• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    吡啶鹽/咪唑鹽調(diào)控鈷萘基二膦酸配位聚合物的結(jié)構(gòu)和性質(zhì)

    2023-02-27 03:29:26劉照文王肖陽高文康
    關(guān)鍵詞:材料科學(xué)宿遷吡啶

    徐 艷 王 宣 劉照文 王肖陽 高文康 崔 磊

    (宿遷學(xué)院信息工程學(xué)院材料科學(xué)系,宿遷 223800)

    0 Introduction

    Coordination polymers(CPs)have received tre?mendous attention recently due to their versatile struc?tures and multiple functions that can be designed and tailored.As an important class of inorganic?organic hybrid materials or CPs,metal phosphonates can show versatile architectures with interesting physical and chemical properties[1?8].Many metal phosphonates have been constructed by decorating the phosphonate ligand with other coordinating functional groups[9?13]or intro?ducing a second auxiliary ligand[14?17].In principle,a near?limitless number of metal phosphonates can be obtained through different combinations of metal ions and organic ligands.Therefore,it is crucial to under?stand the mechanism of structure assembly and the structure?property relationships of this class of material for the final purpose of designing and synthesizing materials according to on?demand.Many factors,such as the coordination geometry of the central metal ions,connective modes of the organic ligands,deprotonation of the phosphonic acid group,and synthesis conditions,can affect the final structures.Compared with the car?boxylate group,the phosphonate group has an addition?al oxygen atom,featuring one more coordinating site and consequently more coordination modes,which makes it a great challenge to design and synthesize materials with specific structures and functions.Many efforts have been made to understand these by investi?gating different metal centers,functionalized phospho?nate ligands,and synthesis conditions.An effective strategy to fabricate metal phosphonates with fascinat?ing structures is using different templates or mineraliz?ers in the reaction mixture.A few metal phosphonates are reported based on amine?templated.Wang Guo?Ming and co?workers have taken 1?hydroxyethane?1,1?diphosphonic acid (hedpH4)as the diphosphonate ligand to build a family of open?framework structures with templated aliphatic amines[16,18?21].To the best of our knowledge,the syntheses of metal phosphonates using different di?pyridinium templates in the reaction mixture have not been adopted so far.Here,the naph?thalene?diphosphonate ligand(Scheme 1)has been utilized for the generation of more coordination sites,along with di?pyridinium/imidazolium as template ions for the first time.

    Scheme 1 Molecular structure and coordination modes of 1,4?ndpaH4ligand

    In this work,three cobalt naphthalene?diphospho?nates with entirely different structures are obtained under hydrothermal conditions simply by changing the auxiliary ligands and the pH of the reaction mixture.Complexes(1,3?dppH2)2[Co4(1,4?ndpa)(1,4?ndpaH)2(1,4?ndpaH2)]·6H2O(1)and(1,4?bixH2)0.5[Co(1,4?ndpaH)](2)(1,3?dppH22+=protonated 1,3?di(4?pyridyl)propane,1,4?bixH2+2=protonated bis(imidazol?1?ylmethyl)ben?zene,1,4?ndpaH4=1,4?naphthalenediphosphonic acid)show 3D open?framework structures,respectively.While complex(1,4?bixH2)0.5[Co2(1,4?ndpaH)(1,4?ndpaH2)(H2O)2](3)displays 2D layer structure.Magnet?ic studies reveal that complexes 1 and 2 show domi?nant antiferromagnetic interactions.

    1 Experimental

    1.1 Materials and measurements

    1,4?ndpaH4was synthesized according to the liter?ature[22].All starting materials were of analytical reagent grade and used as received without further pu?rification.Elemental analysis for C,H,and N was per?formed on a Perkin?Elmer 240C elemental analyzer.Infrared spectra were measured as KBr pellets on a Bruker Tensor 27 spectrometer in 400 ?4 000 cm?1.Thermogravimetric analysis(TGA)was performed on a METTLER TOLEDO TGA/DSC?1 over 25?800 ℃under a nitrogen flow at a heating rate of 10 ℃·min?1.Powder X?ray diffraction(PXRD)data were collected on a Bruker D8 ADVANCE X?ray powder diffractome?ter(Cu Kα,λ=0.154 06 nm)operating at 45 kV and 40 mA over a 2θ range of 5°to 50°at room temperature.The magnetization data were recorded on a vibrating sample magnetometer(VSM)of Quantum Design.The diamagnetic contribution of the sample itself was esti?mated from Pascal′s constants[23].

    1.2 Synthesis

    1.2.1 Synthesis of complex 1

    A mixture of CoCl2·6H2O(0.476 g,0.1 mmol),1,4?ndpaH4(0.028 6 g,0.1 mmol),and 1,3?dpp(0.019 6 g,0.1 mmol)in 10 mL of water,which pH value was adjusted to 4.15 with 0.5 mol·L?1NaOH solution,was sealed in a Teflon?lined autoclave and heated at 140 ℃for 3 d.After cooling to room temperature,blue rod?like crystals were collected and washed with water by suction filtration.Yield:55.3 mg.Elemental analysis Calcd.for C66H72Co4N4O30P8(%):C,42.06;H,3.85;N,2.97.Found(%):C,42.11;H,3.81;N,2.83.FT?IR(KBr,cm?1):3 397(w),3 237(w),1 635(m),1 507(m),1 215(m),1 187(w),1 154(vs),1 123(vs),1 090(vs),1 040(m),1 017(s),963(s),941(s),856(m),812(m),757(m),624(s),570(m),519(s),478(s),439(w),407(w),403(w).

    1.2.2 Synthesis of complex 2

    A mixture of CoCl2·6H2O(0.047 4 g,0.2 mmol),1,4?ndpaH4(0.031 2 g,0.1 mmol),and 1,4?bix(0.025 6 g,0.1 mmol)in 10 mL of water,which pH value was adjusted to 5.6 with 0.5 mol·L?1NaOH solution,was sealed in a Teflon?lined autoclave and heated at 140 ℃for 3 d.After cooling to room temperature,blue rod?like crystals were collected and washed with water by suction filtration.Yield:23.8 mg.Elemental analysis Calcd.for C17H15CoN2O6P2(%):C,43.99;H,3.26;N,6.03.Found(%):C,43.83;H,3.29;N,6.12.FT?IR(KBr,cm?1):3 140(m),3 090(w),1 570(m),1 550(m),1 516(m),1 445(m),1 273(m),1 208(m),1 158(w),1 092(vs),1 016(s),944(vs),863(m),770(s),709(m),619(s),522(s),413(m).

    1.2.3 Synthesis of complex 3

    Complex 3 was obtained as purple rod?like crys?tals by following a similar procedure to that of 2,except that the pH value of the reaction mixture was adjusted to 4.3.Yield:15.9 mg.Elemental analysis Calcd.for C27H27Co2N2O14P4(%):C,38.37;H,3.22;N,3.31.Found(%):C,38.56;H,3.18;N,3.29.FT ?IR(KBr,cm?1):3 356(s),1 578(m),1 511(m),1 213(s),1 186(vs),1 157(vs),1 086(vs),1 072(vs),1 034(w),1 010(w),970(m),940(vs),756(m),631(s),571(m),524(m),509(m),493(w),436(w).

    1.3 Crystallographic data collection and refinement

    Single crystals with sizes of 0.15 mm×0.13 mm×0.12 mm for 1,0.12 mm×0.11 mm×0.10 mm for 2,and 0.16 mm×0.15 mm×0.13 mm for 3 were used for struc?tural determination on a Bruker D8 Venture diffractom?eter using graphite?monochromated(Mo Kα,λ =0.071 073 nm)at 100 K.A hemisphere of data was col?lected in a 2θ range of 3.03°?58.818°for 1,4.124°?58.884°for 2,and 2.996°?58.666°for 3.The numbers of observed and unique reflections are 56 305 and 16 056(Rint=0.031 8)for 1,16 837 and 4 117(Rint=0.029 3)for 2,33 130 and 6 926(Rint=0.036 4)for 3.Using Olex2,the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimization All H atoms were refined isotro?pically,with the isotropic vibration parameters related to the non?H atom to which they are bonded.Details of the crystal data and refinements of 1?3 are summarized in Table 1,and selected bond lengths and angles of 1?3 are listed in Table S1?S3(Supporting information).

    Table 1 Crystallographic data and structure refinement details for complexes 1?3

    CCDC:2202596,1;2202597,2;2202598,3.

    2 Results and discussion

    2.1 Synthesis

    Complexes 1?3 were synthesized under similar experimental conditions except for the auxiliary ligands and the pH value of the reaction mixture(Scheme 2).Pure phases of blue rod crystals of 1 and blue shuttle crystals of 2 were obtained at pH=5.6.When the pH was descended to 4.3,purple rob crystals of 3 were obtained,contaminated with a small amount of 2.We tried to isolate a pure phase of 3 by changing the reaction temperature and solvents but failed.Purple rob crystals of 3 were manually selected under the microscope for subsequent characterization.Its purity was confirmed by the PXRD pattern in compari?son with that simulated from the single crystal data(Fig.S1?S3).

    Scheme 2 Synthetic routes of complexes 1?3

    2.2 Structure description

    Complex 1 crystallizes in the monoclinic system space group P21/c.The asymmetric unit contains four Co(Ⅱ) ions,one 1,4?ndpa4?ion,two 1,4?ndpaH3?ions,one 1,4?ndpaH22?ion,two 1,3 ?dppH22+ions,and six lattice water molecules(Fig.1a).All Co(Ⅱ)ions have distorted tetrahedral geometry,surrounded by four phosphonate oxygen atoms(O1,O6A,O10B,O21C for Co1,O4,O7,O12D,O13 for Co2;O2E,O16,O18F,O19 for Co3;O8B,O14B,O22,O23G for Co4)(Symme?try codes:A:?x+1,y?1/2,?z+3/2;B:x?1,y,z;C:x,y?1,z;D:?x+2,y+1/2,?z+3/2;E:x,y+1,z,F:?x+1,?y+2,?z+1;G:?x,?y+1,?z+1).The Co—O bond lengths and O—Co—O angles fall in a range of 0.193 37(15)?0.19850(15)nmand95.74(7)°?117.86(6)°,respectively,in agreement with those for the other cobalt phospho?nates with tetrahedral geometry[24?25].

    The eight phosphonate groups(P1?P8)connect four Co(Ⅱ) ions using two of its three phosphonate oxy?gen atoms in a cis?cis coordination mode(Scheme 1),forming an infinite chain.Notably,P2,P3,P4,and P6 are singly protonated,while the remaining phosphonate groups are all fully deprotonated.The{CoO4}polyhe?dra are each involved in the corner sharing with four{PO3C}tetrahedrons,forming a 1D inorganic chain in the ac plane(Fig.1b).The Co…Co distances over the double O—P—O bridges are in a range of 0.417 71(7)?0.454 40(8)nm.The inorganic chains are further cross?linked by naphthalene groups,leading to a 3D open?framework structure(Fig.1c).Notably,in the 3D struc?ture,channels extend indefinitely along the a?axis.The protonated 1,3?dppH22+occupies these channels along with free water molecules(Fig.1d),interacting with each other and the framework through hydrogen bonds(N1…O1W:0.270 3(2)nm;N2…O5W:0.270 4(3)nm,N3…O4W:0.272 9(3)nm;N4…O6W:0.278 64(3)nm)(Table S2).

    Fig.1 (a)Building unit of 1 with atomic labeling scheme;(b)1D inorganic chain;(c)Inorganic chains cross?linked by naphthalene groups,where 1,3?dppH2 2+ions are omitted for clarity;(d)View of the supramolecular structure of 1 along the[011]direction showing the template,1,3?dppH2 2+,placed in the channel

    Complex 2 crystallizes in the monoclinic system space group P21/n.The asymmetric unit contains one Co(Ⅱ) ion,one 1,4?ndpaH3?ion,and half a 1,4?bixH2+2ion(Fig.2a).Like 1,Co(Ⅱ) ion in complex 2 also dis?plays a distorted tetrahedral geometry,in which all of the four coordination sites are occupied by phospho?nate oxygens(O1,O2A,O4,and O6B)(Symmetry codes:A:1?x,?y,1?z;B:0.5+x,0.5?y,0.5+z)from four equivalent 1,4 ?ndpaH3?ions.The Co—O bond lengths are 0.193 06(16)?0.195 63(15)nm,and O—Co—O angles are 105.52(7)°?116.99(6)°.Like those in complex 1,the phosphonate ligands in 2 adopt a cis?cis coordination mode (Scheme 1),behaving as a quadrdentate ligand,and coordinating with four Co(Ⅱ)ions.Thus each{CoO4}tetrahedron is corner?shared with four{PO3C},forming an infinite chain along the a?axis(Fig.2b).The Co…Co distances over the double O—P—O bridges are 0.460 97(4)and 0.456 61(4)nm.Like those found in complex 1,the chains are also linked by naphthalene groups,forming a 3D supramo?lecular structure.Furthermore,the protonated template of 1,4?bixH22+is suspended in the skeletal voids of the crystal structure.Hydrogen bonds exist between the phosphonate oxygen atoms and 1,4?bixH22+counterions(N1…O5:0.273 4(3)nm)along the b?axis(Fig.2c).

    Complex 3 crystallizes in the monoclinic system space group P21/n and shows a 2D layer structure.The asymmetric unit contains two Co(Ⅱ) ions,one 1,4?ndpaH3?ion,one 1,4 ?ndpaH22?ion,two coordination water molecules,and half a 1,4?bixH22+ion.Compared with complex 2,Co1 is five?coordinate with a distorted trigonal?bipyramidal geometry in complex 3,in which four of the five coordination sites are occupied by phos?phonate oxygens(O1,O7,O5A,O12B,Symmetry codes:A:3/2?x,?1/2+y,1/2?z;B:1/2?x,?1/2+y,1/2?z)from four equivalent 1,4?ndpaH3?ions and the remain?ing one is filled with the oxygen atom(O13)of the coor?dination water molecule(Fig.2d).Co2 has a distorted octahedral environment with the five sites occupied by five phosphonate oxygen(O1C,O2C,O4,O9D,O10,Symmetry codes:C:3/2?x,1/2+y,1/2?z;D:1/2?x,1/2+y,1/2?z),and one coordination water atom(O14).The Co—O bond lengths are between 0.199 02(13)and 0.226 70(14)nm and the O—Co—O bond angles lie in a range of 84.68(5)°?164.51(5)°(Table S4).Two tetra?dentate naphthalene phosphonate ligands differ slightly in their protonation,monoprotonated(1,4?ndpaH3?)and bi?protonated(1,4?ndpaH22?).Unlike those in complexes 1 and 2,the phosphonate ligands in 3 adopt a cis?trans coordination mode(Scheme 1).They chelate and bridge four cobalt ions.Each{Co1O5}polyhedron is corner?shared with four{PO3C}tetrahedrons,while the{Co2O6}polyhedron is involved in corner?sharing with three{PO3C}tetrahedrons and edge?sharing with one{PO3C}tetrahedron.Therefore,the Co1 and Co2 are bridged by one μ2?O(P)and one O—P—O linker,form?ing a dimeric unit of Co2.The Co1…Co2 distance with?in the dimer is 0.388 94(4)nm.The equivalent dimers are connected by two{PO3C}tetrahedrons to form an infinite chain running along the a?axis(Fig.2e).The distance between the dimers is 0.415 04(4)nm.The chains are cross?linked by naphthalene groups,forming a 2D wave layer in the ab plane(Fig.2e).The protonat?ed 1,4?bixH22+are filled between layers(Fig.2f).

    Fig.2 (a)Building unit of 2 with the atomic labeling scheme;(b)Inorganic chains cross?linked by naphthalene groups;(c)3D polyhedral view of complex 2;(d)Building unit of 3 with the atomic labeling scheme;(e)Wave single layer structure of 3 where the inorganic chains are cross?linked by naphthalene;(f)Packing diagram of 2 in ABAB mode viewed along the a?axis

    All the complexes exhibit di?pyridinium/imidazoli?um templated 3D or 2D extended structures on the connectivity between the Co2+ions and naphthalene?diphosphonate units.The reaction conditions in all the cases are similar,but the observed structural differenc?es are mainly due to the presence of variable dipyri?dine molecules and pH.Both complexes 1 and 2 have analogous 3D open?framework structures connecting through metal and diphosphonates (naphthalene diphosphonic acid),while the di?pyridinium/imidazoli?um template is different in the framework.In the struc?ture of 1,the template 1,3?dppH22+is placed in the channel formed from{CoO4}tetrahedron and{CPO3}tetrahedron connected by naphthalene groups(Fig.1d)with a channel size of 0.64 nm×0.64 nm(shortest atom?atom contact distances,not including the van der Waals radii).The protonated 1,3?dppH22+molecules occupy these channels along with free water molecules and interact with each other and with the framework through hydrogen bonds.The above channel is growing along the a?axis,which is different from the direction of the inorganic chain.In the structure of 2,templated 1,4?bixH22+cations are situated inside the bigger chan?nel of size(1.34 nm×0.66 nm),constructed from four inorganic chains made up of{CoO4}tetrahedron and{PO3C}tetrahedron along the a?axis(Fig.2c).The pro?tonated 1,4?bixH22+are stabilized through extensive N—H…O hydrogen bonding interactions with the framework.Complexes 2 and 3,despite slight distinc?tion of pH in the reactions,the same template effect leads to different topological structures.Comparing with complex 2,complex 3 exhibits an anionic layer with protonated di?pyridinium/imidazolium template located in interlayer space.Since at a lower pH value(4.3),there are diprotonated diphosphonates(1,4?ndpaH22?),which are absent in 1 and 2.It is worth men?tioning that although cobalt phosphonates with open?framework structures composed of inorganic chains and organoamine ?directed were previously reported[21,26?27],none of them contain a di?pyridinium/imidazolium template.

    2.3 Thermal stability of the complexes

    The TGA curves for complexes 1?3 are shown in Fig.3.The TGA curve of complex 1 revealed a multi?step weight loss process.The first step below 175℃corresponds to a weight loss of 5.47%,attributed to the release of six lattice water molecules(Calcd.5.73%).The dehydrated samples were stable up to 330℃,above which a second weight?loss step was observed with the removal of two 1,3?dppH22+ions(19.18%)(Calcd.19.76%).The third step was observed above 525℃,corresponding to the decomposition of the organic ligands and the collapse of the structure.Ther?mal analysis revealed that complex 2 was stable up to 400℃,above which the curve drops rapidly,due to the burn of the organic components and the collapse of the 3D structure.For complex 3,the first step occurred at about 240℃with a weight loss of 4.46%,in agreement with the removal of two lattice water molecules(Calcd.4.26%).This was followed by a short plateau until 355℃,above which a quick weight loss was observed corresponding to the release of the uncoordinated 1,4?bixH22+ions and the decomposition of the organic components.

    Fig.3 TGA curves for complexes 1,2,and 3

    2.4 Magnetic properties of complexes 1 and 2

    We attempted to synthesize sufficient amounts of complex 3 to characterize its magnetic properties but unfortunately failed.The temperature?dependent magnetic susceptibilities of 1 and 2 were measured in a temperature range of 2?300 K under an applied field of 1 kOe(Fig.4).The χMT values for each Co(Ⅱ) at 300 K were 2.36 cm3·mol?1·K for 1 and 2.41 cm3·mol?1·K for 2,and both are larger than the spin?only value of 1.875 cm3·mol?1·K for one spin ?only Co (Ⅱ) (S=3/2,g=2).Since the ground state of a tetrahedral Co(Ⅱ)is4A2,the higher value of χMT could be attributed to the orbital contribution from the lowing excited states[25].Upon cooling,the χMT products of 1 and 2 gradually decreased to 0.35 and 0.29 cm3·K·mol?1at 2 K,respectively.Above 100 K,the susceptibility data follow the Curie?Weiss law with the Curie constants(C)and Weiss constants(θ)of 2.77 cm3·K·mol?1and?20.98 K for 1 and 2.45 cm3·K·mol?1and ?4.59 K for 2,respectively.The negative Weiss constant is attribut?ed to the antiferromagnetic exchange couplings between the Co(Ⅱ) centers and/or the spin?orbital coupling of the single Co(Ⅱ)ion.For 2,the χMvs T plot shows a peak at 6 K confirming the presence of antiferromagnetic interactions between the Co(Ⅱ)centers.

    Fig.4 χMand χMT vs T plots under at 1 kOe dc field for 1(a)and 2(b)

    3 Conclusions

    In summary,we report for the first time that di?pyridinium/imidazolium templated modulated struc?ture in metal phosphonates.Three new cobalt naphtha?lene?diphosphonates,namely(1,3?dppH2)2[Co4(1,4?ndpa)(1,4?ndpaH)2(1,4?ndpaH2)]·6H2O(1),(1,4?bixH2)0.5[Co(1,4?ndpaH)](2),and(1,4?bixH2)0.5[Co2(1,4?ndpaH)(1,4?ndpaH2)(H2O)2](3),were successfully prepared by the hydrothermal method in the reaction of CoCl2·6H2O with 1,4?ndpaH4and 1,3?dpp for 1 and 1,4?bix for 2,3 at different pH values.Complexes 1 and 2 have 3D open?framework structures,constructed by inorgan?ic chains cross?linked by naphthalene groups,while complex 3 exhibits a 2D layer structure,constructed by inorganic chains connected by naphthalene groups.The protonated di?pyridinium/imidazolium templates,1,3?dppH22+for 1,1,4?bixH22+for 2 and 3,fill and com?pensate the negative charge.Magnetic studies reveal that dominant antiferromagnetic interactions between the magnetic centers are propagated in complexes 1 and 2.The present examples are not only enriching the field of di?pyridinium/imidazolium ?templated open?framework materials but also open possibilities for investigations of new phosphonates using different templates and metal combinations.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    材料科學(xué)宿遷吡啶
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    東大街:宿遷人的清明上河圖
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    江蘇宿遷:為500余名農(nóng)民工解“薪”事
    勘 誤
    今日農(nóng)業(yè)(2019年11期)2019-08-13 00:49:02
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    宿遷,宿遷
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    2018国产大陆天天弄谢| 成年人免费黄色播放视频| 老鸭窝网址在线观看| 久久这里只有精品19| 夫妻午夜视频| 超碰成人久久| 免费少妇av软件| 91成年电影在线观看| 免费看十八禁软件| 国产人伦9x9x在线观看| 亚洲欧美精品综合一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲性夜色夜夜综合| 欧美日韩一级在线毛片| 我的亚洲天堂| 亚洲国产成人一精品久久久| 国产精品二区激情视频| 久久久国产成人免费| 国产成人av激情在线播放| 亚洲精品成人av观看孕妇| 精品国产一区二区三区四区第35| 欧美精品一区二区大全| 老司机福利观看| 搡老熟女国产l中国老女人| 国产成人欧美| 中文字幕av电影在线播放| 丰满饥渴人妻一区二区三| 成年动漫av网址| 亚洲av日韩精品久久久久久密| 成人免费观看视频高清| av福利片在线| 大片电影免费在线观看免费| 咕卡用的链子| 国产xxxxx性猛交| 久久人妻福利社区极品人妻图片| 女人精品久久久久毛片| 一本久久精品| 日韩 欧美 亚洲 中文字幕| 91av网站免费观看| 亚洲综合色网址| 中文字幕精品免费在线观看视频| 精品一区二区三卡| 亚洲精华国产精华精| 欧美另类亚洲清纯唯美| 变态另类成人亚洲欧美熟女 | 黑人猛操日本美女一级片| 亚洲一区中文字幕在线| 国产淫语在线视频| 丝袜人妻中文字幕| 人人妻人人添人人爽欧美一区卜| 在线观看www视频免费| a级片在线免费高清观看视频| 电影成人av| 亚洲avbb在线观看| 成年版毛片免费区| 深夜精品福利| 操出白浆在线播放| 一本久久精品| 国产在线观看jvid| 免费女性裸体啪啪无遮挡网站| 性少妇av在线| 亚洲va日本ⅴa欧美va伊人久久| 国产野战对白在线观看| 在线看a的网站| 精品午夜福利视频在线观看一区 | 日韩熟女老妇一区二区性免费视频| 午夜精品久久久久久毛片777| 天堂8中文在线网| 国产亚洲一区二区精品| 国产亚洲欧美在线一区二区| 女人精品久久久久毛片| 国产精品一区二区精品视频观看| 一本一本久久a久久精品综合妖精| 久久精品亚洲av国产电影网| 日日爽夜夜爽网站| 大型黄色视频在线免费观看| 天天添夜夜摸| 日韩大片免费观看网站| 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美一区二区综合| 怎么达到女性高潮| 久久精品国产a三级三级三级| 日韩视频一区二区在线观看| 国产精品亚洲av一区麻豆| 国产亚洲精品一区二区www | 男女边摸边吃奶| 在线播放国产精品三级| 久久久久久免费高清国产稀缺| 中文字幕人妻丝袜一区二区| 国产麻豆69| 亚洲国产欧美网| 涩涩av久久男人的天堂| av网站免费在线观看视频| 国产激情久久老熟女| 老司机在亚洲福利影院| 亚洲成av片中文字幕在线观看| 久久午夜亚洲精品久久| 亚洲精品av麻豆狂野| 亚洲专区中文字幕在线| 黄频高清免费视频| 国产人伦9x9x在线观看| 亚洲av成人不卡在线观看播放网| 一个人免费在线观看的高清视频| 精品欧美一区二区三区在线| 另类精品久久| 欧美日韩亚洲综合一区二区三区_| 一本—道久久a久久精品蜜桃钙片| 精品久久久精品久久久| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 国产免费视频播放在线视频| 日本欧美视频一区| 国产黄频视频在线观看| 久久精品国产综合久久久| 91成人精品电影| 精品免费久久久久久久清纯 | 亚洲精品一卡2卡三卡4卡5卡| 热99久久久久精品小说推荐| 波多野结衣一区麻豆| 亚洲精品av麻豆狂野| 日本五十路高清| 亚洲av日韩在线播放| svipshipincom国产片| 国产日韩欧美视频二区| 亚洲av电影在线进入| 桃花免费在线播放| 欧美成人午夜精品| 亚洲av电影在线进入| 欧美一级毛片孕妇| 国产精品99久久99久久久不卡| 18禁国产床啪视频网站| 亚洲国产av影院在线观看| 美国免费a级毛片| 国产精品香港三级国产av潘金莲| 欧美人与性动交α欧美精品济南到| 中文字幕高清在线视频| 国产高清激情床上av| 嫁个100分男人电影在线观看| 高潮久久久久久久久久久不卡| 老熟女久久久| 一级,二级,三级黄色视频| 欧美久久黑人一区二区| 在线观看人妻少妇| 高清毛片免费观看视频网站 | 精品国产乱码久久久久久小说| 精品少妇内射三级| 亚洲精品久久成人aⅴ小说| 中文欧美无线码| 一级毛片精品| 精品一区二区三卡| 欧美日韩福利视频一区二区| 老司机亚洲免费影院| 少妇被粗大的猛进出69影院| 99热国产这里只有精品6| 午夜福利影视在线免费观看| 久久久精品免费免费高清| tocl精华| 国产在视频线精品| 另类亚洲欧美激情| 黄色丝袜av网址大全| 国产无遮挡羞羞视频在线观看| 亚洲熟妇熟女久久| 国产成人欧美在线观看 | 久久久欧美国产精品| 亚洲色图 男人天堂 中文字幕| 亚洲精品久久午夜乱码| 精品一品国产午夜福利视频| 国产黄频视频在线观看| 久久精品亚洲精品国产色婷小说| 久久天堂一区二区三区四区| 首页视频小说图片口味搜索| 12—13女人毛片做爰片一| 国产精品自产拍在线观看55亚洲 | 老司机在亚洲福利影院| 国产成人精品在线电影| 国产人伦9x9x在线观看| 欧美精品高潮呻吟av久久| 中国美女看黄片| 亚洲色图综合在线观看| 亚洲精品久久成人aⅴ小说| 国产熟女午夜一区二区三区| 女性被躁到高潮视频| 18禁国产床啪视频网站| 久久久久视频综合| 久久久久久人人人人人| 少妇裸体淫交视频免费看高清 | 国产精品成人在线| 成年人午夜在线观看视频| 欧美黄色片欧美黄色片| av又黄又爽大尺度在线免费看| 亚洲精品成人av观看孕妇| 视频区欧美日本亚洲| 婷婷丁香在线五月| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影 | 黄网站色视频无遮挡免费观看| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人的私密视频| 久久久久久久精品吃奶| 热re99久久国产66热| 国产主播在线观看一区二区| 极品人妻少妇av视频| 国产精品98久久久久久宅男小说| 黄色视频,在线免费观看| 国产人伦9x9x在线观看| 日本欧美视频一区| 精品久久久久久电影网| 精品国产亚洲在线| 69av精品久久久久久 | 丝袜美腿诱惑在线| 亚洲精品久久午夜乱码| 久久毛片免费看一区二区三区| 亚洲国产av影院在线观看| 变态另类成人亚洲欧美熟女 | 久久中文看片网| 日本vs欧美在线观看视频| 水蜜桃什么品种好| 狠狠婷婷综合久久久久久88av| 最近最新中文字幕大全电影3 | 在线永久观看黄色视频| 日本撒尿小便嘘嘘汇集6| 久热爱精品视频在线9| 日韩熟女老妇一区二区性免费视频| 国产成人啪精品午夜网站| 男人舔女人的私密视频| 久久午夜亚洲精品久久| 少妇 在线观看| 90打野战视频偷拍视频| 色视频在线一区二区三区| 亚洲美女黄片视频| 99香蕉大伊视频| 国产老妇伦熟女老妇高清| 老汉色av国产亚洲站长工具| 在线播放国产精品三级| 国产一区有黄有色的免费视频| 中文欧美无线码| 欧美精品啪啪一区二区三区| 国产精品av久久久久免费| 久久影院123| 女人高潮潮喷娇喘18禁视频| 久久久国产成人免费| 精品福利观看| 肉色欧美久久久久久久蜜桃| 国产成人精品久久二区二区免费| 热99久久久久精品小说推荐| 亚洲精品国产一区二区精华液| 好男人电影高清在线观看| 久久精品91无色码中文字幕| 午夜91福利影院| 亚洲精品一二三| 久久久久久亚洲精品国产蜜桃av| 韩国精品一区二区三区| 最黄视频免费看| 亚洲专区国产一区二区| 亚洲欧美一区二区三区黑人| 91精品国产国语对白视频| 国产av一区二区精品久久| 精品一区二区三区四区五区乱码| 老熟妇仑乱视频hdxx| 交换朋友夫妻互换小说| 亚洲专区字幕在线| 成人亚洲精品一区在线观看| 国产av国产精品国产| 国产又色又爽无遮挡免费看| 久久久久视频综合| 亚洲美女黄片视频| 国产精品秋霞免费鲁丝片| 精品少妇一区二区三区视频日本电影| 亚洲av欧美aⅴ国产| 9191精品国产免费久久| 19禁男女啪啪无遮挡网站| 伦理电影免费视频| 久久精品国产亚洲av香蕉五月 | 一区二区三区乱码不卡18| 99精品欧美一区二区三区四区| 婷婷丁香在线五月| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区在线观看av| 久久久精品区二区三区| 最近最新中文字幕大全免费视频| 成人永久免费在线观看视频 | 欧美 亚洲 国产 日韩一| 国产一区二区三区综合在线观看| 多毛熟女@视频| 日本五十路高清| 免费观看a级毛片全部| 亚洲五月色婷婷综合| 免费观看av网站的网址| 国产在视频线精品| 国产av精品麻豆| 精品国产乱子伦一区二区三区| 国产精品香港三级国产av潘金莲| 18禁裸乳无遮挡动漫免费视频| 伊人久久大香线蕉亚洲五| 欧美亚洲 丝袜 人妻 在线| 欧美性长视频在线观看| 51午夜福利影视在线观看| 中文字幕高清在线视频| 一二三四社区在线视频社区8| www.熟女人妻精品国产| 国产又爽黄色视频| 777米奇影视久久| 成人国产一区最新在线观看| 国产国语露脸激情在线看| 999久久久精品免费观看国产| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 国产三级黄色录像| 人人妻人人添人人爽欧美一区卜| 男女床上黄色一级片免费看| 国产在线精品亚洲第一网站| 亚洲男人天堂网一区| 午夜成年电影在线免费观看| 日本黄色日本黄色录像| svipshipincom国产片| 国产真人三级小视频在线观看| aaaaa片日本免费| 12—13女人毛片做爰片一| 久久精品亚洲av国产电影网| 麻豆成人av在线观看| av网站免费在线观看视频| 99国产精品一区二区三区| 免费高清在线观看日韩| 欧美乱码精品一区二区三区| 国产av精品麻豆| 色综合婷婷激情| 99在线人妻在线中文字幕 | 蜜桃国产av成人99| 久久九九热精品免费| 国产视频一区二区在线看| 大型av网站在线播放| 咕卡用的链子| 中文字幕人妻丝袜制服| 王馨瑶露胸无遮挡在线观看| 亚洲视频免费观看视频| 美女主播在线视频| 91九色精品人成在线观看| 一区福利在线观看| tocl精华| 女人被躁到高潮嗷嗷叫费观| 麻豆国产av国片精品| 精品国产亚洲在线| 男人操女人黄网站| 999精品在线视频| 国产精品成人在线| 久久婷婷成人综合色麻豆| 高清毛片免费观看视频网站 | 国产一区二区 视频在线| 在线永久观看黄色视频| 最新美女视频免费是黄的| 91麻豆精品激情在线观看国产 | 亚洲第一欧美日韩一区二区三区 | 精品国产乱码久久久久久小说| 欧美亚洲日本最大视频资源| 最黄视频免费看| 12—13女人毛片做爰片一| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| 亚洲色图 男人天堂 中文字幕| 精品国产亚洲在线| 美女主播在线视频| 在线亚洲精品国产二区图片欧美| 日韩有码中文字幕| 久久久久久久大尺度免费视频| 欧美亚洲 丝袜 人妻 在线| 欧美成人午夜精品| 香蕉国产在线看| 亚洲中文字幕日韩| 欧美乱妇无乱码| 久久久精品区二区三区| 美女主播在线视频| 国产精品影院久久| 久久久久视频综合| 一区福利在线观看| 制服人妻中文乱码| 国产一区二区三区综合在线观看| 亚洲 欧美一区二区三区| 99re6热这里在线精品视频| 色视频在线一区二区三区| 91精品三级在线观看| 一级毛片女人18水好多| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 99精国产麻豆久久婷婷| 我要看黄色一级片免费的| 国产伦人伦偷精品视频| 岛国在线观看网站| 日本a在线网址| 欧美性长视频在线观看| 久久免费观看电影| 一边摸一边做爽爽视频免费| 91国产中文字幕| 欧美激情久久久久久爽电影 | 欧美日韩黄片免| 欧美成狂野欧美在线观看| 动漫黄色视频在线观看| 女警被强在线播放| 色在线成人网| 亚洲欧洲日产国产| 人人妻人人爽人人添夜夜欢视频| 91老司机精品| 高清视频免费观看一区二区| 国产1区2区3区精品| 亚洲中文av在线| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 亚洲自偷自拍图片 自拍| 亚洲一码二码三码区别大吗| 欧美精品亚洲一区二区| 十八禁人妻一区二区| 久久久久久免费高清国产稀缺| 麻豆国产av国片精品| 伊人久久大香线蕉亚洲五| 99热网站在线观看| 久久精品熟女亚洲av麻豆精品| √禁漫天堂资源中文www| kizo精华| 日日夜夜操网爽| 国产精品一区二区在线观看99| 黑人操中国人逼视频| 男女之事视频高清在线观看| 精品福利观看| 欧美成狂野欧美在线观看| 三上悠亚av全集在线观看| 免费观看a级毛片全部| 丝瓜视频免费看黄片| 免费不卡黄色视频| 国产又爽黄色视频| 制服人妻中文乱码| 女性生殖器流出的白浆| 国产成+人综合+亚洲专区| 51午夜福利影视在线观看| 水蜜桃什么品种好| 欧美日韩视频精品一区| av超薄肉色丝袜交足视频| 九色亚洲精品在线播放| 欧美精品一区二区免费开放| 午夜精品国产一区二区电影| 桃花免费在线播放| 日韩欧美一区视频在线观看| 中文字幕最新亚洲高清| 欧美日本中文国产一区发布| 9191精品国产免费久久| 亚洲av日韩在线播放| 岛国在线观看网站| 国产黄频视频在线观看| 99久久人妻综合| av又黄又爽大尺度在线免费看| 人妻 亚洲 视频| 午夜免费鲁丝| 国产精品av久久久久免费| 激情在线观看视频在线高清 | 人人澡人人妻人| 啦啦啦 在线观看视频| 亚洲av片天天在线观看| 亚洲黑人精品在线| 丝袜在线中文字幕| 日韩大片免费观看网站| 他把我摸到了高潮在线观看 | 天堂中文最新版在线下载| 水蜜桃什么品种好| 午夜精品久久久久久毛片777| 免费看a级黄色片| 色综合欧美亚洲国产小说| 精品一区二区三卡| 91老司机精品| 亚洲九九香蕉| 国产精品1区2区在线观看. | 人妻久久中文字幕网| 他把我摸到了高潮在线观看 | 国产免费福利视频在线观看| 亚洲欧美日韩另类电影网站| 18禁黄网站禁片午夜丰满| 国产精品久久久av美女十八| 精品第一国产精品| 人人妻人人澡人人爽人人夜夜| 欧美精品啪啪一区二区三区| 中文欧美无线码| 99国产极品粉嫩在线观看| 777米奇影视久久| 精品乱码久久久久久99久播| 9191精品国产免费久久| 亚洲精华国产精华精| 欧美 日韩 精品 国产| 一本—道久久a久久精品蜜桃钙片| 80岁老熟妇乱子伦牲交| 国产成人免费无遮挡视频| 中文字幕另类日韩欧美亚洲嫩草| 又紧又爽又黄一区二区| 操出白浆在线播放| av在线播放免费不卡| 丰满迷人的少妇在线观看| 亚洲av电影在线进入| 午夜激情av网站| 99香蕉大伊视频| 丁香欧美五月| 50天的宝宝边吃奶边哭怎么回事| 免费观看人在逋| 亚洲精品成人av观看孕妇| 一进一出抽搐动态| 亚洲精品久久成人aⅴ小说| 精品国内亚洲2022精品成人 | 国产精品偷伦视频观看了| 制服诱惑二区| 超碰97精品在线观看| 欧美亚洲 丝袜 人妻 在线| 国产亚洲av高清不卡| 亚洲精品自拍成人| 黄色成人免费大全| 午夜福利在线观看吧| 国产精品亚洲一级av第二区| 久久精品成人免费网站| 日韩一区二区三区影片| 久久香蕉激情| 国产又爽黄色视频| 怎么达到女性高潮| 久久99一区二区三区| 日韩中文字幕欧美一区二区| 最新在线观看一区二区三区| a级片在线免费高清观看视频| 亚洲av成人一区二区三| 麻豆av在线久日| 日韩欧美国产一区二区入口| 久久久国产一区二区| 欧美黑人欧美精品刺激| 欧美 亚洲 国产 日韩一| 中文欧美无线码| 无遮挡黄片免费观看| 成人影院久久| 日韩视频一区二区在线观看| 国产亚洲av高清不卡| 日本vs欧美在线观看视频| kizo精华| 日韩免费高清中文字幕av| 亚洲av国产av综合av卡| 97在线人人人人妻| 精品第一国产精品| 免费女性裸体啪啪无遮挡网站| 激情视频va一区二区三区| 一本—道久久a久久精品蜜桃钙片| 免费在线观看完整版高清| 久久精品亚洲精品国产色婷小说| 中文欧美无线码| 国产在线观看jvid| 亚洲 欧美一区二区三区| 69av精品久久久久久 | 欧美成人免费av一区二区三区 | 亚洲七黄色美女视频| 悠悠久久av| 亚洲国产欧美在线一区| 99国产精品免费福利视频| 在线十欧美十亚洲十日本专区| 国产欧美日韩一区二区精品| 精品视频人人做人人爽| 精品高清国产在线一区| 中亚洲国语对白在线视频| 久久人人97超碰香蕉20202| svipshipincom国产片| 老司机影院毛片| 日韩中文字幕欧美一区二区| 亚洲第一欧美日韩一区二区三区 | 国产aⅴ精品一区二区三区波| 亚洲九九香蕉| 婷婷成人精品国产| 国产男女内射视频| 人人妻人人澡人人爽人人夜夜| 精品少妇一区二区三区视频日本电影| 女人精品久久久久毛片| www.999成人在线观看| 热99国产精品久久久久久7| 一区在线观看完整版| 国产不卡一卡二| 日日摸夜夜添夜夜添小说| 亚洲av欧美aⅴ国产| 精品亚洲乱码少妇综合久久| 国产精品一区二区免费欧美| 满18在线观看网站| 欧美+亚洲+日韩+国产| 制服人妻中文乱码| 亚洲欧美一区二区三区黑人| 日韩免费av在线播放| 亚洲欧洲精品一区二区精品久久久| 国产男女超爽视频在线观看| 日韩一区二区三区影片| 成年女人毛片免费观看观看9 | 69av精品久久久久久 | www.熟女人妻精品国产| 国产有黄有色有爽视频| 国产无遮挡羞羞视频在线观看| 熟女少妇亚洲综合色aaa.| 精品久久久久久久毛片微露脸| 日本黄色视频三级网站网址 | 老熟妇乱子伦视频在线观看| 一区二区av电影网| 午夜福利,免费看| 欧美精品啪啪一区二区三区| 午夜老司机福利片| 久久av网站| 老司机亚洲免费影院| 日本wwww免费看| 欧美黑人欧美精品刺激| 黄色视频在线播放观看不卡| 人人妻人人澡人人看| 欧美黄色片欧美黄色片| 国产精品久久久久久精品电影小说| 国产国语露脸激情在线看| 午夜福利,免费看| 9热在线视频观看99| 国产区一区二久久| 亚洲精品粉嫩美女一区| 变态另类成人亚洲欧美熟女 | 亚洲成av片中文字幕在线观看| 欧美日韩精品网址|