• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Axiomatization of Boolean Modalities*

    2015-05-24 15:50:19FengkuiJu
    邏輯學(xué)研究 2015年1期
    關(guān)鍵詞:公理化浙江師范大學(xué)完全性

    Fengkui Ju

    College of Philosophy and Sociology,Beijing Normal University fengkui.ju@bnu.edu.cn

    Xiangmei Hu

    Yiwu Experimental School Attached to Zhejiang Normal University hu_xiangmei@126.com

    On Axiomatization of Boolean Modalities*

    Fengkui Ju

    College of Philosophy and Sociology,Beijing Normal University fengkui.ju@bnu.edu.cn

    Xiangmei Hu

    Yiwu Experimental School Attached to Zhejiang Normal University hu_xiangmei@126.com

    .The modality constructors complement,intersection and union,called boolean modalities,raise the issue of completeness.Union is modally definable but neither of the other two is.This means that it is nontrivial to prove the completeness of the logics having them. G.Gargov and S.Passy introduces a way,called copy method,to handle them as a whole. This method does not work for strong completeness and can not separately handle the three modalities either.We in this paper improve this method to a more general one without these disadvantages.

    PII:1674-3202(2015)-01-0023-14

    1 Introduction

    1.1 Boolean Modalities

    Boolean Modal Logic(BML),proposed in[4],is a normal modal logic and also a propositional dynamic logic.Its language is an extension of Propositional Calculus (PC)with a set of modalities.This set has a structure:the composite modalities in it are generated from the atomic ones in it by three modality constructors:complement, intersection and union.Let Π0be a countable set of atomic modalities and Φ0a countable set of atomic propositions.Let a range over Π0and p over Φ0.The sets ΠCIUof modalities and ΦCIUof propositions of BML are defined as follows1:

    Here 1 is the universal modality.The empty modality 0 is defined as.The dual[α]φ of〈α〉φ,other routine propositional connectives and the falsity⊥are defined in the usual way.

    1Here C,I and U in ΠCIUand ΦCIUrepresent complement,intersection and union respectively.

    The semantics of BML is a standard relational semantics:modalities are binary relations and modality constructors are operations of binary relations.A model M of ΦCIU,called a ΦCIU-model,is a tuple(W,{Rα|α∈ΠCIU},V)where W is a nonempty set of states,V is a function from Φ0to 2W,and the set{Rα|α∈ΠCIU} meets the following conditions:

    M,w?φ,φbeingtrueatthestatew inthemodelM,isdefinedasusual.Aformulaφ isvalid ifandonlyifforanyMandw ofM,M,w?φ.Themodalityconstructors-,∩and∪are the operations of complement,intersection and union of binary relations. They are called boolean modalities for this reason.

    Each modality of BML can be intuitively viewed as an action.One way to look at BML is that it is a logic of actions:〈α〉φ indicates that there is a way to perform the action α s.t.φ is the case after α is done;[α]φ says that φ is the case after α is done in whatever way.One area where BML has applications is deontic logic which concerns agents’actions.For instance,BML serves as the basis of the deontic logics introduced in[5]and[6].In what follows,we also call modalities as actions and modality constructors as action constructors.

    1.2 Our Work

    Union of binary relations is modally definable;however,neither complement norintersection is.This means that showing the completeness of BML is not a straightfor ward task.The completeness is accomplished by[3].Its proof uses such a property of BML:any action can be equivalently transformed to an action which is what we call complete normal forms.Suppose that we are considering only finitely many atomic actions a1,...,an.The actions a1∩···∩an,...,are called basic blocks where each atomic action occurs once.There are 2nbasic blocks.A union of some basic blocks is called a complete normal form w.r.t.a1,...,an.For a ΦCIU-model, basic blocks are like atomic parts of the universe of binary tuples:they are pairwise disjoint;the union of them is the whole universe;any action is the union of some of them.The core part of the proof presented in[3]is how to get these atomic parts right in the canonical model.2In this paper,we use some terminologies about completeness of modal logics such as“canonical”without giving any explanations,and also some general results for modal logics without giving any proofs.For the details of them,see[1].It does this by using a technique of transforming models called copy method.

    Completenormalformsarerelativetofinitelymanyatomicactionsandthisproof shows only the weak completeness of BML.This is one disadvantage of the method. There are seven possible combinations of the three boolean modalities:(1)-;(2)∩;(3)∪;(4)-,∩;(5)-,∪;(6)∩,∪;(7)-,∩,∪.Each of them corresponds to a sublogic of BML,i.e.,the logic taking only the action constructors in this case;the last case corresponds to BML itself.The completeness of the logic for the case(3)is not interesting,as there is a modal formula which is canonical for union.The logics for the cases(4)and(5)have the same expressivity as BML.Therefore,from the perspective of axiomatization,only three among the seven cases are interesting:(1), (2)and(6).The proof in[3]is not applicable for the cases(2)and(6),simply because there is no complement there.This is another disadvantage of it.

    We in this paper improve the copy method to a more general one which can handle the strong completeness for all these logics in a similar way.The main improvement is that we use a translation of actions into PC and a notion called the set of negative requirements which will be explained later.In what follows,we first present anaxiomatizationforBMLandshowitscompletenessbytheimprovedmethod.During presenting the proof,we point out its key steps.Then we show the completeness of other interesting sublogics of BML by focusing on these steps.

    2 Completeness of LCIU

    We use LCIUto denote Boolean Modal Logic in the sequel.

    2.1 Axiomatization

    Let ΦPCbe the language of PC generated from Φ0under?,∧and∨,where Φ0is a countable set of atomic propositions.

    Definition 1(Translation)σ:ΠCIU→ΦPCis such a function:

    ασis called the translation of α in ΦPC.

    The axiomatization of the logic LCIUconsists of four classes of axioms:

    A.The basic axioms of normal modal logics:

    B.The axiom for union:〈α∪β〉φ?(〈α〉φ∨〈β〉φ).

    C.The axioms for the universal modality:

    D.The universal axiom:〈α〉φ→〈β〉φ where ασ→βσis a tautology in PC. and two inference rules:

    1.Modus Ponens:given φ and φ→ψ,prove ψ;

    2.Generalization:given φ,prove[α]φ.

    As we will see later,the universal axiom is an axiom of all the axiomatizations we presentforthesublogicsofBML.ToshowthestrongcompletenessofLCIU,itsuffices to show that for any consistent set Σ of formulas,there is a ΦCIU-model N and a state s of it s.t.N,s?Σ.Let Σ be a consistent set.

    2.2 The Canonical Model and Its Generated Submodel

    Definition 2(Canonical Model)is a model where

    1.WCis the set of maximal consistent sets;

    2.Rαuv?for any φ,φ∈v implies〈α〉φ∈u;

    3.V(p)={u∈WC|p∈u}.

    By the so called Lindenbaum’s Lemma and Truth Lemma for modal logic,there is a w ∈WCs.t.MC,w ? Σ.It can be verified that this model has the following properties:

    Lemma 1

    The class C of axioms guarantee thatis an equivalence relation on WC;however, it can be verified thatIt might not be the case thatMCisnotaΦCIU-model.WewanttoproperlytransformMCtoaΦCIU-model.

    Let M=(W,{Rα|α∈Π},V)be the generated submodel of MCfrom w under.Asgeneratedsubmodelspreservemodalsatisfiability,wehaveM,w?Σ. By Lemma 1,we can see that the following lemma holds:

    Lemma 2

    M might not be a ΦCIU-model either,as Rα∩Rβ?Rα∩βstill might not hold.

    2.3 Imitations

    Let ω be the number of the atomic actions.We now define two crucial notions.

    Definition 3(Negative Requirements)For any u,v∈W,Γuv={?ασ|?Rαuv}. Γuvis called the set of negative requirements w.r.t.u and v.

    Definition 4(Approved Valuations)For any u,v∈W,Fuvis the collection of all the valuations F in PC s.t.F?Γuv.Fuvis called the set of approved valuations w.r.t. u and v.

    By a valuation in PC,we means a function from Φ0to{1,0}.Let κ be the cardinality of Fuv.κ≤2ω,as there are at most 2ωvaluations.Enumerate the elements of Fuvas F1,...,Fκ.

    Lemma 3(Well-definedness Lemma)Fuvis not empty for any u,v∈W.

    ProofAssume Fuvis empty.Then Γuvis not consistent.Then there are actionstautology.Thenis a tautology.Aswe know that(α1∪···∪αn)σis a tautology.Then(α1∪···∪αn)σ? ?is a tautology,that is,(α1∪···∪αn)σ? 1σis a tautology.By the Universal Axiom, we getBy Lemma 2,R1=W ×W. ThenBy Lemma 2,Rα1uv or...or Rαnuv.Sincewe know?Rα1uv,...,?Rαnuv.Here we get a contradiction. □

    Define g:{δ|1≤δ≤2ω}→{δ|1≤δ≤κ}as a surjective function.As Fuvis not empty,1≤κ.This means that{δ|1≤δ≤κ}is not empty.Since κ≤2ω,we know that g is well-defined.g is called the distribution function in the sequel.Note that g is also relative to u and v.The intuitive meaning of g will be explained later.

    Let W1,...,W2ωbe 2ωpairwise disjoint sets which have the same cardinality with W.For any i s.t.1≤ i≤ 2ω,let fibe a bijective function from Wito W. We now define 2ωmodels with these sets as universes where the sets of negative requirements play a role.

    Definition 5(Imitations)For any i s.t.1≤i≤2ω,Mi=is such a model:

    Each Miis called an imitation of M.

    Here are some explanations.Given any s,t∈Wi.fi(s)and fi(t)are elements of W.The set Γfi(s)fi(t)of negative requirements w.r.t.fi(s)and fi(t)contains the information about which relations fi(s)and fi(t)do not have in the original model M.F1,...,Fκare all the valuations in PC satisfying these requirements.Intuitively, eachFirepresentsapossibilityofwhatrelationsfi(s)andfi(t)canbeinwithoutviolating any of the requirements.There are at most 2ωsuch possibilities.W1,...,W2ω are 2ωcopies of W.On each of such copies,we realize a possibility.The distribution function g specifies which possibilities are realized in which copies.Since g is surjective,all the possibilities are realized in some copy.g might not be injective, which means that some different copies might share one same possibility.The Figure 1 helps to understand this.

    Figure 1:Imitations

    For any imitation Miand any relationof it,is defined essentially by the truth values of the translation of α in all the valuations assigned to i.This guarantees that each Miis a ΦCIU-model:

    Lemma 4

    Although the imitations of M might be different from M,they have some similarity with M,as shown by the following lemma.

    Lemma 5(Lemma of Primary Bounded Morphisms)

    2.Suppose Rαuv.We first show that Γuv∪{ασ}is consistent.Assume not.Then Fg(i)? ασwhere Fg(i)∈ Ffi(s)fi(t).Assume Thenthereareα1,...,αn∈?ασis a tautology.Thenis a tautology.As(α1∪···∪αn)σ=isatautology.BytheUniversalAxiom,weknowBy Lemma 2, Rα1uv or…or Rαnuv.As,we know?Rα1uv,...,?Rαnuv. Here we have a contradiction.Then Γuv∪{α}is consistent.Then there is a valuation F in PC s.t.F?Γuv∪{α}.Then F=Fjfor some Fj∈Fuv.Let i be s.t.g(i)=j. Then Fg(i)?ασ.Then□

    ThislemmaisnotsayingthateachfiisasocalledboundedmorphismfromMitoM. Bounded morphisms have two conditions:the forth and back conditions.The first item of this lemma tells that each fisatisfies the first condition.But what the second item says is not that each fisatisfies the back condition.It is not even that there is a fimeeting the condition.It is something else.

    2.4 The Final Model

    Definition 6(The Final Model)N=(U,{Sα|α∈Π},Z)is such a model:

    N is a mix of all imitations of M.Let us call s and s′of U each others twins if f(s)=f(s′).

    Note that one can have many twins in this sense.The imitations are mixed in such a way:for any s,t∈U,if s and t are in the relation Sα,then any of s’s twins and t are in Sα.We illustrate this by Figure 2.s and s′are twins and both of them corresponds to w.As s and t have the relationin the model M1,s′and t have the relation Sain the final model N.Similarly,as s′and t′have the relationin M2,s and t′have the relation Sbin N.

    The following lemma says that N is a ΦCIU-model:

    Figure 2:The Final Model

    Lemma 6

    Proof Given s,t∈U.Let i and s′be s.t.t,s′∈Wiand fi(s′)=f(s).

    Let f=f1∪···∪f2ω.Then f is a function from U to W.Since each fiis surjective,f is surjective as well.

    Lemma7(LemmaofBoundedMorphism)f isaboundedmorphismfromNtoM:

    1.if Sαst,then Rαf(s)f(t);

    2.if Rαf(s)v,then there is a t∈U s.t.Sαst and f(t)=v.

    RecallM,w?Σ.Sincef issurjective,thereisas∈U s.t.f(s)=w.Asmodal satisfiability is invariant under bounded morphisms,we know N,s?Σ.Finally,we have the following proposition:

    Proposition 1(Strong Completeness of LCIU)The logic LCIUis strongly complete w.r.t.the class of ΦCIU-models.

    3 Completeness of LIand LIU

    We use ΦIto denote the sub-language of ΦCIUwith only the action constructor intersection and ΦIUto denote the sub-language of ΦCIUwith only intersection and union.Let ΠIand ΠIUbe the sets of actions of ΦIand ΦIUrespectively.A model of ΦIis called a ΦI-model and a model of ΦIUis called a ΦIU-model.Let LIbe the logic of ΦIand LIUthe logic of ΦIU.Now we present axiomatizations for LIand LIUand show their completeness.As we can see,both of the two proofs are similar with the one for the completeness of LCIU.

    3.1 LI

    The axiomatization of LIhas two classes of axioms:(i)the basic axioms for normal modal logics;(ii)the universal axiom:〈α〉φ→ 〈β〉φ where ασ→ βσis a tautology.Note that here α and β contain only the action constructor∩,and ασand βσcontain only the propositional connective∧.The inference rules of the axiomatization for LIare(i)modus ponens and(ii)generalization.Let Σ be a consistent set of formulas.We want to find a ΦI-model N and a state s of it s.t.N,s?Σ.

    The canonical model M=(W,{Rα|α∈Π},V)of LIis defined as Definition 2.Let w ∈W be s.t.M,w?Σ.By the Universal Axiom,we know Rα∩β?Rα∩Rβ.M might not be a ΦI-model,as Rα∩Rβmight not be a subset of Rα∩β. Foranyu,v∈W,Γuv,thesetofnegativerequirementsw.r.t.uandv,andFuv,theset of approved valuations w.r.t.u and v,are defined as Definition 3 and 4 respectively.

    Lemma 8For any α1,...,αn∈is not a tautology.

    To see that this lemma holds,simply let all the atomic propositions occurring inbe false.This lemma says that none of the actions in ΠIis equivalent to the universal modality.With the help of this lemma,we can show the following one:

    Lemma 9(Well-definedness Lemma)For any u,v∈W,Fuvis not empty.

    Let ω be the number of the atomic actions and κ the number of the elements of Fuv.The distribution function g is defined as before.Lemma 9 implies that g is well-defined.Let W1,...,W2ωbe 2ωdisjoint copies of W.For any i s.t.1≤ i≤2ω,define fias a bijective function from Wito W.For any i,define an imitationof M in the way of Definition 5.It can be easily verified that each Miis a ΦI-model:

    Lemma 10For any α,α1,...,αn∈ΠI,is a tautology, thenis a tautology for some i.

    ProofSupposethatασ→isatautology.Assumethatforanyi≤n,is not a tautology.Since any of α,α1,...,αnis an intersection of some atomic actions,any of ασ,is a conjunction of some atomic propositions. Then for any i,there is an atomic proposition inwhich is not occurring in ασ, otherwiseis a tautology.Consider a valuation of PC in which only such atomic propositions are false.Then ασis true and anyis false.Then ασ→is false.This is impossible. □

    With his lemma,we can show a similar result with Lemma 5 which shows some similarity between M and its imitations.

    Lemma 11(Lemma of Primary Bounded Morphism)

    Proof1.SupposeThen Fg(i)? ασwhere Fg(i)∈ Ffi(s)fi(t).AssumeThen We get a contradiction.

    2.SupposeRαuv.WefirstshowthatΓuv∪{α}isconsistent.Assumenot.Then there areis a tautology.Thenis a tautology.By Lemma 10,is a tautology for some i.By the Universal Axiom,Rα?Rαi.Since Rαuv,Rαiuv.∈Γuv,we know?Rα1uv,...,?Rαnuv.We get a contradiction. Then Γuv∪{α}is consistent.Then there is a valuation F in PC s.t.F?Γuv∪{α}. Then F=Fjfor some Fj∈Fuv.Let i be s.t.1≤i≤ 2ωand g(i)=j.Then Fg(i)?ασ.Then□

    The final model N=(U,{Sα|α∈Π},Z)is defined as Definition 6.It can be checked that N is a ΦI-model:Sα∩β=Sα∩Sβ.Define a function f:U→W as f1∪···∪f2ω.The following lemma implies that modal satisfiability is invariant under f.Finally,we have the strong completeness of LI.

    Lemma 12(Lemma of Bounded Morphism)f is a bounded morphism from N to M:

    Proposition 2(Strong Completeness of LI)The logic LIis strongly complete w.r.t. the class of ΦI-models.

    The logic LIhas applications in epistemic logic.For instance,the intersection modality is used to formalize distributed knowledge in[2]and[7].Both of them present a proof for the completeness of LI.The two proofs are different from ours,although the former also uses some kind of copy technique.

    3.2 LIU

    The axiomatization of LIUhas three classes of axioms:(i)the basic axioms for normalmodallogics;(ii)theaxiomforunion;(iii)theuniversalaxiom:〈α〉φ→〈β〉φ where ασ→βσis a tautology.Here α and β do not contain complement and ασand βσdo not contain negation.The inference rules of the axiomatization for LIUare(i) modus ponens and(ii)generalization.The proof for the strong completeness of LIUis similar with the proof for the strong completeness of LI.Here we just show some key lemmas;all the notions used in the sequel are defined as above.

    Lemma 13For any α1,...,αn∈ΠIU,is not a tautology.

    ProofSinceα1,...,αndonothavecomplement,donothavenegation. Thendoes not contain complement.Let F be a valuation of PC s.t. F(p)=0 for any atomic proposition p.It can be seenThenis not a tautology. □

    Lemma 14(Well-definedness Lemma)For any u,v∈W,Fuvis not empty.

    ProofAssumethatFuvisempty.ThenΓuvisnotconsistent.Thenthereareα1,...,→⊥is a tautology.Thenis a tautology.By Lemma 13,this is impossible. □

    Lemma 15(Lemma of Primary Bounded Morphism)

    Proof1.SupposeThen Fg(i)? ασwhere Fg(i)∈ Ffi(s)fi(t).AssumeThenWe get a contradiction.

    2.Suppose Rαuv.We claim that Γuv∪{α}is consistent.Assume not.Then there areis a tautology.Then ασ→is a tautology.As(α1∪···∪αn)σ=is a tautology.By the Universal Axiom, Rα?Rα1∪··∪αn.Since Rαuv,Rα1∪··∪αnuv.By the Axiom for Union,Rα1uv or…or Rαnuv.we knowWe get a contradiction.Then Γuv∪{α}is consistent.Then there is a valuation F in PC s.t. F?Γuv∪{α}.Then F=Fjfor some Fj∈Fuv.Let i≤2ωbe s.t.g(i)=j.ThenThen□

    3.3 Two Remarks

    The improved method we present also works for the completeness of the logic LCwhose language ΦCcontains only the action constructor complement.We here just describe the basic ideas of the proof.The core part of this proof is how to get=W×W-Rα.The universal modality is expressible in ΦCand we introduce it as a derived expression.The special axioms of the axiomatization of LCinclude the three axioms for the universal modality,listed in the subsection 2.1,and the universal axiom.With the first class of axioms,we can properly transform the canonical model toabettermodelMwhereistheuniversalrelation,aswhatwedoinproving the completeness of LCIU.Then we define the imitations of M and the final model as before.The final model is a ΦC-model and it is equivalent to M.Finally we have the strong completeness of LC.

    In order to show the weak completeness of the sublogics of BML,we for some purpose might want to show that a consistent formula is satisfiable in a finite model. Our method has no problems with this issue,but we have to adapt it in some places. The main change is this:we do not copy a model for 2ωtimes and we just copy it for 2ntimes,where n is the number of the atomic actions occurring in the formula in consideration;accordingly,the crucial result,the lemma of primary bounded morphism,is not generally for all actions,but just for those generated from the n atomic actions.For the weak completeness,this is enough.

    4 Conclusion

    The set of negative requirements plays an important role in constructing proper models in the proofs of completeness of Boolean Modal Logic and its sublogics. Modal satisfiability is invariant under bounded morphisms;bounded morphisms require the forth and back conditions to be satisfied.On the one hand,the set contains enough information of the forth condition;on the other hand,it reserves enough room for the satisfaction of the back condition.The expressivity of the formulas in this set depends on what action constructors are in consideration.This feature offers the method a general taste.

    The translation we use in this work is from the set of actions to the language of Propositional Calculus.Such a translation is not very intuitive;a more natural one is from the action set to the first-order language.More specifically,each action should correspond to a first-order formula with two free variables.However,for the purposeof dealing with boolean modalities,the translation we present is enough,as boolean modalities do not essentially involve any quantifiers.Nonetheless,this might open a door to generalize this method to some more complex modalities such as composition which in fact contains existential quantification.

    [1] P.Blackburn,M.de Rijke and Y.Venema,2002,Modal Logic,Cambridge:Cambridge University Press.

    [2] W.van Der Hoek and J.-J.C.Meyer,1992,“Making some issues of implicit knowledge explicit”,International Journal of Foundations of Computer Science,3(2):193-223.

    [3] G.Gargov and S.Passy,1990,“A note on boolean modal logic”,in P.P.Petkov(ed.), Mathematical Logic,pp.311-321,New York:Plenum Press.

    [4] G.Gargov,S.Passy and T.Tinchev,1987,“Modal environment for boolean speculations”,in D.G.Skordev(ed.),Mathematical Logic and Its Applications,pp.253-263, Berlin:Springer US.

    [5] R.Hilpinen,2001,“Deontic logic”,in L.Goble(ed.),The Blackwell Guide to Philosophical Logic,pp.159-182,Oxford:Blackwell.

    [6] F.Ju and L.Liang,2013,“A dynamic deontic logic based on histories”,in D.Grossi,O. Roy and H.Huang(eds.),Logic,Rationality,and Interaction,vol.8196,pp.176-189, Berlin/Heidelberg:Springer.

    [7] Y.N.Wáng and T.?gotnes,2013,“Public announcement logic with distributed knowledge:Expressivity,completeness and complexity”,Synthese,190(1):135-162.

    布爾模態(tài)的公理化

    琚鳳魁
    北京師范大學(xué)哲學(xué)與社會學(xué)學(xué)院
    fengkui.ju@bnu.edu.cn
    胡祥梅
    浙江師范大學(xué)附屬義烏實(shí)驗(yàn)學(xué)校
    hu_xiangmei@126.com

    布爾模態(tài)(即模態(tài)生成算子補(bǔ)、交、并)涉及到了完全性問題。并模態(tài)是模態(tài)可定義的,但是補(bǔ)和交都不是。這意味著證明包含這三個(gè)模態(tài)的邏輯的完全性不是一件簡單直接的事情。Gargov和Passy使用復(fù)制方法從整體上處理這三個(gè)模態(tài),但是,這個(gè)方法不適用于強(qiáng)完全性,也不能單獨(dú)處理這三個(gè)模態(tài)。本文改進(jìn)了這個(gè)方法,使得改進(jìn)后的方法更具一般性,并且沒有這兩個(gè)不足之處。

    Received 2014-11-20

    *This research was supported by the National Social Science Foundation of China(No.12CZX053) and the Fundamental Research Funds for the Central Universitie(No.SKZZY201304).Shujiao Li also has contributions to this work.We would also like to thank Jiahong Guo,Xinwen Liu,Hu Liu,Johan van Benthem and Yanjing Wang for their useful comments and kind help.

    猜你喜歡
    公理化浙江師范大學(xué)完全性
    浙江師范大學(xué)行知學(xué)院手繪作品選登
    LiBa0.95-yBO3∶0.05Tb3+,yBi3+熒光粉的制備及熒光性質(zhì)
    于昕卉作品
    論經(jīng)濟(jì)學(xué)中的公理化方法
    Application of “Process Approach” in Middle School English Writing-Teaching
    對外漢語教學(xué)中的數(shù)學(xué)方法
    基于獨(dú)立公理的離散制造系統(tǒng)精益設(shè)計(jì)公理化映射研究
    術(shù)前鼻-牙槽突矯治器對完全性唇腭裂嬰兒修復(fù)效果的影響探究
    多模態(tài)公理化系統(tǒng)的可分離性研究
    完全性前置胎盤并胎盤植入的治療方法
    亚洲真实伦在线观看| 97超级碰碰碰精品色视频在线观看| 国产午夜精品久久久久久一区二区三区 | 国产乱人视频| 99精品欧美一区二区三区四区| 久久99热这里只有精品18| 精品国产美女av久久久久小说| 国产亚洲欧美在线一区二区| 床上黄色一级片| 桃色一区二区三区在线观看| 乱人视频在线观看| 亚洲av日韩精品久久久久久密| 国产欧美日韩精品亚洲av| 97超视频在线观看视频| 两个人的视频大全免费| 全区人妻精品视频| 欧美又色又爽又黄视频| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 午夜福利在线观看吧| 99久久99久久久精品蜜桃| 免费在线观看亚洲国产| aaaaa片日本免费| 亚洲av熟女| 狠狠狠狠99中文字幕| 观看美女的网站| 高清毛片免费观看视频网站| 亚洲精华国产精华精| 免费搜索国产男女视频| 我要搜黄色片| 国产成人影院久久av| 蜜桃亚洲精品一区二区三区| 脱女人内裤的视频| 亚洲中文日韩欧美视频| 亚洲一区二区三区不卡视频| 国内久久婷婷六月综合欲色啪| 蜜桃亚洲精品一区二区三区| 最新美女视频免费是黄的| 国产色婷婷99| 国产精品乱码一区二三区的特点| 久久精品国产亚洲av涩爱 | 亚洲人成电影免费在线| 中文字幕人妻丝袜一区二区| 热99在线观看视频| 12—13女人毛片做爰片一| 变态另类成人亚洲欧美熟女| 一级毛片高清免费大全| 午夜免费激情av| 久久国产乱子伦精品免费另类| 午夜福利欧美成人| 成年女人永久免费观看视频| 国模一区二区三区四区视频| 两人在一起打扑克的视频| 女警被强在线播放| 国产日本99.免费观看| 国模一区二区三区四区视频| 日韩有码中文字幕| 国产日本99.免费观看| 一个人免费在线观看电影| 一级毛片女人18水好多| 色综合婷婷激情| 久久国产精品影院| 又黄又爽又免费观看的视频| 一区二区三区激情视频| 亚洲美女黄片视频| 国产男靠女视频免费网站| 日韩精品青青久久久久久| www日本黄色视频网| 色综合站精品国产| av视频在线观看入口| 亚洲精华国产精华精| 亚洲va日本ⅴa欧美va伊人久久| 99热这里只有是精品50| 国产激情欧美一区二区| 欧美高清成人免费视频www| 国产高清三级在线| av黄色大香蕉| 成人国产一区最新在线观看| 99热精品在线国产| 国产蜜桃级精品一区二区三区| 变态另类成人亚洲欧美熟女| 国产午夜精品论理片| 国产亚洲精品av在线| 网址你懂的国产日韩在线| 免费av不卡在线播放| 国产中年淑女户外野战色| 亚洲熟妇熟女久久| 国产精品,欧美在线| 国产精品,欧美在线| 国产亚洲欧美在线一区二区| 欧美性猛交╳xxx乱大交人| 午夜亚洲福利在线播放| 亚洲精品久久国产高清桃花| 国产亚洲av嫩草精品影院| 男女视频在线观看网站免费| 免费人成视频x8x8入口观看| 在线免费观看的www视频| 国产成人a区在线观看| 天堂影院成人在线观看| 免费一级毛片在线播放高清视频| 99国产精品一区二区三区| 又紧又爽又黄一区二区| 国产99白浆流出| av在线蜜桃| 日韩人妻高清精品专区| 欧美日本亚洲视频在线播放| 男女那种视频在线观看| 免费在线观看亚洲国产| 久久亚洲真实| 欧美最新免费一区二区三区 | 一夜夜www| 欧美性猛交╳xxx乱大交人| 亚洲av电影在线进入| 亚洲激情在线av| 内地一区二区视频在线| 欧美成人免费av一区二区三区| 国产高清videossex| 观看免费一级毛片| 尤物成人国产欧美一区二区三区| 精品久久久久久久久久免费视频| 欧美中文综合在线视频| 久久草成人影院| 美女黄网站色视频| 99久久成人亚洲精品观看| svipshipincom国产片| 国产av麻豆久久久久久久| av专区在线播放| 99久久精品国产亚洲精品| 99久久精品热视频| 午夜两性在线视频| 色哟哟哟哟哟哟| 村上凉子中文字幕在线| 国产精品久久久久久精品电影| 19禁男女啪啪无遮挡网站| 亚洲av电影在线进入| 男女视频在线观看网站免费| 亚洲国产色片| 国产视频内射| 操出白浆在线播放| 国产蜜桃级精品一区二区三区| 国产精品久久久人人做人人爽| 一夜夜www| 桃色一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| 岛国在线观看网站| 国产精品99久久久久久久久| 日韩高清综合在线| 亚洲av免费高清在线观看| 久久九九热精品免费| 欧美日韩黄片免| 91字幕亚洲| 美女高潮喷水抽搐中文字幕| 国产一区二区激情短视频| 国产伦一二天堂av在线观看| 特级一级黄色大片| 日本成人三级电影网站| 国产亚洲精品久久久久久毛片| 国产成人欧美在线观看| 久久精品综合一区二区三区| 欧美一区二区亚洲| 少妇裸体淫交视频免费看高清| 欧美日韩中文字幕国产精品一区二区三区| 欧美激情久久久久久爽电影| 婷婷精品国产亚洲av| av在线蜜桃| 亚洲美女视频黄频| 淫秽高清视频在线观看| 狠狠狠狠99中文字幕| 亚洲成av人片免费观看| 欧美中文日本在线观看视频| 免费观看精品视频网站| 免费一级毛片在线播放高清视频| 国产精品久久久久久精品电影| 精华霜和精华液先用哪个| 深夜精品福利| 老鸭窝网址在线观看| 亚洲人成伊人成综合网2020| 国产高清三级在线| 欧美精品啪啪一区二区三区| 在线播放国产精品三级| 欧美乱妇无乱码| 国产在视频线在精品| 国产伦一二天堂av在线观看| 欧美日韩黄片免| 最新中文字幕久久久久| 叶爱在线成人免费视频播放| av在线天堂中文字幕| 色精品久久人妻99蜜桃| 免费在线观看成人毛片| 97碰自拍视频| av天堂中文字幕网| 97碰自拍视频| 美女黄网站色视频| 亚洲aⅴ乱码一区二区在线播放| 国产麻豆成人av免费视频| 国产成人av激情在线播放| 国产视频一区二区在线看| 美女高潮喷水抽搐中文字幕| 亚洲五月婷婷丁香| 一级作爱视频免费观看| 一区福利在线观看| 久久精品国产综合久久久| 婷婷精品国产亚洲av| 最好的美女福利视频网| 桃色一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 精品福利观看| 亚洲真实伦在线观看| 五月玫瑰六月丁香| 亚洲av熟女| 欧美另类亚洲清纯唯美| www日本在线高清视频| xxxwww97欧美| 在线看三级毛片| 午夜精品一区二区三区免费看| 欧美日韩精品网址| 无遮挡黄片免费观看| 色综合站精品国产| 午夜精品在线福利| 国产在视频线在精品| 国产精品1区2区在线观看.| 99久久久亚洲精品蜜臀av| 真人做人爱边吃奶动态| 淫妇啪啪啪对白视频| 观看美女的网站| 欧美一区二区亚洲| 在线观看免费午夜福利视频| 亚洲在线自拍视频| 三级男女做爰猛烈吃奶摸视频| 亚洲成人精品中文字幕电影| av福利片在线观看| 麻豆成人av在线观看| 老司机午夜福利在线观看视频| 看免费av毛片| 亚洲欧美日韩东京热| 亚洲精品亚洲一区二区| 国产私拍福利视频在线观看| 亚洲国产精品成人综合色| 午夜精品在线福利| 乱人视频在线观看| 可以在线观看的亚洲视频| 久久草成人影院| 色精品久久人妻99蜜桃| 亚洲成a人片在线一区二区| 成人欧美大片| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区三| 深爱激情五月婷婷| 麻豆成人午夜福利视频| 欧美一级毛片孕妇| 欧美中文日本在线观看视频| 3wmmmm亚洲av在线观看| 国产av麻豆久久久久久久| 波野结衣二区三区在线 | 99视频精品全部免费 在线| 日韩精品青青久久久久久| 美女高潮喷水抽搐中文字幕| 亚洲精品影视一区二区三区av| 欧美日韩福利视频一区二区| 中文在线观看免费www的网站| 色综合婷婷激情| 日韩精品中文字幕看吧| 久久香蕉精品热| 欧美大码av| 亚洲最大成人中文| 亚洲乱码一区二区免费版| 日韩欧美免费精品| 日本撒尿小便嘘嘘汇集6| 波多野结衣巨乳人妻| 国产高清视频在线播放一区| 九色成人免费人妻av| 亚洲av熟女| 亚洲欧美激情综合另类| 99久久精品一区二区三区| 女同久久另类99精品国产91| 成人国产一区最新在线观看| 欧美日韩国产亚洲二区| 亚洲中文日韩欧美视频| 国产av一区在线观看免费| 国产黄片美女视频| 午夜a级毛片| 免费观看人在逋| 色综合欧美亚洲国产小说| 欧美最新免费一区二区三区 | 91麻豆av在线| 又黄又粗又硬又大视频| 村上凉子中文字幕在线| 日韩欧美免费精品| 成人鲁丝片一二三区免费| 美女 人体艺术 gogo| 欧美日韩乱码在线| 免费看日本二区| 亚洲国产日韩欧美精品在线观看 | 51午夜福利影视在线观看| 国产成人欧美在线观看| 国产精品国产高清国产av| 午夜影院日韩av| 亚洲精品国产精品久久久不卡| 国产日本99.免费观看| 伊人久久精品亚洲午夜| 日韩精品中文字幕看吧| 狂野欧美激情性xxxx| 激情在线观看视频在线高清| 国产伦精品一区二区三区视频9 | 日日干狠狠操夜夜爽| 成人av在线播放网站| 小蜜桃在线观看免费完整版高清| 神马国产精品三级电影在线观看| 听说在线观看完整版免费高清| 亚洲成人久久爱视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产真实伦视频高清在线观看 | 一本精品99久久精品77| 精品不卡国产一区二区三区| 久久中文看片网| 久久午夜亚洲精品久久| 美女被艹到高潮喷水动态| 人人妻人人澡欧美一区二区| а√天堂www在线а√下载| 国产精品 欧美亚洲| 网址你懂的国产日韩在线| 搡老岳熟女国产| 大型黄色视频在线免费观看| 免费电影在线观看免费观看| 人人妻人人澡欧美一区二区| 一二三四社区在线视频社区8| 中文字幕精品亚洲无线码一区| 欧美精品啪啪一区二区三区| 久久婷婷人人爽人人干人人爱| 99在线视频只有这里精品首页| 欧美乱码精品一区二区三区| 国产一区在线观看成人免费| 亚洲五月天丁香| 国产高清三级在线| 成人国产一区最新在线观看| 久久99热这里只有精品18| 露出奶头的视频| 99热这里只有精品一区| 午夜福利高清视频| 亚洲精品美女久久久久99蜜臀| 国内精品美女久久久久久| 国产精品,欧美在线| 国产真实乱freesex| 欧美乱码精品一区二区三区| 国产成人系列免费观看| 99riav亚洲国产免费| 麻豆一二三区av精品| 久久精品国产自在天天线| 男插女下体视频免费在线播放| 国产v大片淫在线免费观看| 成人无遮挡网站| 一级毛片女人18水好多| 日韩欧美国产一区二区入口| 亚洲国产精品成人综合色| 国产激情欧美一区二区| 人人妻人人澡欧美一区二区| 男人的好看免费观看在线视频| 午夜免费男女啪啪视频观看 | 婷婷精品国产亚洲av在线| 成人午夜高清在线视频| 亚洲第一电影网av| 亚洲专区中文字幕在线| av视频在线观看入口| 亚洲在线自拍视频| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看| 亚洲在线观看片| 日韩欧美国产一区二区入口| 俺也久久电影网| 国产伦一二天堂av在线观看| 天堂动漫精品| 又爽又黄无遮挡网站| 中文资源天堂在线| 国产97色在线日韩免费| 好看av亚洲va欧美ⅴa在| av欧美777| 国产精品嫩草影院av在线观看 | 久久久久久人人人人人| 99国产综合亚洲精品| 日本在线视频免费播放| 国产精品综合久久久久久久免费| 在线观看美女被高潮喷水网站 | 最近最新中文字幕大全电影3| 久久精品人妻少妇| 啪啪无遮挡十八禁网站| 一级毛片女人18水好多| 亚洲片人在线观看| 日本黄色片子视频| 精品国产超薄肉色丝袜足j| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 在线视频色国产色| 亚洲成人久久爱视频| 亚洲av二区三区四区| 床上黄色一级片| 亚洲第一欧美日韩一区二区三区| 久久香蕉精品热| 久久久精品欧美日韩精品| 午夜a级毛片| 丰满乱子伦码专区| 老司机福利观看| 日本黄大片高清| а√天堂www在线а√下载| 人妻丰满熟妇av一区二区三区| 精华霜和精华液先用哪个| 可以在线观看的亚洲视频| 黄色日韩在线| 国产精品爽爽va在线观看网站| 婷婷丁香在线五月| 免费在线观看影片大全网站| 国产精品一及| 国产精品久久久久久人妻精品电影| 国产亚洲精品综合一区在线观看| 波多野结衣高清作品| 欧美国产日韩亚洲一区| 搡老岳熟女国产| 亚洲一区高清亚洲精品| 国产精品综合久久久久久久免费| 亚洲五月婷婷丁香| 麻豆成人av在线观看| 国产一区二区三区在线臀色熟女| 久久国产精品人妻蜜桃| 97人妻精品一区二区三区麻豆| 国产亚洲av嫩草精品影院| 韩国av一区二区三区四区| 欧美+亚洲+日韩+国产| av在线蜜桃| 制服丝袜大香蕉在线| 日韩欧美在线二视频| 中文字幕av成人在线电影| 最后的刺客免费高清国语| 久久精品国产综合久久久| 国产精品一区二区三区四区久久| 精品日产1卡2卡| 好男人电影高清在线观看| 毛片女人毛片| 国产亚洲精品av在线| 亚洲人成网站在线播| 老熟妇仑乱视频hdxx| 成人无遮挡网站| 成人永久免费在线观看视频| 成年女人永久免费观看视频| 亚洲avbb在线观看| 午夜福利在线在线| 男人的好看免费观看在线视频| 91在线观看av| 哪里可以看免费的av片| 亚洲av电影不卡..在线观看| eeuss影院久久| 免费在线观看亚洲国产| 不卡一级毛片| 我要搜黄色片| 高潮久久久久久久久久久不卡| 性色avwww在线观看| 少妇的逼好多水| 在线播放国产精品三级| 亚洲精品日韩av片在线观看 | 十八禁人妻一区二区| e午夜精品久久久久久久| 欧美日韩黄片免| 男人和女人高潮做爰伦理| 国产一级毛片七仙女欲春2| 久久午夜亚洲精品久久| 在线天堂最新版资源| 天天躁日日操中文字幕| 激情在线观看视频在线高清| 夜夜爽天天搞| 国产精品一区二区三区四区免费观看 | 亚洲无线在线观看| 免费av观看视频| 听说在线观看完整版免费高清| 日日夜夜操网爽| 国产一区二区在线av高清观看| 窝窝影院91人妻| 久久久久久久午夜电影| 99精品在免费线老司机午夜| 亚洲熟妇中文字幕五十中出| 久久久久久久亚洲中文字幕 | 琪琪午夜伦伦电影理论片6080| 夜夜躁狠狠躁天天躁| 99热只有精品国产| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx| 精品人妻偷拍中文字幕| 99在线视频只有这里精品首页| 亚洲 欧美 日韩 在线 免费| 最近最新免费中文字幕在线| 国产成+人综合+亚洲专区| 中文字幕熟女人妻在线| 午夜免费男女啪啪视频观看 | 亚洲av成人av| 丰满的人妻完整版| 色视频www国产| 午夜免费成人在线视频| 无人区码免费观看不卡| 欧美一区二区精品小视频在线| 欧美成狂野欧美在线观看| 一区二区三区激情视频| 18禁裸乳无遮挡免费网站照片| 手机成人av网站| 我要搜黄色片| 久久精品亚洲精品国产色婷小说| 欧美性猛交╳xxx乱大交人| 美女被艹到高潮喷水动态| 亚洲国产欧洲综合997久久,| 亚洲第一电影网av| 欧美午夜高清在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲乱码一区二区免费版| 两人在一起打扑克的视频| 最好的美女福利视频网| 国产97色在线日韩免费| av中文乱码字幕在线| 日韩欧美免费精品| 中亚洲国语对白在线视频| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 搡老熟女国产l中国老女人| 免费观看人在逋| 亚洲国产日韩欧美精品在线观看 | 欧美成人免费av一区二区三区| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 亚洲乱码一区二区免费版| 首页视频小说图片口味搜索| 日本五十路高清| 久久99热这里只有精品18| 亚洲成a人片在线一区二区| 久久人人精品亚洲av| 国产v大片淫在线免费观看| 热99在线观看视频| 制服人妻中文乱码| 哪里可以看免费的av片| 午夜日韩欧美国产| 免费看美女性在线毛片视频| 9191精品国产免费久久| 香蕉丝袜av| 久久久久免费精品人妻一区二区| 19禁男女啪啪无遮挡网站| 午夜视频国产福利| 国产亚洲欧美在线一区二区| 国产色婷婷99| АⅤ资源中文在线天堂| 夜夜躁狠狠躁天天躁| 有码 亚洲区| 国产伦精品一区二区三区四那| 久久久国产精品麻豆| 成人精品一区二区免费| 久久久久久国产a免费观看| 午夜视频国产福利| 乱人视频在线观看| 欧美乱色亚洲激情| 欧美日韩乱码在线| 国产免费男女视频| 99国产精品一区二区蜜桃av| 成年版毛片免费区| 日本一二三区视频观看| 国产免费一级a男人的天堂| 操出白浆在线播放| 久久精品人妻少妇| 首页视频小说图片口味搜索| eeuss影院久久| 在线播放国产精品三级| 岛国视频午夜一区免费看| 日日夜夜操网爽| 国产精品一区二区三区四区久久| 国产探花在线观看一区二区| 变态另类丝袜制服| 中文字幕av在线有码专区| 国产一区二区亚洲精品在线观看| 成人精品一区二区免费| 成人特级av手机在线观看| 在线国产一区二区在线| 国产精品女同一区二区软件 | 精品免费久久久久久久清纯| 岛国在线观看网站| 欧美成人一区二区免费高清观看| 成人亚洲精品av一区二区| 亚洲中文日韩欧美视频| 俄罗斯特黄特色一大片| 免费看光身美女| 亚洲精品影视一区二区三区av| 久久香蕉精品热| 国产欧美日韩一区二区精品| 国产一区二区三区视频了| 男人的好看免费观看在线视频| ponron亚洲| 少妇的丰满在线观看| 国产精品av视频在线免费观看| 最近最新中文字幕大全电影3| 久久精品影院6| 欧美高清成人免费视频www| 国产黄色小视频在线观看| h日本视频在线播放| 午夜免费激情av| 亚洲专区中文字幕在线| 国产精品亚洲av一区麻豆| 男人舔女人下体高潮全视频| xxxwww97欧美| 精品午夜福利视频在线观看一区| 少妇人妻一区二区三区视频| 日本在线视频免费播放| 一二三四社区在线视频社区8| 99久久99久久久精品蜜桃| 岛国在线免费视频观看| 免费搜索国产男女视频| 中文亚洲av片在线观看爽| 热99re8久久精品国产| 日本与韩国留学比较| 亚洲avbb在线观看| 五月玫瑰六月丁香| 波多野结衣巨乳人妻| 国产黄色小视频在线观看| 欧美日韩综合久久久久久 |