• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topology Optimization of Stiffener Layout Design for Box Type Load-Bearing Component under Thermo-Mechanical Coupling

    2023-02-26 10:18:56ZhaohuiYangTianhuaXiongFeiDuandBaotongLi

    Zhaohui Yang,Tianhua Xiong,Fei Du,?and Baotong Li

    1Northwestern Polytechnical University,Xi’an,710072,China

    2Research&Development Institute of Northwestern Polytechnical University in Shenzhen,Shenzhen,518057,China

    3School of Mechanical Engineering,Xi’an Jiaotong University,Xi’an,710054,China

    ABSTRACT The structure optimization design under thermo-mechanical coupling is a difficult problem in the topology optimization field.An adaptive growth algorithm has become a more effective approach for structural topology optimization.This paper proposed a topology optimization method by an adaptive growth algorithm for the stiffener layout design of box type load-bearing components under thermo-mechanical coupling.Based on the stiffness diffusion theory,both the load stiffness matrix and the heat conduction stiffness matrix of the stiffener are spread at the same time to make sure the stiffener grows freely and obtain an optimal stiffener layout design.Meanwhile,the objectives of optimization are the minimization of strain energy and thermal compliance of the whole structure,and thermo-mechanical coupling is considered.Numerical studies for square shells clearly show the effectiveness of the proposed method for stiffener layout optimization under thermo-mechanical coupling.Finally,the method is applied to optimize the stiffener layout of box type load-bearing component of the machining center.The optimization results show that both the structural deformation and temperature of the load-bearing component with the growth stiffener layout,which are optimized by the adaptive growth algorithm,are less than the stiffener layout of shape‘#’stiffener layout.It provides a new solution approach for stiffener layout optimization design of box type load-bearing components under thermo-mechanical coupling.

    KEYWORDS Thermo-mechanical; topology optimization; adaptive growth algorithm; load stiffness matrix; heat conduction stiffness matrix

    1 Introduction

    Stiffened structures are applied widely in aeronautics,machine tool,automobile,and so on.These structures are composed of an unstiffened structure (plate or shell element) and stiffeners(Beam elements).The proper distribution of stiffeners on the structure can improve the structural mechanical performance effectively [1].Recently,with the requirements of the products’precision increasing,the accuracy of the machining center has become extremely severe.The deformation of the machining center body (Box type load-bearing component) is the key factor that influences the accuracy of the machining center because it will be amplified by dimensional chain transmission from the body to the cutter.The deformation of the body mainly comes from load and temperature during work.In mechanics,the deformation can be controlled by improving the structure stiffness with increasing stiffener.In thermotic,the heat generated by the manufacturing process will lead to local deformation of the body,which is controlled by heat conduction optimization.Meanwhile,design objection of advanced machining center not only strive for excellent mechanical performances but also seek economic advantages for customers [2–4].Thus,controlling the deformation under thermo-mechanical coupling without substantially increasing materials has been done to develop methodologies and approaches.

    The internal structure optimization of box type support load-bearing component is the stiffener layout optimization design,essentially.In traditional,the stiffener layout design is usually referring to the regular shape,such as shape ‘#’,shape ‘?’,shape ‘X’,and so on.It is no doubt that the regular shape stiffener layout is simple to design and easy to manufacture,but actually,the stiffener layout design is still blind because it is difficult to improve both mechanics and thermotics of load-bearing components for requiring stiffness and material savings effectively.Therefore,a new optimization method for stiffener layout design should be developed,especially for the structure under thermomechanical coupling.

    Actually,stiffener layout optimization is the problem for searching optimal material distribution[5],and topology optimization has become the most popular tool for stiffener layout design [6].The advantage of structure topology optimization is using the same material to obtain better mechanics and thermotics performance[7].According to the evolutionary and degeneration in natural phenomena,topology has developed two kinds of principles:one is the degeneration principle,which is filling adequate materials into the microstructure before optimization,then the microstructure will be filtered and deleted to obtain optimal microstructure layout;the other is the evolutionary principle,which is developed a series potential link element(stiffener)in the structure firstly,then calculate the contributions of different link element(stiffener)for structure and choice the link elements(stiffener)which contribution is larger than others,on this basis,continue to grow link element (stiffener) and choice again,finally,completing link element(stiffener)grow by iteration to obtain optimal structure.The processing shows the survival of the fittest.

    The homogenization method and the density method as the traditional structure topology optimization methods are adopted frequently[8].Bendsoe et al.[5]developed the homogenization method,which converted the topology optimization problem to the dimensional optimization problem to seek the optimal distribution in the material space,then the structure satisfies load and other conditions.The defects of the homogenization method are too many design variables and the checkerboard phenomenon.Based on their homogenization theory,a lot of excellent research results for the optimal topology of stiffened plate structures have been obtained.Krog et al.[9] proposed an approach to deal with topology optimization of statically loaded or freely vibrating disk and plate structures.Ansola et al.[10] presented a combined shape and reinforcement layout optimization method of shell structures,the geometry of shell mid-plane and the layout of surface stiffeners on the shell are optimized simultaneously.Afonso et al.[11]presented an integrated design tool that includes developments,integration,and applications for the structural optimization of variable thickness plates and free-form shells to obtain optimum designs.This approach overcomes the drawbacks of both topology optimization and structural shape optimization procedures.Variable density method assumed that the material is composed of several elements whose densities are from 0 to 1.Then,seeking materials distribution for optimal performance of structure under a certain material.Mao et al.[12] applied the Solid Isotropic Material with Penalization(SIMP)method to design the battery rack in an AUV,and obtained the optimization results under different ratios of force and thermal loads.The results demonstrated that topology optimization could reduce the temperature gradient of the battery rack structure while bearing the force load.Although this method cannot be validated which is global optimality,it improved the larger variables problem of the homogenization method and simplicity of operator.The chess board problem is still in existence.The traditional optimization methods are simple and easy to operate,but have a disadvantage that the design procedure may fail if the layout is not formed a stiffener-like pattern.

    To overcome the disadvantage of traditional optimization methods,some new methods were developed.Bojczuk et al.[13] presented a method to optimize the layout and shape of stiffeners in plates.The heuristic algorithm is used to find optimal reinforcement,both loaded in a plane and in bending Kirchhoff’s plates are considered.In addition,the minimization or maximization of arbitrary objective functions of displacements,strains,stresses,or reactions with the constraint imposed on the structure cost is also considered.Kimmel[14]developed Level Set Method(LSM),the low dimensional curved line or surface is described implicitly.The advantages of LSM are: both shape and topology are optimized simultaneously,no checkerboard phenomenon,without intermediate density units and so on.The defections of LSM method are converging slowly and computational efficiency is low.Steven et al.[15]proposed the Evolutionary Structure Optimization(ESO)method,which is based on the concept of gradually removing redundant material to achieve an optimal design.Ding et al.[16,17]proposed a new topology optimization method for the generation of stiffener layout based on the growth mechanism of branching systems in nature,and named the bionic growth method.Then,Li et al.[18]presented a multidiscipline topology optimization method to produce the stiffener layout for plate/shell structures,which simulated the emergence of complex branching patterns copying the self-optimization of leaf veins,and on this basis,developed a novel approach for designing the stiffener layout inside machine tools[19].

    In the structure optimization for heat conduction,it is still focus on cross-sectional area optimization[20]and interval of heat dissipation channel[21],including density penalty function method[22],Evolutionary Structure Optimization(ESO)method[23]and Level Set Method(LSM)method[24,25].The thermal compliance is an objective function [26],and the optimal heat conduction coefficient distribution of structure is obtained the thermal compliance is minimum.Some researchers use the temperature variance to evaluate the uniformity of the whole structure temperature distribution[27].Zhang et al.[28] proposed evaluating indicators of structure heat dissipate performance by geometric average temperature.Zuo et al.[29] deduced the governing equations and optimization model for topology optimization under thermo-mechanical coupling,and an adjoint method is used to calculate the sensitivity of structure’s response.Takezawa et al.[30]developed a structure optimization method based on SIMP.Zhang et al.[31]linked reliability design with topology optimization design,Yan et al.[32,33] and Chen et al.[34] carried out topology optimization design for multi-material mechanisms.Recently,to satisfy the green manufacturing,increasing material developed fast,and topology optimization based on the increasing material principled is derived.This method uses a material increasing method on the key position of structure to achieve structure optimally.This work developed an adaptive growth algorithm based on increasing material principle for topology optimization of stiffener layout design under thermo-mechanical coupling.

    To optimal stiffeners layout pattern of box type load-bearing component,this paper is organized as follows:Firstly,constructs the equivalent model of box type support of the machining center under thermo-mechanical coupling,then the stiffness diffusion theory is extended to the load and heat conduction model to develop structure adaptive growth algorithm.Secondly,extends the optimization objective to minimum strain energy and thermal compliance,then an adaptive growth algorithm is developed to optimize stiffener layout under thermo-mechanical coupling.Thirdly,to evaluate the method,the stiffener layout of square shell under thermo-mechanical coupling is optimized by the adaptive growth algorithm.Finally,the adaptive growth algorithm is used to optimize the stiffener of box type support.

    2 Adaptive Growth Algorithm under Thermo-Mechanical Coupling

    The principle of adaptive growth algorithm under thermo-mechanical coupling is the calculation of two parallel levels of the objective function,load,and heat conduction.The two parallel levels of objective function and optimization are connected by stiffener.

    In the adaptive growth algorithm of structure load optimization,the objective of the optimization is to find the stiffener which can be minimized the whole strain energy.In adaptive growth considering thermal loads,the objective of the optimization is to find a layout of the heat conduction rod to a minimum heat dissipation of structure.

    The adaptive growth algorithm of this paper can construct the connection between the adaptive growth algorithm of structure and heat conduction structure,and the unit of connection is the growth stiffener.The growth stiffeners under thermal coupling are improved in terms of structural stiffness and heat dissipation.In terms of load,it is equivalent to adding a stiffener.At the heat level,it is equivalent to adding a high thermal conductivity rod.

    After the stiffener growth,both the stiffness matrix and heat conduction stiffness matrix are updated based on the stiffness diffusion theory.The stiffness matrix updated under thermo-mechanical coupling is shown in Fig.1.

    Figure 1:Stiffness matrix updated under thermo-mechanical coupling

    The interrelationship between the high heat conduction rod and stiffener is considered during the stiffener growth.The flow chart of growth stiffener layout under thermo-mechanical coupling is shown in Fig.2.

    Figure 2:The flow chart of growth stiffener layout under thermo-mechanical coupling

    Considering the influence of thermo-mechanical coupling,the weighting factor is used to represent the influence of compliance and heat dissipation.The optimization goal is to optimize the comprehensive performance of the stiffener,and the density of the stiffener is the design variable.Under the condition of a given volume constraint,find the stiffener distribution of the best structure.In the multi-objective topology optimization problem,the topology optimization model is as follows:

    wherewrepresents weighted coefficients,representing the proportion of heat dissipation weakness and compliance;xiis the design variable(the relative density);EandQare the objective functions of structural flexibility and heat dissipation weakness;fis the topology optimization objective function;KTandKare stiffness matrix and heat conduction stiffness matrix;vis the volume of the design domain.

    The flow of the adaptive growth algorithm under thermo-mechanical coupling is as follows:

    (1) Set the specific size of the box type load-bearing component,and the correlation coefficient of material properties,including elastic modulus,Poisson’s ratio,and thermal conductivity.

    (2) At the structural level and the heat level,the upper surface of the box type load-bearing component is divided into grids.The grid division at the structural level and heat level is completely consistent,this is,keeping the same grid size.

    (3) The overall stiffness matrix Struct_K of the base structure divided by free quadrilateral element grid and the overall stiffness matrix Heat_K of the base structure divided by free quadrilateral element grid are calculated.

    (4) Selected seed growth points at the selected structural level and at the heat level.

    (5) The structural seed growth point and the heat conduction seed growth point grow at the same time,and the mutual influence relationship is considered during the growth process.

    (6) Stiffness diffusion is carried out on the stiffener at the structural level.At the same time,the growth stiffener generated at the heat level is replaced by the stiffener at the same position.Then introduce the stiffener to the structural level,and stiffness diffusion for the stiffener.Finally,the overall stiffness matrix updated at the structural level is obtained.

    (7) Stiffness diffusion is carried out on the high heat conduction rod of the heat level.At the same time,the growth ribs generated at the structural level are replaced by high thermal conductivity rods in the same position and introduced to the heat level.Then stiffness diffusion for the high thermal conductivity rods.Finally,the overall stiffness matrix of the updated at the heat level is obtained.

    (8) When the growing rib grows out of the boundary or the total volume of the growing rib reaches the predetermined upper limit,the growth is stopped.Otherwise,the growth is continued.

    (9) Finally,the structural layout of the growth rib under the action of thermo-mechanical coupling is obtained.

    3 The Stiffener Layout Optimization Design of Square Shell

    The square shell is shown in Fig.3.The size is 480 mm×480 mm×5 mm,heat conductivity isk0=40W/(m·K).There is a uniform heat source on the plate and the heat flux is 100W/m2,the edges of square shell are heat insulation.The heat radiation is from the middle point of one edge,O,which is kept at a constant temperature,0°C.The material thermal conductivity of growth stiffener isk=100W/(m·K).In addition,a vertical load is applied on the center of plate and the edges of plate are fixed.The stiffener will be grown adaptive under thermo-mechanical coupling.

    Figure 3:Square shell case model

    3.1 Temperature Distribution and Deformation under Thermo-Mechanical Coupling of Square Shell with Initial Condition

    The temperature distribution and thermo-mechanical coupling with initial condition are shown in Fig.4.The temperature distribution of the structure without stiffeners in Fig.4 shows that the maximum temperature is 118.592°C,and the maximum deformation of structure without stiffener is 0.84057 mm.

    Figure 4:Temperature distribution and structural deformation with initial condition

    3.2 Temperature Distribution and Structural Deformation under Thermo-Mechanical Coupling of Shape“#”Stiffener Layout

    The temperature distribution and structural deformation under thermo-mechanical coupling of shape“#”stiffener layout are shown in Fig.5.The temperature distribution of the structure without stiffeners in Fig.4 shows that the maximum temperature is 118.592°C,and the maximum deformation of structure without stiffener is 0.84057 mm.

    Figure 5: Temperature distribution and structural deformation of shape “#”layout under thermomechanical coupling

    3.3 The Temperature Distribution and Structural Deformation of Stiffener Layout by Adaptive Growth Algorithm under Thermal-Mechanical Coupling

    Applying the proposed adaptive growth algorithm of this paper to stiffener layout design,the growth situations from Step 1 to Step 30 are shown in Fig.6.The conditions of stiffener growth stop under thermo-mechanical coupling as follows:

    i.The volume of growth stiffener exceed limit;

    ii.The stiffener grows to a point beyond the pre-defined boundary;

    iii.The growth steps exceed preset.

    Figure 6: (Continued)

    Figure 6:Stiffener growth of square shell under thermo-mechanical coupling

    After growth stiffener layout optimization,the temperature distribution and structure of growth stiffener under thermo-mechanical coupling are analyzed by ANSYS,the results are shown in Fig.7.

    Figure 7: (Continued)

    Figure 7:The temperature distribution of growth stiffener under thermo-mechanical coupling

    Comparing the temperature distribution and the deformation of the structure without stiffener,the structure with shape ‘#’stiffener layout and the structure with stiffener layout,which is grown by an adaptive growth algorithm.In the temperature distribution,the maximum temperature of the structure without stiffener is 118.592°C,the structure with shape‘#’stiffener layout is 102.488°C,and the structure with growth stiffener layout is 76.265°C.In the structural deformation,the maximum deformation of structure without stiffener is 0.84057 mm,the structure with shape‘#’stiffener layout is 0.83017 mm,and the structure with growth stiffener layout is 0.79382 mm.

    From the results,we can conclude that using the adaptive growth algorithm to optimize stiffener layout of square shell,both the maximum temperature and structural deformation are decreased significantly.Compared with the analysis results of the structure with shape ‘#’stiffener layout and structure with growth stiffener layout,the maximum temperature and structural deformation with growth stiffener layout are decreased 25.59%and 4.38%,respectively.

    The results of square shell show the superiority of the adaptive growth algorithm for stiffener layout optimization under thermo-mechanical coupling:

    (1) Improving the structure stiffness and decreasing temperature simultaneously;

    (2) Saving the material compared with the shape ‘#’stiffener layout to obtain the same performance;

    (3) The adaptive growth algorithm is more efficient.

    4 The Body of Machining Center Stiffener Layout Optimization under Thermo-Mechanical Coupling

    Using adaptive growth algorithm of this paper proposed,the stiffener layout of the body(loadbearing box type component)of M800 machining center is optimized.Before stiffener optimization,the body is equivalent to a simple model.The simplified model of the body is shown in Fig.8.

    Figure 8:The simplified model of the body of M800 machining center

    4.1 Constraint Condition

    The load conditions of the body are shown in Fig.9.Vertical loading applied on the surface which connects with a column,is F=1250 N,and on the surface which connects with a slider,is F=987.5 N.It is shown in Fig.9a.The edges of the top surface are fixed during stiffener optimization.It is shown in Fig.9b that the heat generation by guide way movement is considered,so the heat flow constraint of guideway is added,hear flow=120 W,which is applied on the top surface of the guide way.Fig.9c shows that the edges of the top surface are applied fixed temperature constraint,22°C.

    Figure 9:The constraint condition

    4.2 The Stiffener Layout Optimization of the Body under Thermo-Mechanical Coupling

    The optimization is from the top surface of body;the ground structure and thermal are built,and the seed point and stiffness spread radius are set up.Then the stiffener is grown by an adaptive growth algorithm.The processing of stiffener growth is shown in Fig.10.It can be seen from Fig.10 that as the iteration progresses,a certain volume of growth stiffener is gradually filled into the structure,and the maximum temperature and maximum deformation of the structure decrease.

    Figure 10: (Continued)

    Figure 10:The processing of stiffener layout design under thermo-mechanical coupling

    After the stiffener growth,the stiffener layout should be round to obtain the growth rhythm,and simplified some repeat growth stiffener,the processing of simplified is shown in Fig.11.After simplification,the structure of the growth stiffener is shown in Fig.12.The simplified growth stiffener is remodeled,and the structure and heat dissipation are compared with the“#”stiffener.

    Figure 11:The processing of stiffener simplified

    Figure 12:The structure of body with growth stiffener

    4.3 The Temperature Distribution and Structural Deformation of Machining Center Body with Growth Stiffener

    The models of the body with shape‘#’stiffener layout and with growth stiffener layout are shown in Fig.13.

    Figure 13:The models of the body with different stiffener layout

    The temperature distribution and structural deformation of body with shape‘#’stiffener layout and growth stiffener layout under thermo-mechanical coupling are shown in Figs.14 and 15.

    Figure 14:The temperature distribution and structural deformation of body with shape‘#’stiffener layout

    Figure 15: The temperature distribution and structural deformation of body with growth stiffener layout

    Comparing the analysis results of temperature distribution and structural deformation with two different stiffener layouts,shape“#”stiffener layout and growth stiffener layout,we can conclude that the maximum temperature of the body with a growth stiffener layout by using an adaptive growth algorithm decreased from 26.387°C to 25.965°C,dropping 1.6%.The structural deformation under thermo-mechanical coupling is also decreased obviously.The maximum structural deformation of the body with shape ‘#’stiffener layout is 7.4159 μm,and the maximum structural deformation of the body with growth stiffener layout is 5.8492 μm,dropping 1.5667 μm,21.1%.

    5 Conclusion

    This paper developed an adaptive growth algorithm for stiffener layout design under thermomechanical coupling based on the topology optimization theory of heat conduction and stiffening structurally.Compared with the regular shape stiffener layout,both the temperature and structural deformation of the structure with the growth stiffener layout is reduced obviously.The square shell case shows the adaptive growth algorithm for stiffener layout design is more effective,practicable,and applicable.Using this approach,the stiffener layout of box type load-bearing components is optimized,and the temperature and deformation are reduced obviously compared with the traditional stiffener layout.

    From the numerical results,we can conclude as follows:

    (1) The adaptive growth algorithm based on thermo-mechanical coupling can improve the stiffness and heat dissipation performance of the structure through stiffeners.The maximum temperature and structural deformation of structure with growth stiffener layout are reduced obviously.

    (2) The stiffener layout optimization of square shell shows that the maximum temperature and the deformation under thermo-mechanical coupling of the structure with growth stiffener are 76.265°C and 0.79382 mm.Comparing the structure with shape ‘#’stiffener,the maximum temperature and deformation decreased by 25.59%and 4.38%,respectively.

    The stiffener layout optimization of the machining center body shows the maximum temperature and the deformation under thermo-mechanical coupling of the structure of the body with growth stiffener are 25.965°C and 5.8492 μm.Comparing the structure of body with shape‘#’stiffener,the maximum temperature and deformation decreased by 1.6%and 21.1%,respectively.

    Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper.

    Funding Statement: This work is supported by National Natural Science Foundation of China (No.52075445) and Science,Technology and Innovation Commission of Shenzhen Municipality (No.JCYJ20190806151013025).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲少妇的诱惑av| 国产成人精品久久二区二区免费| 另类亚洲欧美激情| 美女视频免费永久观看网站| 在线 av 中文字幕| 精品国产国语对白av| 亚洲伊人久久精品综合| 国产免费现黄频在线看| 十八禁高潮呻吟视频| 丰满饥渴人妻一区二区三| 亚洲自偷自拍图片 自拍| 高清在线国产一区| 操出白浆在线播放| 久久性视频一级片| 十八禁人妻一区二区| 国产免费福利视频在线观看| 午夜福利乱码中文字幕| 国产在视频线精品| 国产精品 欧美亚洲| 欧美人与性动交α欧美精品济南到| 青草久久国产| 亚洲久久久国产精品| av天堂在线播放| 亚洲精品在线美女| 久久 成人 亚洲| 91老司机精品| 久久久久视频综合| 操美女的视频在线观看| 亚洲视频免费观看视频| kizo精华| 涩涩av久久男人的天堂| 欧美久久黑人一区二区| 老鸭窝网址在线观看| 五月开心婷婷网| 日韩电影二区| 男人舔女人的私密视频| 一边摸一边抽搐一进一出视频| 美女扒开内裤让男人捅视频| 国产成人av教育| 午夜精品久久久久久毛片777| 叶爱在线成人免费视频播放| 男人添女人高潮全过程视频| 国产精品国产三级国产专区5o| 中文字幕av电影在线播放| 少妇的丰满在线观看| 欧美精品一区二区大全| kizo精华| 极品少妇高潮喷水抽搐| 日韩 亚洲 欧美在线| 久久国产亚洲av麻豆专区| 国产亚洲欧美精品永久| 免费在线观看黄色视频的| 欧美日韩福利视频一区二区| 亚洲第一青青草原| 少妇精品久久久久久久| 成人av一区二区三区在线看 | 亚洲欧美日韩另类电影网站| 色播在线永久视频| 亚洲情色 制服丝袜| 搡老乐熟女国产| 国产日韩一区二区三区精品不卡| 精品欧美一区二区三区在线| 免费看十八禁软件| 成人亚洲精品一区在线观看| 亚洲欧美色中文字幕在线| 欧美+亚洲+日韩+国产| 丁香六月欧美| 欧美久久黑人一区二区| 免费av中文字幕在线| 日韩中文字幕视频在线看片| 99精品久久久久人妻精品| 香蕉国产在线看| 亚洲美女黄色视频免费看| 亚洲av日韩在线播放| 亚洲精品粉嫩美女一区| 国产av一区二区精品久久| 欧美精品高潮呻吟av久久| 久久国产精品男人的天堂亚洲| 下体分泌物呈黄色| 欧美久久黑人一区二区| 免费av中文字幕在线| 777米奇影视久久| 亚洲av男天堂| 国产成人av教育| 久久香蕉激情| 人成视频在线观看免费观看| 在线看a的网站| 亚洲成人国产一区在线观看| 丰满饥渴人妻一区二区三| 午夜日韩欧美国产| 9色porny在线观看| 多毛熟女@视频| 色婷婷av一区二区三区视频| 午夜福利在线观看吧| 精品国产一区二区三区久久久樱花| 国产不卡av网站在线观看| 精品亚洲成a人片在线观看| 丝袜在线中文字幕| 欧美日韩av久久| 精品久久久精品久久久| 久久久久久久精品精品| 多毛熟女@视频| 欧美一级毛片孕妇| 少妇人妻久久综合中文| 久9热在线精品视频| 久久免费观看电影| 欧美xxⅹ黑人| 久久久国产精品麻豆| www.999成人在线观看| h视频一区二区三区| 亚洲欧美色中文字幕在线| 日韩欧美国产一区二区入口| 麻豆乱淫一区二区| 亚洲精品中文字幕在线视频| 男人舔女人的私密视频| 国产日韩欧美视频二区| 亚洲av片天天在线观看| 制服人妻中文乱码| 丰满迷人的少妇在线观看| 国产精品偷伦视频观看了| 国产精品久久久久久人妻精品电影 | 1024视频免费在线观看| 狠狠狠狠99中文字幕| 国产91精品成人一区二区三区 | 午夜两性在线视频| 性色av一级| 丝瓜视频免费看黄片| 久久久久久免费高清国产稀缺| 99热全是精品| 亚洲熟女毛片儿| 97精品久久久久久久久久精品| 国产精品熟女久久久久浪| 少妇 在线观看| 中文字幕制服av| 亚洲三区欧美一区| 久久久精品区二区三区| 亚洲五月色婷婷综合| 国产亚洲精品一区二区www | 亚洲第一青青草原| 91精品三级在线观看| 午夜免费观看性视频| 波多野结衣av一区二区av| 新久久久久国产一级毛片| 日本五十路高清| 精品人妻1区二区| 91成人精品电影| 亚洲国产毛片av蜜桃av| 少妇精品久久久久久久| 日韩欧美一区视频在线观看| 少妇精品久久久久久久| 三上悠亚av全集在线观看| 欧美亚洲日本最大视频资源| 黄网站色视频无遮挡免费观看| 欧美成人午夜精品| 麻豆乱淫一区二区| 九色亚洲精品在线播放| 精品国产乱子伦一区二区三区 | 妹子高潮喷水视频| 一区二区三区激情视频| 国产精品国产三级国产专区5o| 欧美成人午夜精品| 另类精品久久| 婷婷成人精品国产| 不卡一级毛片| 婷婷成人精品国产| 三上悠亚av全集在线观看| 成人国产一区最新在线观看| 狠狠精品人妻久久久久久综合| 国产精品影院久久| 天天躁夜夜躁狠狠躁躁| 亚洲精品一区蜜桃| 日韩 欧美 亚洲 中文字幕| 1024香蕉在线观看| 少妇被粗大的猛进出69影院| 考比视频在线观看| 欧美午夜高清在线| 国产一区二区激情短视频 | 国产精品一区二区在线不卡| 国产精品一区二区免费欧美 | 99久久人妻综合| h视频一区二区三区| 亚洲中文av在线| 色94色欧美一区二区| 色94色欧美一区二区| av有码第一页| 亚洲精品粉嫩美女一区| 黄频高清免费视频| a在线观看视频网站| 国产成人av教育| 桃花免费在线播放| 亚洲avbb在线观看| 欧美大码av| 91精品伊人久久大香线蕉| 777久久人妻少妇嫩草av网站| 超碰97精品在线观看| 乱人伦中国视频| 免费黄频网站在线观看国产| 十八禁高潮呻吟视频| 国产精品久久久av美女十八| 91麻豆精品激情在线观看国产 | 欧美+亚洲+日韩+国产| 少妇精品久久久久久久| 一区二区日韩欧美中文字幕| 99re6热这里在线精品视频| 日韩熟女老妇一区二区性免费视频| 中文字幕人妻丝袜制服| 精品久久久久久久毛片微露脸 | 超色免费av| 日韩有码中文字幕| 一本色道久久久久久精品综合| 国产精品免费大片| 亚洲欧洲日产国产| 欧美久久黑人一区二区| 亚洲熟女毛片儿| 久久精品国产亚洲av香蕉五月 | 老司机亚洲免费影院| 久久人人97超碰香蕉20202| 免费在线观看完整版高清| 99国产精品一区二区蜜桃av | 日韩熟女老妇一区二区性免费视频| 成年人黄色毛片网站| 精品第一国产精品| 男人爽女人下面视频在线观看| 久久久国产欧美日韩av| 欧美日韩中文字幕国产精品一区二区三区 | 欧美人与性动交α欧美软件| 精品乱码久久久久久99久播| 亚洲精品乱久久久久久| 狠狠精品人妻久久久久久综合| 久久久久久久久久久久大奶| 欧美日韩国产mv在线观看视频| 国产又色又爽无遮挡免| 性少妇av在线| 又黄又粗又硬又大视频| 两个人免费观看高清视频| 这个男人来自地球电影免费观看| 久久青草综合色| 久久精品国产a三级三级三级| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久 | 国产精品二区激情视频| 人人妻人人澡人人看| 国产成人精品久久二区二区免费| 在线观看人妻少妇| 丝袜人妻中文字幕| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 欧美xxⅹ黑人| 中国国产av一级| 精品少妇一区二区三区视频日本电影| 欧美日本中文国产一区发布| 精品一区二区三区四区五区乱码| 中文字幕高清在线视频| 99久久人妻综合| 亚洲性夜色夜夜综合| 亚洲精品乱久久久久久| 王馨瑶露胸无遮挡在线观看| 少妇 在线观看| 丁香六月天网| www.av在线官网国产| 亚洲熟女精品中文字幕| 久久久久久久精品精品| 国产精品影院久久| 亚洲成人国产一区在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲精品久久久久5区| 黄色a级毛片大全视频| 亚洲av成人不卡在线观看播放网 | 丁香六月欧美| 精品亚洲乱码少妇综合久久| 在线看a的网站| av网站在线播放免费| 人妻人人澡人人爽人人| 每晚都被弄得嗷嗷叫到高潮| 91麻豆精品激情在线观看国产 | 真人做人爱边吃奶动态| 男人爽女人下面视频在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲五月色婷婷综合| 一区二区日韩欧美中文字幕| 成在线人永久免费视频| 热99re8久久精品国产| netflix在线观看网站| 国产成人欧美| 国产三级黄色录像| 中文精品一卡2卡3卡4更新| 成年人午夜在线观看视频| 久久精品国产亚洲av香蕉五月 | 夜夜夜夜夜久久久久| 亚洲精品国产色婷婷电影| 热99国产精品久久久久久7| 欧美变态另类bdsm刘玥| 亚洲av欧美aⅴ国产| 人妻久久中文字幕网| 亚洲精品第二区| 久久av网站| 国产欧美日韩综合在线一区二区| 99久久99久久久精品蜜桃| 欧美精品高潮呻吟av久久| 国产成人精品久久二区二区91| 免费av中文字幕在线| 黑人巨大精品欧美一区二区mp4| 性高湖久久久久久久久免费观看| 久久久久国产一级毛片高清牌| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 国产高清videossex| 国产在线观看jvid| 亚洲精品乱久久久久久| 亚洲成人免费av在线播放| 一区二区av电影网| 成人国产一区最新在线观看| 操出白浆在线播放| 在线亚洲精品国产二区图片欧美| 青草久久国产| 精品国产超薄肉色丝袜足j| 视频在线观看一区二区三区| 狂野欧美激情性bbbbbb| 亚洲精华国产精华精| 久久久久网色| cao死你这个sao货| 亚洲午夜精品一区,二区,三区| 91av网站免费观看| 国产精品久久久久成人av| 国产av精品麻豆| 国产成人精品久久二区二区免费| 久久久国产精品麻豆| 国产av国产精品国产| 精品乱码久久久久久99久播| 久久热在线av| 日本精品一区二区三区蜜桃| 久久热在线av| 亚洲成av片中文字幕在线观看| 国产精品欧美亚洲77777| 久久久久久久大尺度免费视频| 亚洲av成人一区二区三| 日日爽夜夜爽网站| 999久久久国产精品视频| 热99久久久久精品小说推荐| 国内毛片毛片毛片毛片毛片| 狂野欧美激情性xxxx| 欧美 日韩 精品 国产| 日韩大码丰满熟妇| 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 国产成人免费无遮挡视频| 高清视频免费观看一区二区| 丰满迷人的少妇在线观看| 精品一品国产午夜福利视频| 大片电影免费在线观看免费| 日韩精品免费视频一区二区三区| 亚洲精品乱久久久久久| 在线观看一区二区三区激情| 色综合欧美亚洲国产小说| 另类精品久久| 一区在线观看完整版| 蜜桃国产av成人99| 最黄视频免费看| 999久久久精品免费观看国产| 超色免费av| 午夜两性在线视频| 欧美成狂野欧美在线观看| 国产视频一区二区在线看| 中国美女看黄片| 午夜激情av网站| 电影成人av| 九色亚洲精品在线播放| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 久久免费观看电影| 亚洲欧美激情在线| 制服诱惑二区| 亚洲全国av大片| 99精品久久久久人妻精品| 亚洲精品中文字幕在线视频| 欧美日韩福利视频一区二区| 999久久久国产精品视频| 操出白浆在线播放| 亚洲伊人色综图| 日本wwww免费看| av天堂在线播放| 夜夜夜夜夜久久久久| 男女午夜视频在线观看| 在线av久久热| 国产xxxxx性猛交| 大码成人一级视频| 日韩电影二区| av天堂久久9| 亚洲av美国av| 免费一级毛片在线播放高清视频 | 女人久久www免费人成看片| 婷婷丁香在线五月| 久久国产精品影院| 女人久久www免费人成看片| 最黄视频免费看| 久久国产精品人妻蜜桃| 老汉色∧v一级毛片| 国产在线视频一区二区| 日本wwww免费看| 成年人午夜在线观看视频| 国产免费现黄频在线看| 在线观看舔阴道视频| 99精国产麻豆久久婷婷| 老司机影院成人| 亚洲av欧美aⅴ国产| 国产精品免费视频内射| 日本a在线网址| 免费日韩欧美在线观看| 中国美女看黄片| 不卡av一区二区三区| 欧美激情高清一区二区三区| a 毛片基地| 亚洲一区二区三区欧美精品| 欧美亚洲日本最大视频资源| 日本一区二区免费在线视频| 一个人免费看片子| 国产精品 欧美亚洲| 久久精品国产亚洲av香蕉五月 | 婷婷丁香在线五月| 他把我摸到了高潮在线观看 | 欧美亚洲日本最大视频资源| 久久久精品国产亚洲av高清涩受| 精品亚洲成国产av| 法律面前人人平等表现在哪些方面 | 亚洲精品美女久久久久99蜜臀| 国产男人的电影天堂91| 三上悠亚av全集在线观看| 免费高清在线观看视频在线观看| 久久久久网色| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品av麻豆狂野| 精品人妻在线不人妻| 亚洲国产av新网站| 999精品在线视频| 最新的欧美精品一区二区| 女性被躁到高潮视频| 国产伦理片在线播放av一区| 精品久久久久久电影网| 欧美亚洲日本最大视频资源| 亚洲精品自拍成人| 亚洲一区中文字幕在线| 久久女婷五月综合色啪小说| 我的亚洲天堂| 宅男免费午夜| 国产成人欧美在线观看 | 男女高潮啪啪啪动态图| 久久久国产欧美日韩av| 最黄视频免费看| 老司机在亚洲福利影院| 国产欧美日韩精品亚洲av| 亚洲欧洲日产国产| 精品国产一区二区三区四区第35| 久久精品久久久久久噜噜老黄| 一级黄色大片毛片| 国产精品av久久久久免费| 日韩大码丰满熟妇| 两性夫妻黄色片| 真人做人爱边吃奶动态| 搡老岳熟女国产| 在线av久久热| 爱豆传媒免费全集在线观看| 久久亚洲精品不卡| 国产成人欧美在线观看 | 老司机靠b影院| 久久国产精品大桥未久av| 美女扒开内裤让男人捅视频| 999精品在线视频| 国产精品久久久久久人妻精品电影 | 亚洲av日韩精品久久久久久密| 黑人猛操日本美女一级片| 国产野战对白在线观看| 制服诱惑二区| 黄色视频在线播放观看不卡| 国产一区二区激情短视频 | 日韩大码丰满熟妇| www.自偷自拍.com| 欧美中文综合在线视频| 亚洲国产日韩一区二区| 99国产精品一区二区三区| 又大又爽又粗| 亚洲 国产 在线| 午夜激情久久久久久久| 午夜福利,免费看| 亚洲国产欧美网| 在线看a的网站| 精品国产超薄肉色丝袜足j| 菩萨蛮人人尽说江南好唐韦庄| 精品视频人人做人人爽| 久久青草综合色| 国产亚洲精品久久久久5区| 亚洲欧美日韩另类电影网站| 午夜老司机福利片| 久久精品国产亚洲av香蕉五月 | 成人18禁高潮啪啪吃奶动态图| 成人免费观看视频高清| 国产老妇伦熟女老妇高清| 超色免费av| 人人妻,人人澡人人爽秒播| www.精华液| 亚洲成av片中文字幕在线观看| 天天躁日日躁夜夜躁夜夜| 麻豆av在线久日| 伊人久久大香线蕉亚洲五| 亚洲第一欧美日韩一区二区三区 | 国产精品自产拍在线观看55亚洲 | 老司机影院成人| 久久九九热精品免费| 男女午夜视频在线观看| av天堂久久9| 国产男女超爽视频在线观看| 一边摸一边抽搐一进一出视频| 波多野结衣一区麻豆| 精品人妻一区二区三区麻豆| 国产男女内射视频| 欧美日本中文国产一区发布| www日本在线高清视频| 亚洲五月婷婷丁香| 十八禁高潮呻吟视频| 亚洲精品国产色婷婷电影| 久久女婷五月综合色啪小说| 一级黄色大片毛片| 日本撒尿小便嘘嘘汇集6| 亚洲视频免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 免费高清在线观看视频在线观看| 91成人精品电影| 国产激情久久老熟女| 两个人免费观看高清视频| 两人在一起打扑克的视频| 9色porny在线观看| 男女床上黄色一级片免费看| 精品高清国产在线一区| 久久精品国产亚洲av高清一级| 亚洲精品成人av观看孕妇| 别揉我奶头~嗯~啊~动态视频 | 亚洲美女黄色视频免费看| 久久精品国产a三级三级三级| 亚洲综合色网址| 国产又色又爽无遮挡免| 国产一区二区 视频在线| 国产在线免费精品| 久久精品亚洲熟妇少妇任你| 亚洲人成电影观看| 久久人人97超碰香蕉20202| 精品欧美一区二区三区在线| 国产主播在线观看一区二区| 欧美久久黑人一区二区| 精品久久久久久久毛片微露脸 | 十八禁网站网址无遮挡| 精品久久久精品久久久| 色精品久久人妻99蜜桃| 999精品在线视频| 日韩大片免费观看网站| 国产精品国产av在线观看| 国精品久久久久久国模美| 天堂中文最新版在线下载| 午夜两性在线视频| 日韩制服骚丝袜av| 亚洲国产看品久久| 人人妻人人添人人爽欧美一区卜| 黑丝袜美女国产一区| 手机成人av网站| 国产黄色免费在线视频| 秋霞在线观看毛片| 青草久久国产| 国产无遮挡羞羞视频在线观看| 国产一区二区三区av在线| 日韩中文字幕欧美一区二区| 青草久久国产| 亚洲全国av大片| 国产精品亚洲av一区麻豆| 精品一品国产午夜福利视频| 青春草亚洲视频在线观看| 日韩三级视频一区二区三区| 亚洲国产欧美网| 欧美精品人与动牲交sv欧美| 99国产极品粉嫩在线观看| 亚洲情色 制服丝袜| 最近最新中文字幕大全免费视频| 好男人电影高清在线观看| 制服人妻中文乱码| 久久精品国产亚洲av高清一级| 成年av动漫网址| 制服人妻中文乱码| 在线看a的网站| 亚洲av成人不卡在线观看播放网 | 最近中文字幕2019免费版| 999精品在线视频| 国产精品欧美亚洲77777| 国产精品av久久久久免费| 免费在线观看影片大全网站| 黑人猛操日本美女一级片| 香蕉丝袜av| 丝袜在线中文字幕| 欧美中文综合在线视频| 亚洲九九香蕉| 久久久久久人人人人人| 国产高清国产精品国产三级| 免费观看人在逋| 亚洲全国av大片| 欧美久久黑人一区二区| 亚洲黑人精品在线| 91成人精品电影| 黄色毛片三级朝国网站| 免费高清在线观看视频在线观看| 精品一区二区三卡| 丝袜美足系列| 国产黄频视频在线观看| 国产真人三级小视频在线观看| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区精品| 日韩欧美国产一区二区入口| 中文字幕色久视频| 亚洲av美国av| 亚洲一码二码三码区别大吗|