNA完整性。取2 μL RNA用TaKaRa反轉(zhuǎn)錄試劑合成cDNA,反轉(zhuǎn)錄后取1 μL cDNA檢測濃度,并稀釋至100 ng·μL-1用于熒光定量PCR。
1.2.4 熒光定量引物設(shè)計 根據(jù)BLAST比對到的21個同源基因,利用DNAMAN軟件對其進行熒光定量引物設(shè)計。在NCBI通過Primer-Blast模擬擴增,檢測引物特異性,選出合適的引物由上海生工合成,引物序列見表1。
1.2.5 qRT-PCR擴增 以R48和CG45黃瓜果實cDNA為模板,利用熒光定量PCR儀進行熒光定量分析。根據(jù)溶解曲線獲得CT值,利用Excel軟件對數(shù)據(jù)進行處理,根據(jù)2-△△CT方法計算各基因相對表達量[24]。以作為內(nèi)參基因,誤差線代表3個生物學重復的標準誤差。
1.2.6 關(guān)鍵酶GME與GGP相關(guān)基因的克隆 在黃瓜基因組數(shù)據(jù)庫(9930_V2)找到相關(guān)基因,通過Primer5.0設(shè)計引物擴增相關(guān)基因(表2)。擴增體系為20 μL,PCR程序為95℃ 3 min;95℃ 15 s、55℃ 15 s、72℃ 3 min、35個循環(huán)后72℃延伸5 min,4℃保存。擴增產(chǎn)物用瓊脂糖檢測后送上海生工測序。
1.2.7 Vc合成關(guān)鍵酶GME、GGP進化樹構(gòu)建及理化性質(zhì)分析 在黃瓜基因組數(shù)據(jù)庫(9930-_V2)找到黃瓜GME、GGP基因蛋白序列,通過在NCBI上進行BLAST搜索,利用MEGA-X軟件對不同物種同源基因進行進化樹構(gòu)建,分析親緣關(guān)系。在ExPASy主頁(https://web.expasy.org),利用ProtParam分析軟件分析蛋白的等電點(pI)、分子量(Mw)、總平均疏水性(GRAVY)、不穩(wěn)定系數(shù)(II)。
根據(jù)擬南芥中Vc合成的L-半乳糖途徑關(guān)鍵酶氨基酸序列,在黃瓜基因組網(wǎng)站比對到21個參與黃瓜Vc合成的基因(表3)。黃瓜基因組中,除、、為單拷貝,其余均為多拷貝。PMI存在兩個同源基因,GME存在3個同源基因,GPP、GalDH存在4個同源基因,GMPase存在5個同源基因。
根據(jù)基因在染色體物理位置,將這21個基因定位在黃瓜7條染色體上,由圖1可知,在5號染色體上分布的基因最多,有5個;其次是1號染色體,有4個;2號和3號染色體較少,均包含3個;4號和7號染色體最少,均包含2個。從物理位置來看,黃瓜中與Vc合成相關(guān)的基因分布均勻,不存在大的基因簇。
表1 L-半乳糖途徑同源基因熒光定量引物
表2 GME、GGP相關(guān)基因擴增引物
對兩份材料R48和CG45的果實Vc含量進行測定,R48為16.83 mg/100 g,CG45為31.4 mg/100 g,兩份材料果實中Vc含量差異顯著。通過對黃瓜中比對到的21個基因在R48和CG45黃瓜果實中的表達量進行分析,發(fā)現(xiàn)所有基因在R48中的表達量均低于在CG45的表達量,有9個基因在兩份材料的表達量呈極顯著性差異,分別為PMI、PMM、GMPase、GME、GalLDH這5個酶的相關(guān)基因(圖2)。通過對L-半乳糖途徑通路的21個基因在兩份材料果實中的表達分析,推測GGP可能是限制黃瓜果實Vc含量的主要限速酶(圖3)。
表3 黃瓜中Vc合成關(guān)鍵酶及相關(guān)基因
圖1 黃瓜Vc合成相關(guān)基因在染色體的位置
表示差異極顯著;表示差異顯著 indicate extremely significant differences; indicate significant difference
左列圓圈為R48相對表達量,右列圓圈為CG45相對表達量
GME和GGP為Vc合成途徑的限速酶,分別擴增R48與CG45中GME和GGP基因序列,GME有3個拷貝,對表達量差異極顯著的進行克隆。在兩份材料中全長均為3 122 bp,且沒有序列差異(附圖1)。在兩份材料的序列有所不同,在R48中全長為3 537 bp,在CG45中全長為3 541 bp,該基因在兩份材料存在多個位點差異(附圖2),其中一個突變位點位于CDS區(qū),且導致了氨基酸序列的改變(圖4)。黃瓜中僅有一個拷貝,序列長度為3 152 bp,在兩份材料中沒有序列差異(附圖3)。通過鑒定基因保守結(jié)構(gòu)域(NCBI Conserved Domain Search (nih.gov)),發(fā)現(xiàn)特定匹配在UGD_SDR_e,屬于NADB_Rossmann超級家族,該突變位點也位于此區(qū)間(圖5)。
圖4 CsGME2在兩份材料序列分析
圖5 CsGME2保守結(jié)構(gòu)域分析
GME是Vc合成途徑中唯一的差向異構(gòu)酶,包含376個氨基酸,分子量為42.52 kD,等電點為5.94,不穩(wěn)定系數(shù)為41.85,總平均疏水性-0.411。不同物種GME氨基酸長度差異不大,氨基酸長度在376—409 aa,分子量在42.48—46.50 kD,等電點在5.74—6.21,不穩(wěn)定系數(shù)在40左右,穩(wěn)定性較好,總平均疏水性均為負值,說明GME具有親水性(表4)。對不同植物來源的GME氨基酸序列進行進化樹分析,結(jié)果表明黃瓜和同屬葫蘆科的甜瓜進化過程親緣關(guān)系最近(圖6)。
GGP是L-半乳糖途徑的限速酶。含有445個氨基酸,分子量為49.99 kD,等電點為5.18,總平均疏水性為-0.224,不穩(wěn)定系數(shù)為44.23,推測黃瓜中GGP表現(xiàn)為親水性,且不穩(wěn)定。由表5可知,不同物種中GGP基因有較大差異,編碼的氨基酸長度在443— 537 aa,分子量介于 49.28—60.04 kD,不穩(wěn)定系數(shù)均大于40,且總平均疏水性均為負值。說明在不同物種中,GGP均為親水性蛋白,且不穩(wěn)定。對不同植物來源的GGP氨基酸序列進行進化樹分析,結(jié)果表明黃瓜和同屬葫蘆科的甜瓜進化關(guān)系最近,其次是冬瓜(圖7)。
Vc作為蔬菜和水果的一個重要品質(zhì)指標,提高蔬菜瓜果中Vc含量是一個重要的研究方向。L-半乳糖途徑是目前公認的植物中合成Vc的主要途徑,本研究根據(jù)擬南芥L-半乳糖途徑合成Vc的9個關(guān)鍵酶的氨基酸序列,在黃瓜基因組比對到21個同源基因,發(fā)現(xiàn)編碼GPP的基因在黃瓜基因組有4個基因拷貝,基因注釋均為肌醇單磷酸酶,在水稻基因組中,編碼GPP的同源基因也被注釋為肌醇單磷酸酶。研究表明,擬南芥中GPP不僅能催化L-半乳糖1-磷酸合成L-半乳糖,而且還具有肌醇單磷酸酶活性,是影響肌醇和Vc合成的雙功能酶,在擬南芥中作為肌醇單磷酸酶的活性較低[25]。在黃瓜中比對到的這4個基因是否也具有雙功能作用,還有待進一步研究。不過,外施肌醇可以提高黃瓜幼苗的Vc含量[26],外施肌醇后番茄的Vc含量也有所提高[27]。綜上,推測肌醇途徑可能參與黃瓜中Vc的合成。
表4 不同物種GME理化性質(zhì)
圖6 黃瓜和其他物種GME進化樹
圖7 黃瓜和其他物種GGP進化樹
表5 不同物種GGP理化性質(zhì)
GME是雙功能酶,既能通過3′,5′-表異構(gòu)化將GDP-D-甘露糖轉(zhuǎn)化為GDP-L-半乳糖-1-磷酸,又能通過5′-表異構(gòu)化將GDP-D-甘露糖催化為GDP-L-古洛糖-1-磷酸[28]。有研究表明,擬南芥GME和GGP協(xié)同調(diào)控Vc含量[17],在Vc含量不同的獼猴桃中,GME、GGP的表達量與Vc含量呈正相關(guān)[18]。Stevens等[29]利用3個遺傳群體對番茄Vc含量進行QTL定位,發(fā)現(xiàn)9號染色體上1個QTL位點與GME相關(guān)聯(lián)。本研究對GME的相關(guān)基因克隆分析,發(fā)現(xiàn)在不同材料間有個SNP差異,導致氨基酸發(fā)生改變。Vc合成過程的相關(guān)酶中GME是最保守的蛋白[30],本研究通過對黃瓜與其他物種GME的理化性質(zhì)分析和進化樹構(gòu)建,發(fā)現(xiàn)GME在不同物種間氨基酸數(shù)量和蛋白質(zhì)量變化較小,保守度都較高。綜上,預測GME酶也可能是黃瓜果實中Vc合成的限速酶。
GGP是L-半乳糖途徑最主要的限速酶[16],擬南芥中編碼GGP的兩個基因和在黃瓜基因組比對到的為同一基因,推測該基因在合成Vc過程中發(fā)揮重要作用。GGP是催化抗壞血酸合成的第一步,GGP表達降低和抗壞血酸含量缺乏導致番茄坐果率和產(chǎn)量降低[31]。用獼猴桃或擬南芥GGP基因轉(zhuǎn)化草莓、馬鈴薯和番茄會導致Vc含量顯著增加[32]。本試驗對不同材料的表達量分析,發(fā)現(xiàn)限速酶GGP的相關(guān)基因表達量則極低。Zhang等[33]對6個參與Vc生物合成的擬南芥或油菜關(guān)鍵基因在水稻中的過表達,發(fā)現(xiàn)轉(zhuǎn)植株的Vc含量最高,轉(zhuǎn)基因株系的株高、根長、鮮重明顯高于對照植株,表明GGP可能是水稻Vc生物合成的關(guān)鍵限速步驟。GGP作為限速酶在多種植物中已被證實受光調(diào)控,如擬南芥[26]、獼猴桃[34],在連續(xù)高光強下誘導基因表達,暗處理抑制基因表達[35]。因此,黃瓜中編碼GGP的基因表達量低是否與光調(diào)控相關(guān)有待進一步研究。
在黃瓜基因組中共鑒定出21個分布在7條染色體上的參與L-半乳糖途徑合成Vc的基因,調(diào)控PMI、PMM、GMPase、GME、GalLDH這5個酶的相關(guān)基因在Vc含量高、低差異顯著的兩份材料R48和CG45果實中表達量差異顯著。調(diào)控Vc合成限速步驟關(guān)鍵酶GME、GGP功能相對保守,在兩份材料中的序列存在多個SNP和InDel變異,且編碼區(qū)一個SNP突變位點導致氨基酸序列發(fā)生改變。本研究明確了黃瓜果實中L-半乳糖途徑合成Vc的基因,分析了關(guān)鍵酶基因的序列差異,為揭示黃瓜果實Vc合成調(diào)控網(wǎng)絡奠定了基礎(chǔ)。
致謝:感謝中蔬生物科技(壽光)有限公司彭立鑫、王利麗對文章相關(guān)圖的繪制提供的幫助。
[1] FOYER C H, KYNDT T, HANCOCK R D. Vitamin C in plants: Novel concepts, new perspectives, and outstanding issuesAntioxid Redox Signal, 2020, 32(7): 463-485.
[2] ALVES R C, ROSSATTO D R, SILVA J S, CHECCHIO M V, OLIVEIRA K R, OLIVEIRA F D A, DE QUEIROZ S F, DA CRUZ M A P, GRATAO P L. Seed priming with ascorbic acid enhances salt tolerance in micro-tom tomato plants by modifying the antioxidant defense system components. Biocatalysis and Agricultural Biotechnology, 2021, 31: 101927.
[3] KHAZAEI Z, ESTAJI A. Effect of foliar application of ascorbic acid on sweet pepper () plants under drought stressActa Physiologiae Plantarum, 2020, 42(7): 118.
[4] LUKATKIN A S, ANJUM N A. Control of cucumber (L) tolerance to chilling stress - Evaluating the role of ascorbic acid and glutathioneFrontiers in Environmental Science, 2014, 2. https://doi.org/10.3389/fcns.2014.00062.
[5] LYKKESFELDT J. On the effect of vitamin C intake on human health: How to (mis)interprete the clinical evidence.Redox Biology, 2020, 34: 101532.
[6] RIVELLI A R, CARUSO M C, MARIA S D, GALGANO F. Vitamin C content in leaves and roots of horseradish (): Seasonal variation in fresh tissues and retention as affected by storage conditions. Emirates Journal of Food and Agriculture, 2017, 29(10): 799-806.
[7] 孫小娟, 劉慶帥, 員盎然, 張妍, 霍俊偉, 秦棟, 姜婷. 黑穗醋栗果實生長發(fā)育過程中抗壞血酸含量及相關(guān)酶活性的變化. 中國農(nóng)業(yè)科學, 2019, 52(1): 98-110. doi: 10.3864/j.issn.0578-1752.2019.01.010.
SUN X J, LIU Q S, YUAN A R, ZHANG Y, HUO J W, QIN D, JIANG T. The changes in the contents of ascorbic acid and the activities of related enzymes in black currant fruits during the process of its growth and development. Scientia Agricultura Sinica, 2019, 52(1): 98-110. doi: 10.3864/j.issn.0578-1752.2019.01.010. (in Chinese)
[8] KINYI H W, TIRWOMWE M, NINSIIMA H I, MIRUKA C O, ADADI P, PARISE A. Effect of cooking method on vitamin C loses and antioxidant activity of indigenous green leafy vegetables consumed in western Uganda. International Journal of Food Science, 2022, 2022: 2088034.
[9] https://www.fao.org/faostat/zh/#data.
[10] SMIRNOFF N, WHEELER G L, JONES M A. The biosynthetic pathway of vitamin C in higher plantsNature, 1998, 393(6683): 365-369.
[11] LORENCE A, CHEVONE B I, MENDES P, NESSLER C L. Myo- inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology, 2004, 134(3): 1200-1205. doi: 10. 1104/pp.103.033936.
[12] DAVEY M W, GILOT C, PERSIAU G, STERGAARD J, HAN Y, BAUW G C, VAN MONTAGU M C. Ascorbate biosynthesis incell suspension culturePlant Physiology, 1999, 121(2): 535-543.
[13] WAGNER C, SEFKOW M, KOPKA J. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profilesPhytochemistry, 2003, 62(6): 887-900.
[14] SMIRNOFF N, DOWDLE J, ISHIKAWA T. The role of VTC2 in vitamin C biosynthesis inComparative Biochemistry and Physiology. Part A. Molecular & Integrative Physiology, 2007, 146(4): S250.
[15] DOWDLE J, ISHIKAWA T, GATZEK S, ROLINSKI S, SMIRNOFF N. Two genes inencoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant Journal, 2007, 52(4): 673-689.
[16] TAO J J, HAO Z, HUANG C H. Molecular evolution of GDP-L- galactose phosphorylase, a key regulatory gene in plant ascorbate biosynthesis. AoB Plants, 2020, 12(6): 55.
[17] YOSHIMURA K, NAKANE T, KUME S, SHIOMI Y, MARUTA T, ISHIKAWA T, SHIGEOKA S. Transient expression analysis revealed the importance ofexpression level in light/dark regulation of ascorbate biosynthesis in. Bioscience, Biotechnology, and Biochemistry, 2014, 78(1): 60-66. doi: 10.1080/09168451.2014. 877831.
[18] BULLEY S M, RASSAM M, HOSER D, OTTO W, SCHüNEMANN N, WRIGHT M, MACRAE E, GLEAVE A, LAING W. Gene expression studies in kiwifruit and gene over-expression inindicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany, 2009, 60(3): 765-778. doi: 10.1093/jxb/ern327.
[19] 苑志明, 勞杉杉, 秦智偉, 周秀艷. 黃瓜L-半乳糖-1,4-內(nèi)酯脫氫酶cDNA全長的克隆和遺傳轉(zhuǎn)化東北農(nóng)業(yè)大學學報, 2012, 43(7): 100-103.
YUAN Z M, LAO S S, QIN Z W, ZHOU X Y. Cloning and genetic transformation of cDNA full-length of L-galactono-1,4-lactone dehydrogenase from. Journal of Northeast Agricultural University, 2012, 43(7): 100-103. (in Chinese)
[20] LIU P, LI Q, GAO Y N, WANG H, CHAI L, YU H J, JIANG W J. A new perspective on the effect of UV-B on l-ascorbic acid metabolism in cucumber seedlingsJournal of Agricultural and Food Chemistry, 2019, 67(16): 4444-4452.
[21] ZHANG X, YU H J, ZHANG X M, YANG X Y, ZHAO W C, LI Q, JIANG W J. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. Plant Physiology and Biochemistry, 2016, 108(7): 222-230.
[22] BULLEY S, LAING W. The regulation of ascorbate biosynthesis. Current Opinion in Plant Biology, 2016, 33: 15-22.
[23] 高海榮, 趙愛娟, 王睿穎, 穆兵. 紫外法快速測定中原地區(qū)12種蔬菜VC含量. 湖北農(nóng)業(yè)科學, 2017, 56(6): 1131-1133, 1136. doi: 10. 14088/j.cnki.issn0439-8114.2017.06.035.
GAO H R, ZHAO A J, WANG R Y, MU B. The rapid determination of vitamin C content in 12 kinds of central plains vegetables by UV spectrophotometry. Hubei Agricultural Sciences, 2017, 56(6): 1131-1133, 1136. doi: 10.14088/j.cnki.issn0439-8114. 2017.06.035. (in Chinese)
[24] JAROSOVA J, KUNDU J K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real- time RT-PCR. BMC Plant Biology, 2010, 10(1): 146.
[25] TORABINEJAD J, DONAHUE J L, GUNESEKERA B N, ALLEN- DANIELS M J, GILLASPY G E. VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiology, 2009, 150(2): 951-961. doi: 10.1104/pp.108.135129.
[26] 苗田田, 李強, 余宏軍, 劉鵬, 郝佳, 蔣衛(wèi)杰. 外施肌醇對黃瓜幼苗低溫抗性的影響. 中國蔬菜, 2021(2): 72-79. doi: 10.19928/j.cnki. 1000-6346.2021.1001.
MIAO T T, LI Q, YU H J, LIU P, HAO J, JIANG W J. Effects of exogenous myo-inositol on low temperature resistance of cucumber seedlings. China Vegetables, 2021(2): 72-79. doi: 10.19928/j.cnki. 1000-6346.2021.1001. (in Chinese)
[27] MUNIR S, MUMTAZ M A, AHIAKPA J K, LIU G Z, CHEN W F, ZHOU G L, ZHENG W, YE Z B, ZHANG Y Y. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics, 2020, 21(1): 284.
[28] WOLUCKA B A, VAN MONTAGU M. GDP-mannose 3',5'- epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. The Journal of Biological Chemistry, 2003, 278(48): 47483-47490.
[29] STEVENS R, BURET M, DUFFE? P, GARCHERY C, BALDET P, ROTHAN C, CAUSSE M. Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiology, 2007, 143(4): 1943-1953. doi: 10.1104/pp.106.091413.
[30] WOLUCKA B A, VAN MONTAGU M, The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion. Phytochemistry, 2007, 68(21): 2602-2613.
[31] ALEGRE M L, STEELHEART C, BALDET P, ROTHAN C, JUST D, OKABE Y, EZURA H, SMIRNOFF N, GERGOFF GROZEFF G E, BARTOLI C G. Deficiency of GDP-l-galactose phosphorylase, an enzyme required for ascorbic acid synthesis, reduces tomato fruit yield. Planta, 2020, 251(2): 54.
[32] BULLEY S, WRIGHT M, ROMMENS C, YAN H, RASSAM M, LIN-WANG K, ANDRE C, BREWSTER D, KARUNAIRETNAM S, ALLAN A C, LAING W A. Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l- galactose phosphorylase. Plant Biotechnology Journal, 2012, 10(4): 390-397.
[33] ZHANG G Y, LIU R R, ZHANG C Q, TANG K X, SUN M F, YAN G H, LIU Q Q. Manipulation of the rice L-galactose pathway: Evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS ONE, 2015, 10(5): e0125870.
[34] LI J, LIANG D, LI M J, MA F W. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters. Planta, 2013, 238(3): 535-547.
[35] YABUTA Y, MIEDA T, RAPOLU M, NAKAMURA A, MOTOKI T, MARUTA T, YOSHIMURA K, ISHIKAWA T, SHIGEOKA S. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in. Journal of Experimental Botany, 2007, 58(10): 2661-2671. doi: 10. 1093/jxb/erm124.
Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit
WANG ZhuangZhuang1, 2, DONG ShaoYun1, ZHOU Qi1, MIAO Han1, LIU XiaoPing1, XU KuiPeng2, GU XingFang1, ZHANG ShengPing
1Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agricultureand Rural Affairs/State Key Laboratory of Vegetable Biobreeding, Beijing 100081;2College of Horticulture, Qingdao Agricultural University, Qingdao 266000, Shandong
【Objective】The aim of this study was to identify the location, quantity and expression characteristics of genes involved in regulating the synthesis of vitamin C (Vc) by L-galactose pathway in cucumber fruits, and to clone the key genes, so as to lay a foundation for the regulation of Vc synthesis in cucumber.【Method】According to the reported Vc-related genes within the L-galactose pathway in, the encoded amino acid sequence was used for BLAST in Cucumber 9930_V2 reference genome database. TBtools software was used to map the gene position on cucumber chromosomes. The expression of these genes in two cucumber accessions with significant differences in fruit Vc content was analyzed by qRT-PCR. The homologous genes encoding rate limiting enzymes GDP-L-galactose phosphorylase (GGP) and GDP mannose-3'5'- epimerase (GME) were cloned by PCR amplification, and the sequence differences of these genes in cucumber with high Vc and low Vc were analyzed by sequencing. Phylogenetic tree was constructed to analyze the relatedness cucumber GME, GGP and homologs in other species.【Result】Twenty one homologous genes involved in the synthesis of Vc related enzymes, including PMI, PMM, GMPase, GME, GGP, GPP, GalLDH, and GalLDH in L-galactose pathway, were compared in cucumber and were obtained by BLAST, which were distributed on seven chromosomes, with the most numbers on chromosome 5 and chromosome 1. By analyzing the expression of these genes in R48 (with low Vc) and CG45 (with high Vc), it was found that the genes regulating PMI, PMM, GMPase, GME and GalLDH were significantly different between the two materials. The sequence analysis of Vc synthesis rate-limiting enzyme GGP and GME related genes showed that the full length ofgene was 3 537 bp in R48 and 3 541 bp in CG45. There were multiple SNP sites and Indel difference between the two materials, among which one mutation site was located in the CDS region, and resulted in the amino acids changes. Through the analysis of the protein properties of rate limiting enzymes GME and GGP regulating vitamin C synthesis, it was found that the protein properties of GME and GGP in different species were not significantly different, which were hydrophilic proteins and their functions were relatively conservative. Evolutionary tree analysis found that the clusters with close genetic relationship among different species were highly conservative during evolution.【Conclusion】Twenty one L-galactose pathway related genes of cucumber Vc synthesis were identified, which were distributed on seven chromosomes. It was speculated that the key enzymes including PMI, PMM, GMPase, GME, GalLDH and GGP might affect the Vc content in cucumber fruits. The functions of key enzymes GME and GGP regulating the rate limiting step of Vc synthesis were relatively conservative. The SNP site ongene in the two materials of high Vc and low Vc resulted in changes in amino acid sequence.
cucumber; vitamin C; gene clone; expression analysis
10.3864/j.issn.0578-1752.2023.03.009
2022-04-13;
2022-06-13
國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-23)、中國農(nóng)業(yè)科學院創(chuàng)新工程(CAAS-ASTIP-2017-IVF)、農(nóng)業(yè)農(nóng)村部園藝作物生物學與種質(zhì)創(chuàng)制重點實驗室項目、蔬菜生物育種全國重點實驗室項目
王壯壯,E-mail:wangzhuangz2021@163.com。董邵云,E-mail:dongshaoyun@caas.cn。王壯壯和董邵云為同等貢獻作者。通信作者顧興芳,E-mail:guxingfang@caas.cn。通信作者張圣平,E-mail:zhangshengping@caas.cn
(責任編輯 趙伶俐)