• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological Aspects of Dendrimers via Connection-Based Descriptors

    2023-02-26 10:18:44MuhammadJavaidAhmedAlamerandAqsaSattar

    Muhammad Javaid,Ahmed Alamer and Aqsa Sattar,?

    1Department of Mathematics,School of Science,University of Management and Technology,Lahore,54770,Pakistan

    2Department of Mathematics,College of Science,University of Tabuk,Tabuk,7149,Saudi Arabia

    ABSTRACT Topological indices(TIs)have been practiced for distinct wide-ranging physicochemical applications,especially used to characterize and model the chemical structures of various molecular compounds such as dendrimers,nanotubes and neural networks with respect to their certain properties such as solubility,chemical stability and low cytotoxicity.Dendrimers are prolonged artificially synthesized or amalgamated natural macromolecules with a sequential layer of branches enclosing a central core.A present-day trend in mathematical and computational chemistry is the characterization of molecular structure by applying topological approaches,including numerical graph invariants.Among topological descriptors,Zagreb connection indices(ZCIs)have much importance.This manuscript involves the establishment of general results to calculate ZCIs,namely first ZCI(FZCI),second ZCI(SZCI),third ZCI(TZCI),modified FZCI,modified SZCI and modified TZCI of two special types of dendrimers nanostars,namely,poly propylene imine octamin (PPIO) dendrimer and poly (propyl) ether imine (PPEtIm)dendrimer.Furthermore,we provide the numerical and graphical comparative analysis of our calculated results for both types of dendrimers with each other.

    KEYWORDS Zagreb indices;zagreb connection indices;topological index;dendrimer nanostars

    1 Introduction

    Nanobiotechnology is a swiftly growing field of technological and analytical opportunity that applies the mechanism of nanofabrication to fabricate devices for exploring biosystems.One of the main elements of this field is a dendrimer.Dendrimers are prolonged artificially synthesized or amalgamated natural macromolecules with a sequential layer of branches enclosing a central core.Dendrimers are considered to be a primary element of nanobiotechnology.The cores,end groups and branches are the main three parts of dendrimers.Nowadays,dendrimers are getting much more consideration from the researchers due to their exceptional attributes and a large span of utilization in various areas of bioscience,involving immunology,drug delivery and the development of vaccines and antivirals,for more details see[1–3].

    At present,in computational and mathematical chemistry,researchers and scientists are taking heed to characterize the molecular structures by utilizing different topological perspectives incorporating graph invariants.These topological descriptors are broadly utilized in the study of quantitative structure-activity relationships(QSAR)and quantitative structure-property relationships(QSPR)[4].Graph invariants are essential to achieve the mathematical characterization of molecular structures successfully.The field of network theory(NT)has played an indispensable role in distinct areas of life.During the last decade,NT has found a remarkable use in the field of nanobiotechnology.Topological indices(TIs),the numerical parameters which link a number with a molecular network,are widely used in chemical network theory and mathematical chemistry to characterize the topology of a molecular network.TIs can predict many psychochemical properties of molecular structures in theocratical chemistry.TIs enable researchers to find the chemical reactivity,physical attributes and biological actions of molecular compounds.A molecular network in terms of a graph is a portrayal of structural information of a chemical compound in which the atoms are displayed by vertices while the bonds are represented by edges between the vertices.The applications of TIs in various fields of science are boundless,as one can see in [5–7].According to the reported literature,TIs have great importance in nanotechnology and theoretical chemistry.Some important categories of TIs are degree-based,distance-based and connection-based TIs.In 1972,Wiener [8] introduced the concept of a distancebased TI,which is known as the Wiener index.By theoretical and conceptual framework,the Wiener index was the most studied TI.Moreover,in 2019,Gao et al.[9] utilized distance-based indices to study the topological aspects of dendrimers.

    The idea of the first ZI(FZI)was invented by Gutman et al.[10].The second and third ZIs were discovered by Gutman et al.[11]and Furtula et al.[12].All of these degree-based TIs have a variety of applications in the field of cheminformatics which is a combination of three major fields,namely,chemistry,mathematics and information technology[13–15].These TIs have been utilized to distinct wide-ranging physicochemical applications,especially to characterize the different chemical structures such as dendrimers nanostars,for details see[16–18].Among these defined TIs,the connection-based TIs have much importance because of their utilizations in characterizing the molecular chemical compounds and their ability to predict various physical and chemical properties in a comprehensive and logical way.A number of those vertices at a distance of two from a vertexvis called CN of a vertexv.According to researchers,connection-based TIs as compared to the other classical TIs provide a better absolute value of the correlation coefficient.Ali et al.[19]initiated Zagreb connection indices(ZCIs)and used octane isomers to examine their applicability.For a detailed review of some connectionbased TIs,the readers are referred to[20–22].Haoer et al.[23]computed multiplicative ZIs of some T-thorny graphs.Moreover,Javaid et al.[24] found the topological aspects of distinct wheel graphs.Further,Liu et al.[25] found the topological properties of neural networks.Recently,Sattar et al.[26–28]worked on computing the general expression of ZIs for two types of dendrimers.For the other terminologies not discussed in this paper,the readers are referred to[29–31].The motivation for this article is as follows:

    1.TIs,the numerical descriptors,are efficient enough to characterize the topology of molecular structures and assist in correlating their distinct psychochemical properties.

    2.Dendrimers are symmetric,versatile and well defined chemical polymers forming a tree like structure.These nanoparticles are signalized by a numerous attributes which make them advantageous for wide ranging utilizations in various fields of science.

    3.The connection-based ZIs have better applicability to predict the various psychochemical properties of distinct molecular structures in chemistry rather than the other classical ZIs present in the literature.

    In this paper,first,we define the third Zagreb connection index.Further,we calculate ZCIs of two special types of dendrimer nanostars,namely,PPEtIm dendrimer and PPIO dendrimer.Moreover,we compare the results of both types of dendrimers.

    This research article is structured as:in Section 1,we stated preliminaries which help the readers to understand the idea of this article.In Section 2,we computed ZCIs for PPEtIm dendrimer.In Section 3,we calculated ZCIs for the other type of dendrimer,namely,PPIO dendrimer in a comprehensive way.In Section 4,we compared the computed values of both types of dendrimers with each other.Section 5 holds the conclusions.The acronyms used in this paper are given in Table 1.

    Table 1: List of acronyms

    2 Preliminaries

    This section gives some primary definitions which are helpful for the good understanding of this manuscript.

    Definition 2.1.In[10]letξ=(P(ξ),Q(ξ))be a network,where P(ξ)be the vertex set and Q(ξ)be the edge set.Then,the FZI can be defined as

    which can also be rewritten in the given form

    Definition 2.2.In[11]for networkξ,the SZI can be defined as

    Definition 2.3.In[12]for networkξ,the TZI can be given as

    Third Zagreb index is also called forgotten index.

    Definition 2.4.In[19]for a networkξ,the FZCIs and SZCI can be defined as

    Definition 2.5.In[19]for a networkξ,the modified FZCI can be defined as

    Definition 2.6.In[20]for a networkξ,the modified SZCI and modified TZCI can be given as

    Now,we rewrite the above defined ZCIs.Let A be the set of all CNs and B be the set of all degrees of the vertices inξ.Then the above defines ZCIs can be written as

    Definition 2.7.For a networkξ,the FZCI can be rewritten as

    The SZCI rewritten as

    Similarly,the modified FZCI can be rewritten as

    Similarly,for the modified SZCI,we have

    The modified TZCI can be rewritten as

    3 ZCIs of Poly(propyl)Ether Imine Dendrimer

    In this section,we calculate the ZCIs,namely,FZCI,SZCI,TZCI,modified FZCI,modified SZCI and modified TZCI,of PPEtIm dendrimer.PPEtIm dendrimer is a special type of dendrimer constructed by including an ether component as the linker and an imine component as the branching unit.It grows three-dimensionally in which the core is the oxygen element and tertiary nitrogen atoms are at the branches which are separated by eight bonds for each growth of dendrimer.Letξbe a molecular network of PPEtIm dendrimer of generationGs,wheres≥1 is the growth of the dendrimer.The construction of PPEtIm dendrimer up to five generations can be depicted in Fig.1.From Fig.1,it can be seen that the structure of PPEtIm dendrimer is comprised of one central core having eight edges and four branches.First,we state the third Zagreb connection index in the following.

    Definition 3.1.Letξ=(P(ξ),Q(ξ))be a network,where P(ξ)be the vertex set and Q(ξ)be the edge set.Then,the third Zagreb connection index(TZCI)can be defined as

    whereω2ξ(m) andω2ξ(n) indicate the square of the connection number (CN) of the vertexmandn,respectively.

    This can also be rewritten as

    Theorem 1.Letξbe a molecular network of PPEtIm dendrimer.Then FZCI,SZCI and TZCI are given in the following:

    Proof.

    1.Firstly,we find the cardinality of vertices and edges ofξ.The total number of edges inξmust be equal to the four times the edges in a each branch plus the number of edges in central core.One can see that central core has eight edges.Therefore,

    Number of edges in each branch=(8+(2×8)+(22×8)

    +···+(2s?2×8)+(2s?1×4)),

    =6×2s?8.

    Number of edges in all branches=4×(6×2s?8),

    =24×2s?32.

    Number of edges inζ=8+(24×2s?32),

    =24×2s?24.

    Asζis a tree,so the number of vertices must be equals to 24×2s?23.

    Next,we find cardinality of those vertices which have CN 1,2 and 3 inξ.Now,we make the partition of the number of vertices on the basis of CNs.From Fig.2,we can see that there are three partitions of vertices given below.

    Thus,number of vertices with connection numbers 1,2 and 3 are given as;

    Now,after placing the values ofin Eq.(1),we have

    Figure 1:Chemical structural formula of PPEtIm dendrimer

    2.Now,we classify the edge set ofξ.From Fig.2,we can see that there are five classes of edge set as given below

    Now,

    Here,we have used the following formula to find the sum of the series[32].

    whereais the first term andris the common difference between two terms of the series.By placing the above calculated values in Eq.(2),we have

    This proves the theorem.

    Theorem 2.Letξbe a molecular network of PPEtIm dendrimer.Then modified FZCI,modified SZCI and modified TZCI are given in the following

    Figure 2:Structural formula of PPEtIm dendrimer for s=5 along with CNs

    Proof.

    1.For the proof,the readers are referred to see[33].

    2.Now,we classify the edges on the basis of their degrees of incident vertices.It can be seen thatIn order to compute the modified SZCI and modified TZCI,we split the partitioned number of edges on degree basis with respect to the number of edges on connection bases.

    Row 1 of Table 2 shows that there are total 2×2snumber of edgesmn∈ξin which the vertexmwith degree 1 and CN 1 is adjacent to the vertexnwith degree 2 and CN 1,i.e.,Similarly,the row 2 shows that there are total 2×2snumber of edgesmnin which the vertexmwith degree 2 and CN 1 is adjacent to the vertexnwith degree 2 and CN 2,i.e.,Similarly for the others,we have

    Table 2: Total number edges on degree and connection bases

    After placing the calculated values ofin Eq.(4),we get

    This proves the theorem.

    4 ZCIs of Poly Propylene Imine Octamin Dendrimer

    In this section,we find the general expressions to compute the connection-based Zagreb indices,namely,FZCI,SZCI,TZCI,modified FZCI,modified SZCI and modified TZCI of another special type of dendrimer nanostar named as,PPIO dendrimer.PPIO dendrimer grows in three dimensions and it has five bonds in the core.The structural formula of PPIO dendrimer is shown in Fig.3 for five generations.

    Figure 3:Structural formula of PPIO dendrimer

    Theorem 3.Letξbe a molecular network of PPIO dendrimer.Then,FZCI,SZCI and TZCI are given in the following

    Proof.

    1.Initially,we find cardinality of edges ofξ.The total number of edges inξmust be equal to the four times of number of edges in each branch plus the number of edges in central core.It can be easily seen that central core has 5 edges.Therefore,

    Number of edges in each branch=(4+(2×4)+(22×4)+···+(2s?1×4)),

    =4×2s?4.

    Number of edges in all branches=4×(4×2s?4),

    =16×2s?16.

    Number of edges inζ=5+(16×2s?16),

    =16×2s?11.

    Asζis a tree,so the number of vertices must be equals to 16×2s?10.

    Furthermore,we find the cardinality of those vertices which have CN 1,2 and 3 inξ.

    In Fig.4,we have labeled the vertices of PPIO dendrimer fors=5 with respect to their CNs.Now,by placing the values ofin Eq.(1),we get

    Figure 4:Structural formula of PPIO dendrimer for s=5 along with CNs

    After placing the above calculated values in Eq.(2),we have

    3.After placing the values ofin Eq.(6),we get

    This proves the theorem.

    Theorem 4.Letξbe a molecular network of PPIO dendrimer.Then modified FZCI,modified SZCI and modified TZCI are given in the following

    Proof.

    1.For the proof,the readers are referred to see[32].

    2.Now we make the partition of the edges based on their degrees of incident vertices.It can be easily seen thatIn order to compute the modified SZCI and modified TZCI,we split the number edges on degree basis with respect to the number of edges on connection bases as shown in Table 3.

    Table 3: Total number edges on degree and connection bases

    Thus,we have

    This proves the theorem.

    5 Comparative Analysis and Concluding Remarks

    The analysis of networks plays a remarkable role to conclude their fundamental topologies.TIs specified on chemical structures can assist the researchers to recognize the biological activity,chemical reactivity and physical features.Through TIs,researchers can easily predict the distinct psychochemical properties of the molecular structures.To check the superiority of consequences of this research article,we compare our computed values for two nanostars.Table 4 displays the comparison between the calculated results of PPEtIm and PPIO dendrimers.

    From Table 4,it can be easily seen that PPEtIm dendrimer and PPIO dendrimer get the greatest value of TZCI(ξ).The values of defined ZCIs of PPEtIm dendrimer and PPIO dendrimer for some values ofsare given in Tables 5 and 6,respectively.

    Table 4: Comparison between the value of PPEtIm and PPIO dendrimer

    Table 5: ZCIs of PPEtIm dendrimer

    Table 6: ZCIz of PPIO dendrimer dendrimer

    Figure 5:Graphical display of TZCI for PPEtIm and PPIO dendrimers

    Now,we conclude our discussion with the following lines.In this manuscript,we have established the general results to compute ZCIs namely,FZCI,SZCI and TZCI of two special types of dendrimer nanostars,namely,PPEtIm dendrimer and PPIO dendrimer which will be helpful in computational chemistry to predict many physical and chemical attributes of the chemical substances.Moreover,we have computed modified FZCI,modified SZCI and modified TZCI for these dendrimers.The computed results just depend upon the value ofs≥1.Further,we have compared the calculated results for both types of dendrimers with each other.We have found that our developed TZCI gets the greatest value for both types of dendrimers.Thus,we found that TZCI is superior in preserving the psychochemical properties of these dendrimers and PPEtIm dendrimer has greater chemical applicability than PPIO dendrimer.Now,the problem is still open to computing the Zagreb connection indices for the other types of dendrimers.

    Data Availability:The data used to support the findings of this study are included within this article.However,the reader may contact the corresponding author for more details on the data.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    成人精品一区二区免费| 亚洲欧美精品综合一区二区三区| 后天国语完整版免费观看| 日本a在线网址| 亚洲,欧美精品.| 国产真人三级小视频在线观看| 91字幕亚洲| 女性被躁到高潮视频| 亚洲av成人一区二区三| 亚洲第一电影网av| 两人在一起打扑克的视频| 操出白浆在线播放| 91国产中文字幕| 1024视频免费在线观看| 国产高清激情床上av| 变态另类成人亚洲欧美熟女 | 成人av一区二区三区在线看| 黄色成人免费大全| 久久精品亚洲熟妇少妇任你| 一级毛片精品| 最近最新中文字幕大全电影3 | 国产精品自产拍在线观看55亚洲| 亚洲精品国产精品久久久不卡| 国产私拍福利视频在线观看| 午夜福利一区二区在线看| 国产真人三级小视频在线观看| 国产精品久久久av美女十八| 久久久久亚洲av毛片大全| 999精品在线视频| 一边摸一边抽搐一进一出视频| av电影中文网址| 久久 成人 亚洲| 淫妇啪啪啪对白视频| 成年女人毛片免费观看观看9| 在线观看日韩欧美| 这个男人来自地球电影免费观看| 日韩三级视频一区二区三区| av中文乱码字幕在线| 日韩免费av在线播放| 丝袜在线中文字幕| 亚洲 欧美 日韩 在线 免费| 亚洲午夜精品一区,二区,三区| 亚洲自偷自拍图片 自拍| 国产熟女xx| 久久 成人 亚洲| 久久国产亚洲av麻豆专区| 精品一区二区三区av网在线观看| www.精华液| 成人国语在线视频| 久久久久久亚洲精品国产蜜桃av| 99久久国产精品久久久| 两性夫妻黄色片| 一个人观看的视频www高清免费观看 | 欧美日韩一级在线毛片| 久久性视频一级片| 欧美乱色亚洲激情| 日本三级黄在线观看| 色综合欧美亚洲国产小说| 性欧美人与动物交配| 国产极品粉嫩免费观看在线| 一级作爱视频免费观看| 性少妇av在线| 老司机午夜福利在线观看视频| 女人精品久久久久毛片| 麻豆国产av国片精品| 久久这里只有精品19| 十分钟在线观看高清视频www| 亚洲一区高清亚洲精品| 亚洲第一欧美日韩一区二区三区| 久久久国产成人精品二区| 欧美一级毛片孕妇| 婷婷丁香在线五月| 国产精品久久电影中文字幕| 午夜成年电影在线免费观看| svipshipincom国产片| 国产亚洲欧美精品永久| 日韩欧美国产在线观看| 久久伊人香网站| 黑人欧美特级aaaaaa片| 久久人妻av系列| 免费在线观看日本一区| 国产精品电影一区二区三区| 一级毛片精品| 欧美乱色亚洲激情| 亚洲精品一卡2卡三卡4卡5卡| 色婷婷久久久亚洲欧美| 亚洲自偷自拍图片 自拍| 一级黄色大片毛片| 身体一侧抽搐| 麻豆久久精品国产亚洲av| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品久久二区二区免费| 欧美性长视频在线观看| 无限看片的www在线观看| 女同久久另类99精品国产91| 日韩免费av在线播放| 国产精品香港三级国产av潘金莲| 99精品欧美一区二区三区四区| 亚洲精品粉嫩美女一区| 亚洲欧美一区二区三区黑人| 国产精品久久视频播放| 在线观看免费午夜福利视频| 日本撒尿小便嘘嘘汇集6| 亚洲第一欧美日韩一区二区三区| 色av中文字幕| 91大片在线观看| 精品一区二区三区av网在线观看| 日本在线视频免费播放| 久久热在线av| 亚洲 欧美一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲色图av天堂| 亚洲一区二区三区色噜噜| 亚洲美女黄片视频| 一区福利在线观看| 欧美黑人欧美精品刺激| 丝袜美腿诱惑在线| 中亚洲国语对白在线视频| 后天国语完整版免费观看| 精品久久蜜臀av无| 国产精品电影一区二区三区| 欧美绝顶高潮抽搐喷水| 精品国产亚洲在线| 韩国精品一区二区三区| 国产精品香港三级国产av潘金莲| 国产一区二区三区综合在线观看| 久久中文字幕一级| 免费人成视频x8x8入口观看| 久久九九热精品免费| 亚洲人成伊人成综合网2020| 国产精品久久电影中文字幕| 国产成人免费无遮挡视频| 在线十欧美十亚洲十日本专区| 精品一区二区三区视频在线观看免费| 日韩精品青青久久久久久| 欧美在线黄色| 色综合站精品国产| 国产成人精品无人区| 久久久久久久久久久久大奶| 久久精品成人免费网站| 欧美成人一区二区免费高清观看 | 夜夜爽天天搞| 成人手机av| 十分钟在线观看高清视频www| 国产在线精品亚洲第一网站| 丝袜美足系列| 色播在线永久视频| netflix在线观看网站| 国语自产精品视频在线第100页| 中文亚洲av片在线观看爽| 少妇粗大呻吟视频| 村上凉子中文字幕在线| 精品乱码久久久久久99久播| 国产欧美日韩精品亚洲av| 亚洲七黄色美女视频| 麻豆国产av国片精品| 成年女人毛片免费观看观看9| aaaaa片日本免费| av天堂久久9| netflix在线观看网站| 精品不卡国产一区二区三区| 亚洲精品在线观看二区| 亚洲第一青青草原| 国产精品精品国产色婷婷| 18美女黄网站色大片免费观看| 十分钟在线观看高清视频www| 久久久久精品国产欧美久久久| 99国产精品99久久久久| 黑人巨大精品欧美一区二区mp4| 神马国产精品三级电影在线观看 | 中文字幕色久视频| 人妻丰满熟妇av一区二区三区| 不卡av一区二区三区| 一边摸一边做爽爽视频免费| av天堂在线播放| 在线观看免费视频网站a站| 亚洲成av片中文字幕在线观看| 久久中文字幕一级| 91国产中文字幕| 亚洲人成伊人成综合网2020| aaaaa片日本免费| 正在播放国产对白刺激| 一级毛片精品| 变态另类成人亚洲欧美熟女 | 国产国语露脸激情在线看| 成人亚洲精品av一区二区| 啦啦啦观看免费观看视频高清 | 国产免费av片在线观看野外av| 19禁男女啪啪无遮挡网站| 最近最新免费中文字幕在线| 国产成人av教育| svipshipincom国产片| 看免费av毛片| 岛国在线观看网站| 韩国精品一区二区三区| 欧美午夜高清在线| 免费高清在线观看日韩| 男人的好看免费观看在线视频 | 国产99白浆流出| 午夜福利欧美成人| 长腿黑丝高跟| 高清黄色对白视频在线免费看| 在线观看日韩欧美| 日本三级黄在线观看| 成年人黄色毛片网站| ponron亚洲| 搞女人的毛片| 国产精品 欧美亚洲| 国产极品粉嫩免费观看在线| av天堂在线播放| svipshipincom国产片| 国产午夜精品久久久久久| 成人av一区二区三区在线看| 黄片小视频在线播放| 亚洲一码二码三码区别大吗| 好男人在线观看高清免费视频 | 老司机午夜十八禁免费视频| 中文字幕最新亚洲高清| 又黄又粗又硬又大视频| 一区二区三区激情视频| 国产野战对白在线观看| www.999成人在线观看| 一夜夜www| 波多野结衣一区麻豆| 久久伊人香网站| 一本大道久久a久久精品| 国产精品久久久久久亚洲av鲁大| 黄片小视频在线播放| 色播亚洲综合网| 桃色一区二区三区在线观看| 91老司机精品| 女同久久另类99精品国产91| 波多野结衣av一区二区av| 久热这里只有精品99| 亚洲国产精品成人综合色| 午夜老司机福利片| 国产99久久九九免费精品| 免费在线观看视频国产中文字幕亚洲| 欧美+亚洲+日韩+国产| 97人妻精品一区二区三区麻豆 | 午夜久久久久精精品| 少妇熟女aⅴ在线视频| 99国产极品粉嫩在线观看| 亚洲熟妇中文字幕五十中出| 日日干狠狠操夜夜爽| 久久午夜亚洲精品久久| 国内久久婷婷六月综合欲色啪| 在线十欧美十亚洲十日本专区| 99国产极品粉嫩在线观看| 亚洲熟妇熟女久久| 国产精华一区二区三区| 国产精品 欧美亚洲| 亚洲专区字幕在线| 国产精品久久久久久亚洲av鲁大| 深夜精品福利| 母亲3免费完整高清在线观看| 热99re8久久精品国产| 日日夜夜操网爽| 麻豆成人av在线观看| 国产av一区二区精品久久| 色精品久久人妻99蜜桃| 波多野结衣一区麻豆| 久久久久精品国产欧美久久久| 国产免费男女视频| 97碰自拍视频| 国产精品一区二区三区四区久久 | 一进一出好大好爽视频| 欧美激情高清一区二区三区| 三级毛片av免费| 午夜日韩欧美国产| 国产一区二区三区视频了| av视频免费观看在线观看| 免费看美女性在线毛片视频| 中文字幕人妻熟女乱码| 国产aⅴ精品一区二区三区波| 亚洲一区中文字幕在线| 亚洲专区中文字幕在线| 国产精品,欧美在线| 一个人观看的视频www高清免费观看 | 亚洲午夜理论影院| 亚洲国产高清在线一区二区三 | 一本综合久久免费| 久久欧美精品欧美久久欧美| 久久香蕉国产精品| av福利片在线| 夜夜躁狠狠躁天天躁| 一边摸一边做爽爽视频免费| 婷婷六月久久综合丁香| 少妇裸体淫交视频免费看高清 | 亚洲av成人一区二区三| 久久久久久人人人人人| 亚洲,欧美精品.| 最近最新免费中文字幕在线| 多毛熟女@视频| 色老头精品视频在线观看| 日本欧美视频一区| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区四区五区乱码| 99国产精品99久久久久| 变态另类成人亚洲欧美熟女 | 中文字幕色久视频| 中文字幕精品免费在线观看视频| 男人舔女人的私密视频| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 久久人人爽av亚洲精品天堂| 成人特级黄色片久久久久久久| 精品人妻在线不人妻| 1024视频免费在线观看| 欧美国产日韩亚洲一区| 女同久久另类99精品国产91| 丰满的人妻完整版| 亚洲黑人精品在线| 最近最新中文字幕大全电影3 | 久久久久久大精品| 国产精品秋霞免费鲁丝片| 亚洲av片天天在线观看| 嫩草影视91久久| 琪琪午夜伦伦电影理论片6080| 99久久国产精品久久久| 免费一级毛片在线播放高清视频 | 成年人黄色毛片网站| 可以在线观看毛片的网站| 国产精品综合久久久久久久免费 | 久久午夜亚洲精品久久| 最新美女视频免费是黄的| 精品国产亚洲在线| 欧美激情极品国产一区二区三区| 两性夫妻黄色片| 久久青草综合色| 久久婷婷成人综合色麻豆| 成人免费观看视频高清| 亚洲一卡2卡3卡4卡5卡精品中文| 我的亚洲天堂| 亚洲国产欧美日韩在线播放| 免费高清视频大片| 精品欧美国产一区二区三| 亚洲欧美日韩高清在线视频| 一区二区三区激情视频| 日本精品一区二区三区蜜桃| 日韩高清综合在线| 久久久久久久久免费视频了| 久久婷婷成人综合色麻豆| 美女高潮到喷水免费观看| 操美女的视频在线观看| 亚洲自偷自拍图片 自拍| 在线观看免费视频网站a站| 亚洲精品久久国产高清桃花| 高潮久久久久久久久久久不卡| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕日韩| 长腿黑丝高跟| av片东京热男人的天堂| 亚洲国产精品合色在线| 亚洲视频免费观看视频| 久久久国产成人免费| 国产亚洲精品综合一区在线观看 | 极品人妻少妇av视频| 欧美性长视频在线观看| 久久天堂一区二区三区四区| 大香蕉久久成人网| 真人做人爱边吃奶动态| 无遮挡黄片免费观看| cao死你这个sao货| 久久国产精品人妻蜜桃| 18禁观看日本| 制服丝袜大香蕉在线| 色尼玛亚洲综合影院| 国产高清视频在线播放一区| 免费观看人在逋| www.精华液| 亚洲全国av大片| 精品久久久久久久毛片微露脸| 国产精品爽爽va在线观看网站 | 日本精品一区二区三区蜜桃| bbb黄色大片| 老司机在亚洲福利影院| 亚洲,欧美精品.| 亚洲人成伊人成综合网2020| 日韩精品中文字幕看吧| 欧美激情 高清一区二区三区| 国产国语露脸激情在线看| 欧美精品啪啪一区二区三区| 美女免费视频网站| 色播亚洲综合网| 窝窝影院91人妻| 婷婷精品国产亚洲av在线| 久久人妻福利社区极品人妻图片| 欧美国产日韩亚洲一区| 国产欧美日韩一区二区三区在线| 少妇裸体淫交视频免费看高清 | 国产精品免费视频内射| 免费高清视频大片| e午夜精品久久久久久久| 久久久久国产精品人妻aⅴ院| 99精品欧美一区二区三区四区| 精品一区二区三区四区五区乱码| 欧美乱色亚洲激情| 欧美激情 高清一区二区三区| 97超级碰碰碰精品色视频在线观看| www日本在线高清视频| 色综合亚洲欧美另类图片| 国产麻豆成人av免费视频| 国语自产精品视频在线第100页| 十八禁网站免费在线| 久久久久国产一级毛片高清牌| 999久久久精品免费观看国产| 免费高清在线观看日韩| √禁漫天堂资源中文www| 男人舔女人的私密视频| 亚洲av第一区精品v没综合| 国产在线精品亚洲第一网站| www.自偷自拍.com| 欧美成人一区二区免费高清观看 | 脱女人内裤的视频| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 国产成人精品久久二区二区免费| 两个人免费观看高清视频| 久99久视频精品免费| 欧美不卡视频在线免费观看 | 国内精品久久久久精免费| av在线播放免费不卡| 真人一进一出gif抽搐免费| 91九色精品人成在线观看| 亚洲成人国产一区在线观看| 亚洲人成伊人成综合网2020| 亚洲精品一卡2卡三卡4卡5卡| 精品国产乱子伦一区二区三区| 国产亚洲精品一区二区www| 丁香欧美五月| 久久香蕉激情| 欧美乱色亚洲激情| 国产精品一区二区三区四区久久 | 性色av乱码一区二区三区2| 黄色a级毛片大全视频| 午夜影院日韩av| 一级作爱视频免费观看| 老司机在亚洲福利影院| 国产一区二区激情短视频| 性欧美人与动物交配| 999精品在线视频| 亚洲国产精品成人综合色| 中文字幕av电影在线播放| 在线永久观看黄色视频| 桃色一区二区三区在线观看| 欧美日韩黄片免| 亚洲av第一区精品v没综合| 50天的宝宝边吃奶边哭怎么回事| 久久国产精品男人的天堂亚洲| 99在线视频只有这里精品首页| 免费无遮挡裸体视频| 日韩视频一区二区在线观看| 国产在线精品亚洲第一网站| 免费少妇av软件| 一级作爱视频免费观看| 国产精品98久久久久久宅男小说| 久久久久久久午夜电影| 欧美成人免费av一区二区三区| 亚洲专区中文字幕在线| 最近最新免费中文字幕在线| 黄色a级毛片大全视频| 国产蜜桃级精品一区二区三区| 国产97色在线日韩免费| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩乱码在线| 精品国产乱子伦一区二区三区| 一级a爱片免费观看的视频| 亚洲欧美一区二区三区黑人| 欧美久久黑人一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩综合在线一区二区| 国产精品免费视频内射| 一夜夜www| 色播在线永久视频| 日本精品一区二区三区蜜桃| 亚洲av电影不卡..在线观看| 天天躁夜夜躁狠狠躁躁| 日本 欧美在线| 欧美 亚洲 国产 日韩一| 19禁男女啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 国产亚洲精品第一综合不卡| 国产极品粉嫩免费观看在线| 国产午夜福利久久久久久| 久久人妻福利社区极品人妻图片| 日日夜夜操网爽| 在线天堂中文资源库| 精品国内亚洲2022精品成人| 97人妻精品一区二区三区麻豆 | 亚洲精品美女久久av网站| 国产精品永久免费网站| 国产野战对白在线观看| 免费在线观看亚洲国产| 每晚都被弄得嗷嗷叫到高潮| 18禁裸乳无遮挡免费网站照片 | 国产成人啪精品午夜网站| 丁香欧美五月| 99久久国产精品久久久| 99久久久亚洲精品蜜臀av| 免费搜索国产男女视频| 亚洲自偷自拍图片 自拍| 99香蕉大伊视频| 免费无遮挡裸体视频| 黄频高清免费视频| 欧美大码av| 国产精品久久久人人做人人爽| 色av中文字幕| 丁香欧美五月| 可以免费在线观看a视频的电影网站| 18禁观看日本| 一级作爱视频免费观看| 999久久久精品免费观看国产| 亚洲精品久久国产高清桃花| 色老头精品视频在线观看| 搡老妇女老女人老熟妇| netflix在线观看网站| 久久香蕉国产精品| 免费在线观看日本一区| 91精品三级在线观看| 两个人看的免费小视频| 久久精品国产亚洲av香蕉五月| www国产在线视频色| 精品久久久久久,| 女人被狂操c到高潮| 亚洲av成人不卡在线观看播放网| 久久香蕉激情| 精品一区二区三区视频在线观看免费| 免费看十八禁软件| 亚洲欧美日韩另类电影网站| 亚洲aⅴ乱码一区二区在线播放 | 制服丝袜大香蕉在线| 咕卡用的链子| 黄色视频,在线免费观看| 真人做人爱边吃奶动态| 女性生殖器流出的白浆| 99精品在免费线老司机午夜| 啦啦啦 在线观看视频| 亚洲色图综合在线观看| 亚洲精品美女久久久久99蜜臀| xxx96com| 18禁国产床啪视频网站| 天堂影院成人在线观看| 国产精品久久久人人做人人爽| 一卡2卡三卡四卡精品乱码亚洲| 国产一区在线观看成人免费| 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| 最新在线观看一区二区三区| 亚洲精品在线观看二区| 首页视频小说图片口味搜索| 午夜福利18| 国产区一区二久久| 日本五十路高清| 97超级碰碰碰精品色视频在线观看| 欧美一区二区精品小视频在线| 99精品久久久久人妻精品| 丝袜在线中文字幕| 在线观看日韩欧美| 18禁观看日本| 日韩一卡2卡3卡4卡2021年| 精品人妻1区二区| 亚洲人成伊人成综合网2020| 国产av在哪里看| aaaaa片日本免费| 女人高潮潮喷娇喘18禁视频| 午夜老司机福利片| av中文乱码字幕在线| 在线av久久热| 亚洲国产看品久久| 一卡2卡三卡四卡精品乱码亚洲| av欧美777| 国产精品永久免费网站| 亚洲第一青青草原| 中文字幕久久专区| 亚洲中文av在线| 看黄色毛片网站| 黑丝袜美女国产一区| 91九色精品人成在线观看| 日日干狠狠操夜夜爽| 亚洲自偷自拍图片 自拍| 国产高清有码在线观看视频 | 丰满的人妻完整版| 国产在线精品亚洲第一网站| 变态另类丝袜制服| 久久 成人 亚洲| 黄色视频,在线免费观看| 欧美绝顶高潮抽搐喷水| 日本a在线网址| 亚洲精品一卡2卡三卡4卡5卡| 一本久久中文字幕| 久久香蕉精品热| 一区二区三区精品91| 丝袜在线中文字幕| 日韩高清综合在线| 国产精品一区二区精品视频观看| a级毛片在线看网站| 中文亚洲av片在线观看爽| 一个人观看的视频www高清免费观看 | 日韩视频一区二区在线观看| 国产免费男女视频| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 真人一进一出gif抽搐免费| 伊人久久大香线蕉亚洲五| 97超级碰碰碰精品色视频在线观看| 国产精品久久久av美女十八| 亚洲第一电影网av| 91精品三级在线观看| 看黄色毛片网站| 18禁美女被吸乳视频| 一级a爱视频在线免费观看| 香蕉国产在线看|