• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Some Ev-Degree and Ve-Degree Dependent Indices of Benes Network and Its Derived Classes

    2023-02-26 10:18:52WenhuWangHibbaArshadAsfandFahadandImranJavaid

    Wenhu Wang,Hibba Arshad,Asfand Fahad,?and Imran Javaid

    1School of Software,Pingdingshan University,Pingdingshan,China

    2College of Computing and Information Technologies,National University,Manila,Philippines

    3Henan International Joint Laboratory for Multidimensional Topology and Carcinogenic Characteristics Analysis of Atmospheric Particulate Matter PM2.5,Pingdingshan,China

    4Centre for Advanced Studies in Pure and Applied Mathematics,Bahauddin Zakariya University,Multan,Pakistan

    ABSTRACT One of the most recent developments in the field of graph theory is the analysis of networks such as Butterfly networks,Benes networks,Interconnection networks,and David-derived networks using graph theoretic parameters.The topological indices(TIs)have been widely used as graph invariants among various graph theoretic tools.Quantitative structure activity relationships(QSAR)and quantitative structure property relationships(QSPR)need the use of TIs.Different structure-based parameters,such as the degree and distance of vertices in graphs,contribute to the determination of the values of TIs.Among other recently introduced novelties,the classes of ev-degree and ve-degree dependent TIs have been extensively explored for various graph families.The current research focuses on the development of formulae for different ev-degree and ve-degree dependent TIs for s?dimensional Benes network and certain networks derived from it.In the end,a comparison between the values of the TIs for these networks has been presented through graphical tools.

    KEYWORDS Topological indices;ev-degree;ve-degree;butterfly network;benes network

    1 Introduction

    A classic and helpful strategy is to attach various graphs to objects that may be an algebraic structure,a chemical structure of a drug,or a network,which assists in understanding certain features of the objects.Various graph parameters can be associated with the properties of the structure under examination which leads to a deeper study of its theory.These properties may include the algebraic properties of the zero divisor graphs and the physio chemical properties of the chemical structures.By adopting this strategy,several researchers studied different objects such as algebraic objects [1],pysio-chemical properties of chemical structures[2–4],drugs used for breast cancer treatment[5],and interconnection networks[6].The analysis of networks,such as Butterfly network[7],Benes network[8,9],Interconnection network[6,10]and David-derived network[11]through similar approach,is one of the most recent developments in the field of graph theory.

    The class of topological indices(TIs)is a significant class of parameters associated with graphs.Many TIs have been introduced and studied during the last fifty years.Among the class of degree dependent TIs,the Zagreb indices(ZIs)introduced in[12],vastly studied due to the ability to estimate theπ-electron energy is still a topic of interest[13]after 5 decades.Another degree dependent graph parameter,used in mathematical chemistry is known as Randíc index(RI).The details regarding its applications and its different variants are presented in [14].Furthermore,the geometric-arithmetic(GA)index was formulated[15]in an attempt to exceed the Randíc index in terms of predicting ability.Its chemical use and mathematical characteristics drew scientists to examine it further in[16].Another significant index,known as Atom bond connectivity index(ABC-index)was put forward by Estrada and was used for investigating stain energy and stability of cycloalkanes and linear alkanes,see[17–20].Another graph invariant,having connections with eigen values of graphs was introduced in[21]and is a topic of interest till now known as Harmonic index(HI).In[22],Chellali et al.introduced some new degrees of a vertex in a graph,known as ve-degree and ev-degree.Mathematical notions related to these degrees were also studied by Horoldagva et al.[23].The ZIs and RI,based on ev-degree and ve-degree notions,are formulated in[24–27]and it was analyzed that predicting ability of ve-degree ZI has improved as compared to its classical version.For more developments on the study of TIs,see[28–32].

    Figure 1:3-dimentional Benes network

    Butterfly graphs are the associated graphs of Fast Fourier Transforms (FFT) networks which are especially effective in performing the FFT.The butterfly network is constructed by a sequence of switch stages and connector patterns that allow′n′different configurations.The′n′outputs should be connected to′n′inputs.Furthermore,the Benes network obtained by attaching back-toback butterfly networks is known for permutation routing [8].These networks are key multistage interconnection networks with appealing communication network topologies[9].The graph associated tos-dimensional butterfly network consists of vertex setVwith elements [v,i] in whichvis ans-bit binary number representing the row of the node and 0≤i≤s.The edge between any two vertices[v,i]and[v′,i′]exists if and only ifi′=i+1 and either(1)v=v′or(2)v,v′differ in exactly theith bit.Clearly,for|V(BF(s))|=2s(s+1)and|E(BF(s))|=s2s+1.Further,ansdimensional Benes network is obtained by connecting back-to-back butterfliesBF(s).Ans-dimensional Benes network is denoted byB(s),for exampleB(3)is shown in Fig.1.Further,|V(B(s))|=2s(2s+1)and|E(B(s))|=s2s+2.For more regarding the structure and construction of butterfly and benes networks,we refer readers to[6].By keeping in view the importance of these networks,Hussain et al.recently introduced some families of graphs obtained by Horizontal and vertical identifications of Benes network.These new graphs are known as Horizontal Cylindrical(HCB(s))and Vertical Cylindrical(VCB(s))Benes network.In these networks,|V(HCB(s))|=(2s?1)(2s+1),|V(VCB(s))|=2s+1s,|E(HCB(s))|=2s(2s+1?1) and|E(VCB(s))|=2s+2s.For the complete details regarding the structuresHCB(s)andVCB(s),see Figs.2 and 3[33,34].

    Figure 2:Normal representation of VCB(3)

    Figure 3:Normal representation of HCB(3)

    2 Preliminaries

    LetG(V,E)denotes a connected graph havingVas a vertex set andEas an edge set.Foru∈V,the degreeu,denoted byd(u)is the cardinality of edges incident to it.For anyu,v∈V,the verticesu,vare called adjacent if there ise∈Ewithe=uv.Foru∈Vits open neighborhood,denoted byN(u),is defined as:N(u)={v∈V:there exists e∈E with e=uv} and the closed neighborhoodN[u]={u}∪N(u).Foruv=e∈E,its ev-degree is the cardinality of the vertices inN[u]∪N[v]and the ve-degree ofv∈Vis the cardinality ofN[v].The ev-degree ofeand ve-degree ofuare denoted bydev(e)anddve(u),respectively.In Table 1,we include the formulae of ev-degree and ve-degree dependent variants of the well known TIs discussed above.

    Table 1: Ev-degree and ve-degree based TIs of a Graph G(V,E)

    Table 1 (continued)2 (G)=Σ uv∈E(G)(dve(u)dve(v))RI(VE)Rve(G)=Σ uv∈E(G)((dve(ut)dve(v)))?1/2 2nd ZI(VE)Mveimages/BZ_869_1645_737_1683_783.pngABC-I(VE)ABCve(Gt)=Σ dve(u)+dve(v)?2 dve(u)dve(v)GA-I(VE)GAve(G)=Σ uv∈E(G)2√dve(u)dve(v)dve(u)+dve(v)HI(VE)Hve(G)=Σ uv∈E(G)2 dve(u)+dve(v)Sum-Connectivity Index(VE)χve(G)=Σ uv∈E(G)(dve(u)+dve(v))?1/2 uv∈E(G)

    3 Ev-Degree Dependent Topological Indices for Bensen Networks and Its Derived Classes

    In this section,we prove analytical formulae for the ev-degree dependent TIs forB(s),VCB(s)andHCB(s).The formulae have been established through partition of the vertex sets ofB(s),VCB(s)andHCB(s)on the basis of ev-degree as shown in Tables 2–4.We start with the following theorem forB(s).

    Table 2: Ev-degree based partition of V(B(s))

    Table 3: Ev-degree based partition of V(VCB(s))

    Table 4: Ev-degree based partition of V(HCB(s))

    Theorem 3.1.For ans-dimensional Benes networkB(s),we have:

    (i)Mev(B(s))=2s+2(64s?28).

    (ii)Rev(B(s))=

    Proof.

    By using Table 2,we compute the ev-degree based indices for Benes network as follows:

    Now,we continue to prove the ev-degree dependent TIs forVCB(s)in the next theorem.

    Theorem 3.2.ForVCB(s),theMev(VCB(s))andRev(VCB(s))are given as:

    (i)Mev(VCB(s))=2s+9·s.

    (ii)Rev(VCB(s))=

    Proof.(i)From Table 3 and the definition ofMev,we have:

    (ii)From Table 3 and the definition ofRev,we have:

    We conclude the results of this section by proving the ev-degree dependent TIs forHCB(s):

    Theorem 3.3.ForHCB(s),theMev(HCB(s))andRev(HCB(s))are given as:

    (i)Mev(HCB(s))=2s+7(2s?1)+320s?138.

    (ii)Rev(HCB(s))=

    Proof.(i)From Table 4 and the definition ofMev,we have:

    which upon simplification gives the required result.

    (ii)From Table 4 and the definition ofRev,we have:

    which upon simplification gives the required result.

    Now,we present an example of the results proved in this section:

    Example 3.1.By takings=4 in Theorem 3.1,Theorem 3.2 and Theorem 3.3,we obtain the values of ev-degree based TIs forB(4),VCB(4)andHCB(4)as shown in Table 5:

    Table 5: Ev-degree based TIs for B(4),VCB(4)and HCB(4)

    4 Ve-Degree Dependent Topological Indices for Bensen Networks and Its Derived Classes

    In this section,we develop formulae for the ve-degree dependent TIs forB(s),VCB(s)andHCB(s).The key to obtaining these formulae is to obtain partition the edge set ofB(s),VCB(s)andHCB(s)on the basis of ve-degrees of the end vertices of each edge as shown in Tables 6–8.

    Table 6: Partition the edge set of B(s)in terms of ve-degrees of end vertices

    Table 7: Partition the edge set of VCB(s)in terms of ve-degrees of end vertices

    Table 8: Partition the edge set of HCB(s)in terms of ve-degrees of end vertices

    Theorem 4.1.ForB(s),the ve-degree dependent TIsM1α ve(B(s)),M1β ve(B(s)),M2v e(B(s)),Rve(B(s)),ABCve(B(s)),GAve(B(s)),Hve(B(s))andχve(B(s))are given as:

    Proof.(i)From Table 6 and the definition ofM1αve,we have:

    which upon simplification gives the required formula.

    (ii)The Table 6 and the formula forM1βveyields:

    (iii)The Table 6 and the formula forM2veyields:

    (iv)The Table 6 and the formula forRvegives:

    (v)The Table 6 and the formula forABCveyields:

    (vi)The Table 6 and the formula forGAveyields:

    (vii)The Table 6 and the formula forHveyields:

    (viii)Lastly,the Table 6 and the formula forχvegives:

    which upon simplification gives the required formula.

    By using the Table 7 and the formulae of TIs defined in Table 1,we get the following results for theVCB(s).

    Theorem 4.2.ForVCB(s),ve-degree dependent TIsM1α ve(B(s)),M1β ve(B(s)),M2v e(B(s)),Rve(B(s)),ABCve(B(s)),GAve(B(s)),Hve(B(s))andχve(B(s))are given as:

    By using the Table 8 and the formulae of TIs defined in Table 1,we get the following results for theHCB(s).

    Theorem 4.3.ForHCB(s),the ve-degree dependent TIsM1α ve(B(s)),M1β ve(B(s)),M2v e(B(s)) andRve(B(s))are given as:

    Now,we conclude the section by including the following example:

    Example 4.1.By takings=4 in Theorem 4.1,Theorem 4.2 and Theorem 4.3,we obtain the values of ve-degree based TIs forB(4),VCB(4)andHCB(4)as shown in Table 9:

    Table 9: Ve-degree based TIs for B(4),VCB(4)and HCB(4)

    5 Graphical Analysis

    We proceed further with our obtained formulae in previous section to study graphical patterns in the values of TIs ofB(s),HCB(s) andHCB(s).In Figs.4–6,the patterns of ZI(VE),RI(VE),ABCI(VE),GA-(VE) and HI(VE) (on y-axis),where the value ofshas been taken on x-axis,forB(s),HCB(s) andVCB(s) have been presented.All the figures show the rapid rise in the values of each TI forB(s),HCB(s) andHCB(s) with the rise in the value ofs.The trends in Fig.4 (L) show that theHCB(s) attains higher values of ZI(VE),whereas values of ZI(VE) forVCB(s) remain betweenB(s)andHCB(s).Similar trend for RI(VE)has been shown in Fig.4(R).In Fig.5(L),it can be seen that the values of ABC-I(VE)show different behaviours as in case of ZI(VE)and RI(VE).The ABCI(VE)attains lowest values forHCB(s),whereas values forB(s)remain betweenVCB(s)andHCB(s).Furthermore,the trend for HI(EV)is shown in Fig.5(R).In the case of GA(VE),the values forB(s)remain the highest and the values forVCB(s)remain between the values ofB(s)andHCB(s),see Fig.6.

    Figure 4:Graphical comparison between ZI(VE)on left(L)and RI(VE)on right(R)of B(s),HCB(s)and HCB(s)

    Figure 5: Graphical comparison between ABC(VE) on left (L) and HI(VE) on right (R) of B(s),HCB(s)and HCB(s)

    Figure 6:Graphical comparison between GA-I(VE)of B(s),HCB(s)and HCB(s)

    6 Conclusion

    The study of newly formed networks is always a fascinating topic.UsingB(s),several novel networks such asHCB(s) andVCB(s) have been defined through identifications in [33] and further investigated in [34].Furthermore,the ev-degree and the ve-degree of these structures were not investigated yet.In the current work,we constructed the ev-degree based partition of the vertex set and the ve-degree based partition of the edge set for these networks.Through these partitions,we developed formulae for several ev-degree and ve-degree based TIs forB(s),HCB(s) andVCB(s) in terms of the parameters.Further,we presented the comparative analysis of the values of ZI(VE),RI(VE),ABC-I(VE),GA-I(VE)and HI(VE)forB(s),HCB(s)andVCB(s).It is observed that similar patterns have been developed for ZI(VE)and RI(VE),whereas the other three TIs produce different trends.

    Acknowledgement: The authors are thankful to their respective institutes.

    Funding Statement: This work is partially supported by the National Natural Science Foundation of China(Grant No.61702291);China Henan International Joint Laboratory for Multidimensional Topology and Carcinogenic Characteristics Analysis of Atmospheric Particulate Matter PM2.5.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲第一青青草原| 久久久久久国产a免费观看| 1024香蕉在线观看| 日韩三级视频一区二区三区| 久久久久久久午夜电影| 99在线视频只有这里精品首页| 亚洲欧洲精品一区二区精品久久久| 欧美中文综合在线视频| 亚洲国产精品合色在线| 日韩 欧美 亚洲 中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 精品电影一区二区在线| 精品电影一区二区在线| 欧美日韩中文字幕国产精品一区二区三区 | 午夜久久久久精精品| 丁香六月欧美| 黑人巨大精品欧美一区二区蜜桃| 黄色视频,在线免费观看| 中亚洲国语对白在线视频| 亚洲成国产人片在线观看| 一区二区三区国产精品乱码| 9热在线视频观看99| 久久欧美精品欧美久久欧美| 亚洲美女黄片视频| 男女午夜视频在线观看| 少妇粗大呻吟视频| 黄色 视频免费看| av免费在线观看网站| 国产激情久久老熟女| 9色porny在线观看| 波多野结衣巨乳人妻| 女人爽到高潮嗷嗷叫在线视频| 手机成人av网站| 亚洲精品在线美女| 精品人妻1区二区| 日本 av在线| 欧美日本中文国产一区发布| 欧美日韩亚洲综合一区二区三区_| av超薄肉色丝袜交足视频| 在线观看日韩欧美| 精品午夜福利视频在线观看一区| 精品国产乱子伦一区二区三区| 99国产精品一区二区三区| av中文乱码字幕在线| 精品久久久久久久毛片微露脸| 欧美日韩福利视频一区二区| 黄色毛片三级朝国网站| 乱人伦中国视频| 女人精品久久久久毛片| 91九色精品人成在线观看| 久久婷婷成人综合色麻豆| 精品久久久久久,| 中文字幕人成人乱码亚洲影| 国产成人系列免费观看| 国产av在哪里看| av中文乱码字幕在线| 免费av毛片视频| 久久精品影院6| 免费女性裸体啪啪无遮挡网站| 国产精品久久视频播放| 国产亚洲av嫩草精品影院| 非洲黑人性xxxx精品又粗又长| 亚洲avbb在线观看| 可以在线观看毛片的网站| 在线十欧美十亚洲十日本专区| 欧美日韩黄片免| 国产不卡一卡二| 国产精品九九99| 中亚洲国语对白在线视频| 色综合欧美亚洲国产小说| www日本在线高清视频| 日本欧美视频一区| 国产精品 国内视频| 亚洲国产精品久久男人天堂| 妹子高潮喷水视频| 淫秽高清视频在线观看| 人妻久久中文字幕网| 久久久久国产精品人妻aⅴ院| 99re在线观看精品视频| 欧美乱妇无乱码| 久久久久久久久免费视频了| 国产成人欧美| 俄罗斯特黄特色一大片| 欧美日韩亚洲国产一区二区在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲av日韩精品久久久久久密| 国产国语露脸激情在线看| 中文字幕高清在线视频| 国产三级在线视频| 国产成人精品久久二区二区91| 99久久综合精品五月天人人| 国产视频一区二区在线看| 欧美老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 亚洲精华国产精华精| 久久久久精品国产欧美久久久| 一边摸一边做爽爽视频免费| 国产一区二区激情短视频| 国产精品秋霞免费鲁丝片| 成人永久免费在线观看视频| 午夜a级毛片| 视频在线观看一区二区三区| 啦啦啦观看免费观看视频高清 | 三级毛片av免费| 国产成人精品久久二区二区免费| 国产亚洲精品第一综合不卡| 丝袜人妻中文字幕| 波多野结衣巨乳人妻| 色在线成人网| 国产精品久久视频播放| 波多野结衣巨乳人妻| 亚洲美女黄片视频| 国产精品久久视频播放| 中文字幕高清在线视频| 欧美av亚洲av综合av国产av| 夜夜爽天天搞| 亚洲色图综合在线观看| 亚洲国产精品999在线| 免费人成视频x8x8入口观看| 看免费av毛片| 悠悠久久av| 黑丝袜美女国产一区| 国产成人欧美在线观看| 精品不卡国产一区二区三区| 午夜福利免费观看在线| 91麻豆av在线| 香蕉久久夜色| 老汉色∧v一级毛片| 免费少妇av软件| 精品国产美女av久久久久小说| 日韩欧美三级三区| 亚洲一码二码三码区别大吗| 亚洲一区高清亚洲精品| 一本综合久久免费| 人人妻,人人澡人人爽秒播| 国产一区二区在线av高清观看| 69av精品久久久久久| 男人的好看免费观看在线视频 | 亚洲人成网站在线播放欧美日韩| 97碰自拍视频| 男女做爰动态图高潮gif福利片 | 亚洲avbb在线观看| 在线国产一区二区在线| 亚洲五月色婷婷综合| 国产又爽黄色视频| 国产精品av久久久久免费| 精品熟女少妇八av免费久了| 正在播放国产对白刺激| 老司机深夜福利视频在线观看| 一边摸一边做爽爽视频免费| 18禁观看日本| 国产野战对白在线观看| 国产av一区二区精品久久| 日本精品一区二区三区蜜桃| 成人免费观看视频高清| 日本 欧美在线| 精品欧美国产一区二区三| 91精品国产国语对白视频| 999精品在线视频| 亚洲久久久国产精品| 国产精品久久视频播放| aaaaa片日本免费| 波多野结衣巨乳人妻| 国产男靠女视频免费网站| 91字幕亚洲| 久久人人爽av亚洲精品天堂| 国产人伦9x9x在线观看| 在线国产一区二区在线| 黑人巨大精品欧美一区二区mp4| 亚洲激情在线av| 国产精品99久久99久久久不卡| 亚洲色图av天堂| 久久久国产欧美日韩av| 国产av一区二区精品久久| 午夜福利免费观看在线| 久久久久国内视频| 亚洲国产中文字幕在线视频| 国产亚洲精品一区二区www| 日本免费一区二区三区高清不卡 | 国产亚洲av嫩草精品影院| 十分钟在线观看高清视频www| 欧美性长视频在线观看| 久久久国产欧美日韩av| 欧美日韩亚洲综合一区二区三区_| 亚洲免费av在线视频| 成人精品一区二区免费| 亚洲国产高清在线一区二区三 | 国产精品1区2区在线观看.| 搡老岳熟女国产| 在线天堂中文资源库| 国产成人av教育| 国产高清videossex| 无限看片的www在线观看| 人人妻,人人澡人人爽秒播| 男女床上黄色一级片免费看| 90打野战视频偷拍视频| 一级作爱视频免费观看| 色尼玛亚洲综合影院| 看免费av毛片| 日韩中文字幕欧美一区二区| 一二三四社区在线视频社区8| 1024视频免费在线观看| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲美女久久久| 久久婷婷人人爽人人干人人爱 | 久久香蕉精品热| 国产精品日韩av在线免费观看 | 乱人伦中国视频| 女人被躁到高潮嗷嗷叫费观| 久久狼人影院| 国产精品二区激情视频| 日韩高清综合在线| 熟女少妇亚洲综合色aaa.| 国产激情欧美一区二区| 国产97色在线日韩免费| 国产av一区在线观看免费| 亚洲 欧美一区二区三区| 999久久久国产精品视频| 国产欧美日韩一区二区三| 成人免费观看视频高清| 中文字幕人妻熟女乱码| 最近最新中文字幕大全电影3 | 可以免费在线观看a视频的电影网站| 久久久久久久久中文| 婷婷精品国产亚洲av在线| 精品国产乱码久久久久久男人| 女警被强在线播放| 国产亚洲欧美98| 老司机在亚洲福利影院| 成人三级黄色视频| 91av网站免费观看| 亚洲欧美精品综合久久99| 国产成+人综合+亚洲专区| 波多野结衣高清无吗| 国产精品爽爽va在线观看网站 | 他把我摸到了高潮在线观看| 日日干狠狠操夜夜爽| 中文字幕色久视频| 亚洲中文日韩欧美视频| 亚洲成人久久性| 在线观看免费视频网站a站| 亚洲av日韩精品久久久久久密| 日本 欧美在线| 亚洲国产中文字幕在线视频| 久久精品亚洲熟妇少妇任你| 黑人巨大精品欧美一区二区蜜桃| 亚洲久久久国产精品| 久久久久久久久久久久大奶| 精品久久久久久成人av| 午夜福利影视在线免费观看| 亚洲自拍偷在线| 国产精品精品国产色婷婷| 在线观看日韩欧美| 最近最新中文字幕大全电影3 | 精品久久蜜臀av无| 757午夜福利合集在线观看| 一区二区日韩欧美中文字幕| 久久精品91无色码中文字幕| 国产aⅴ精品一区二区三区波| 亚洲精品在线美女| 啦啦啦 在线观看视频| tocl精华| 国产精品野战在线观看| 久久人人精品亚洲av| 国产伦人伦偷精品视频| 欧美日韩亚洲国产一区二区在线观看| 曰老女人黄片| 国产主播在线观看一区二区| 午夜免费激情av| 日韩一卡2卡3卡4卡2021年| 欧美国产日韩亚洲一区| 在线国产一区二区在线| 黑人巨大精品欧美一区二区mp4| 波多野结衣高清无吗| 久久天堂一区二区三区四区| 亚洲av电影在线进入| 午夜免费激情av| 日本三级黄在线观看| 成年版毛片免费区| 1024香蕉在线观看| 后天国语完整版免费观看| 美国免费a级毛片| 亚洲国产精品999在线| 免费人成视频x8x8入口观看| 国产人伦9x9x在线观看| 岛国在线观看网站| 午夜福利欧美成人| or卡值多少钱| 国产熟女午夜一区二区三区| 脱女人内裤的视频| 此物有八面人人有两片| 琪琪午夜伦伦电影理论片6080| 热99re8久久精品国产| 99国产精品99久久久久| 日本免费一区二区三区高清不卡 | 成人18禁高潮啪啪吃奶动态图| 亚洲精品在线美女| 视频区欧美日本亚洲| 日本撒尿小便嘘嘘汇集6| 一本大道久久a久久精品| 一级a爱片免费观看的视频| 最近最新中文字幕大全免费视频| 欧美一级毛片孕妇| 国产精品99久久99久久久不卡| 国产一区在线观看成人免费| 亚洲av第一区精品v没综合| 老司机午夜福利在线观看视频| 又黄又爽又免费观看的视频| 国产av一区二区精品久久| 国产av又大| 成人永久免费在线观看视频| 色综合亚洲欧美另类图片| 国产熟女午夜一区二区三区| 黑人操中国人逼视频| 久热这里只有精品99| 99久久国产精品久久久| 老司机在亚洲福利影院| 亚洲片人在线观看| 欧美日韩福利视频一区二区| 天天一区二区日本电影三级 | 夜夜夜夜夜久久久久| 可以在线观看毛片的网站| 亚洲av成人不卡在线观看播放网| 性色av乱码一区二区三区2| 精品第一国产精品| 嫩草影视91久久| 女性生殖器流出的白浆| 久久久国产欧美日韩av| 嫩草影院精品99| 99久久综合精品五月天人人| 少妇 在线观看| 亚洲久久久国产精品| 亚洲精品久久国产高清桃花| а√天堂www在线а√下载| 黄色丝袜av网址大全| 国产精品1区2区在线观看.| АⅤ资源中文在线天堂| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 精品久久久久久,| 亚洲五月天丁香| 精品卡一卡二卡四卡免费| 国产xxxxx性猛交| 麻豆国产av国片精品| 色播在线永久视频| 久久狼人影院| 这个男人来自地球电影免费观看| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 人成视频在线观看免费观看| 91在线观看av| 一区二区日韩欧美中文字幕| 在线观看日韩欧美| 欧美 亚洲 国产 日韩一| 亚洲熟妇中文字幕五十中出| 精品无人区乱码1区二区| 免费无遮挡裸体视频| 久久香蕉国产精品| 精品国产一区二区久久| 久久精品亚洲熟妇少妇任你| 天堂√8在线中文| 国产麻豆69| 精品福利观看| 长腿黑丝高跟| 欧美一级毛片孕妇| 日韩免费av在线播放| 高清黄色对白视频在线免费看| 久久人人爽av亚洲精品天堂| 久久国产乱子伦精品免费另类| 如日韩欧美国产精品一区二区三区| 亚洲三区欧美一区| 两性夫妻黄色片| 国产一区二区三区视频了| 男人的好看免费观看在线视频 | 精品久久久久久久人妻蜜臀av | 国产在线观看jvid| 日本 欧美在线| 精品一区二区三区av网在线观看| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| 最新在线观看一区二区三区| 成人特级黄色片久久久久久久| 精品国产乱码久久久久久男人| 最近最新中文字幕大全电影3 | 日韩国内少妇激情av| 精品国产乱码久久久久久男人| 国产免费男女视频| 啪啪无遮挡十八禁网站| 精品少妇一区二区三区视频日本电影| 午夜免费激情av| 日韩中文字幕欧美一区二区| 后天国语完整版免费观看| 亚洲电影在线观看av| 男人的好看免费观看在线视频 | 久热爱精品视频在线9| 久久精品91无色码中文字幕| 欧美日韩黄片免| 99香蕉大伊视频| 999精品在线视频| 欧美色视频一区免费| ponron亚洲| 很黄的视频免费| 午夜福利18| 色av中文字幕| 精品国产美女av久久久久小说| 久久国产精品人妻蜜桃| 天堂√8在线中文| 精品高清国产在线一区| 日韩欧美免费精品| 777久久人妻少妇嫩草av网站| 亚洲五月天丁香| 亚洲三区欧美一区| 一进一出抽搐动态| 国产在线观看jvid| 级片在线观看| 一二三四社区在线视频社区8| 久久国产亚洲av麻豆专区| 露出奶头的视频| 中文字幕精品免费在线观看视频| 国产成人精品久久二区二区91| 黄色成人免费大全| 精品欧美国产一区二区三| 999久久久国产精品视频| 99久久精品国产亚洲精品| 村上凉子中文字幕在线| 日韩欧美在线二视频| 18禁国产床啪视频网站| 黄色毛片三级朝国网站| 国产伦人伦偷精品视频| 精品少妇一区二区三区视频日本电影| 69精品国产乱码久久久| 亚洲精品在线观看二区| 欧美日韩亚洲国产一区二区在线观看| 精品乱码久久久久久99久播| 窝窝影院91人妻| 精品无人区乱码1区二区| av网站免费在线观看视频| 国产熟女xx| АⅤ资源中文在线天堂| 国产精品永久免费网站| 无遮挡黄片免费观看| 中文字幕人妻熟女乱码| 欧美日韩瑟瑟在线播放| 久久久久久久午夜电影| 久久热在线av| 精品国产一区二区三区四区第35| 精品熟女少妇八av免费久了| 曰老女人黄片| 90打野战视频偷拍视频| 免费观看精品视频网站| 两个人免费观看高清视频| 亚洲第一欧美日韩一区二区三区| 神马国产精品三级电影在线观看 | 女人被躁到高潮嗷嗷叫费观| 两性夫妻黄色片| 亚洲 欧美 日韩 在线 免费| 国产国语露脸激情在线看| 久久国产乱子伦精品免费另类| 亚洲国产精品久久男人天堂| 欧美日本中文国产一区发布| 老司机深夜福利视频在线观看| 亚洲五月天丁香| 色哟哟哟哟哟哟| aaaaa片日本免费| 久久狼人影院| 怎么达到女性高潮| 欧美日韩乱码在线| 亚洲熟女毛片儿| 国产国语露脸激情在线看| 国产精品久久久av美女十八| 午夜久久久久精精品| 国产一区二区激情短视频| 亚洲自偷自拍图片 自拍| 国产精品久久视频播放| 午夜精品国产一区二区电影| 中出人妻视频一区二区| 亚洲男人天堂网一区| 国产精品一区二区免费欧美| av在线天堂中文字幕| 色老头精品视频在线观看| 嫁个100分男人电影在线观看| 成人国产一区最新在线观看| 免费久久久久久久精品成人欧美视频| 一二三四社区在线视频社区8| 美国免费a级毛片| 18美女黄网站色大片免费观看| 国产99白浆流出| 波多野结衣一区麻豆| 国产成人欧美| 婷婷六月久久综合丁香| 亚洲黑人精品在线| 亚洲午夜理论影院| 91精品三级在线观看| 国产亚洲欧美精品永久| 欧美+亚洲+日韩+国产| 高清毛片免费观看视频网站| 欧美绝顶高潮抽搐喷水| 久久久久久大精品| 啦啦啦韩国在线观看视频| 天堂动漫精品| 欧美一级a爱片免费观看看 | 久久久久精品国产欧美久久久| 婷婷六月久久综合丁香| 黄色毛片三级朝国网站| 免费人成视频x8x8入口观看| 一区二区三区高清视频在线| 91麻豆av在线| 长腿黑丝高跟| www日本在线高清视频| 欧美乱妇无乱码| 久久久国产欧美日韩av| xxx96com| 国产伦人伦偷精品视频| 国产一级毛片七仙女欲春2 | 天天一区二区日本电影三级 | 亚洲自拍偷在线| 午夜久久久在线观看| 欧美黑人精品巨大| 亚洲精品国产色婷婷电影| 色综合亚洲欧美另类图片| 色av中文字幕| 中文字幕人成人乱码亚洲影| 性欧美人与动物交配| 伊人久久大香线蕉亚洲五| 久久性视频一级片| 精品国产亚洲在线| 欧美成狂野欧美在线观看| 久久婷婷成人综合色麻豆| 别揉我奶头~嗯~啊~动态视频| 好男人电影高清在线观看| 国内精品久久久久久久电影| 女人高潮潮喷娇喘18禁视频| 久久久久久亚洲精品国产蜜桃av| 日韩成人在线观看一区二区三区| 校园春色视频在线观看| 免费在线观看完整版高清| 亚洲欧美日韩高清在线视频| 色综合站精品国产| 一级黄色大片毛片| aaaaa片日本免费| 18禁国产床啪视频网站| 久久精品亚洲精品国产色婷小说| 香蕉国产在线看| 日本欧美视频一区| 丁香六月欧美| 午夜福利在线观看吧| 自线自在国产av| 黄色丝袜av网址大全| 亚洲性夜色夜夜综合| 一区二区三区激情视频| 欧美中文日本在线观看视频| 一二三四社区在线视频社区8| 欧美精品啪啪一区二区三区| 男人操女人黄网站| av中文乱码字幕在线| 老司机福利观看| 亚洲激情在线av| 国产日韩一区二区三区精品不卡| 日韩欧美三级三区| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 丁香六月欧美| 亚洲精品粉嫩美女一区| 日日爽夜夜爽网站| 成在线人永久免费视频| 香蕉久久夜色| 国产av精品麻豆| 亚洲国产精品合色在线| 久久天躁狠狠躁夜夜2o2o| 又紧又爽又黄一区二区| tocl精华| 国产精品久久久久久亚洲av鲁大| 久久久国产成人精品二区| avwww免费| 国产aⅴ精品一区二区三区波| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 最近最新中文字幕大全免费视频| 亚洲国产欧美日韩在线播放| 成人三级做爰电影| 久久久久久国产a免费观看| 麻豆成人av在线观看| 亚洲成a人片在线一区二区| 欧美黄色片欧美黄色片| 久久久久国产精品人妻aⅴ院| 国产成人av教育| 国产欧美日韩一区二区三| 又黄又粗又硬又大视频| 如日韩欧美国产精品一区二区三区| 一a级毛片在线观看| 真人做人爱边吃奶动态| 一本久久中文字幕| 国产一区在线观看成人免费| 热re99久久国产66热| 日本 欧美在线| 亚洲美女黄片视频| 日日爽夜夜爽网站| 日韩大码丰满熟妇| 巨乳人妻的诱惑在线观看| 成人精品一区二区免费| 99riav亚洲国产免费| 国产又爽黄色视频| 亚洲中文日韩欧美视频| 两性夫妻黄色片| 欧美黑人精品巨大| 国产精品亚洲美女久久久| 在线观看日韩欧美| 国产91精品成人一区二区三区| 天天一区二区日本电影三级 | 日本欧美视频一区| 国产亚洲精品综合一区在线观看 | 麻豆av在线久日| 亚洲国产精品999在线|