• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Existence of Approximate Solutions to Nonlinear Lorenz System under Caputo-Fabrizio Derivative

    2023-02-26 10:18:52KhursheedAnsariMustafaIncMahmoudandEiman

    Khursheed J.Ansari,Mustafa Inc,K.H.Mahmoudand Eiman

    1Department of Mathematics,College of Science,King Khalid University,Abha,61413,Saudi Arabia

    2Department of Computer Engineering,Biruni University,Istanbul,34010,Turkey

    3Department of Mathematics,Science Faculty,Firat University,Elazig,23119,Turkey

    4Department of Medical Research,China Medical University,Taichung,40402,Taiwan

    5Department of Physics,College of Khurma University College,Taif University,P.O.Box 11099,Taif,21944,Saudi Arabia

    6Department of Mathematics,University of Malakand,Chakdara Dir(L),Khyber Pakhtunkhwa,18000,Pakistan

    ABSTRACT In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The required results about the existence and uniqueness of a solution are derived via the fixed point approach due to Banach and Krassnoselskii.Also,we enriched our work by establishing a stable result based on the Ulam-Hyers (U-H)concept.Also,the approximate solution is computed by using a hybrid method due to the Laplace transform and the Adomian decomposition method.We computed a few terms of the required solution through the mentioned method and presented some graphical presentation of the considered problem corresponding to various fractional orders.The results of the existence and uniqueness tests for the Lorenz system under CFFD have not been studied earlier.Also,the suggested method results for the proposed system under the mentioned derivative are new.Furthermore,the adopted technique has some useful features,such as the lack of prior discrimination required by wavelet methods.our proposed method does not depend on auxiliary parameters like the homotopy method,which controls the method.Our proposed method is rapidly convergent and,in most cases,it has been used as a powerful technique to compute approximate solutions for various nonlinear problems.

    KEYWORDS Lorenz system;CFFD;fixed point approach;approximate solution

    1 Introduction

    Fractional calculus has gotten considerable attention in the last few decades.This is because of numerous applications in various fields of science and technology.Many real-world problems where hereditary properties and memory characteristics are involved can be comprehensively explained by using fractional calculus.For recent applications and interesting results,we refer to[1–4].Keeping in mind the valuable uses of the said area,scientists have given much attention to investigating fractional order differential equations (FDEs) from various aspects.They developed the existence theory of solutions very well.Also,a large number of articles have been framed about numerical analysis and optimization theory for the said area.Also,researchers have developed stability results for various problems of FDEs.For the aforesaid area,we refer to [5–8].Recently,various results related to fractional order chaotic systems have been investigated(see[9–12]).

    In recent times,some new types of fractional differential operators have been introduced.The concerned definitions have been obtained,preserving the regular kernel instead of the singular one.In this regard,in 2015,Caputo et al.[4] introduced a new operator for fractional order derivatives,abbreviated here as CFFD.By using this new operator,researchers have developed numerous results,including existence theory and numerical solutions for various problems(see[13–16]).

    Keeping the importance of FDEs in mind,various real-world problems have been investigated by using concepts of fractional calculus.Because fractional differential operators geometrically provide accumulation for a function,which includes its integer counter part as a special case.Also,in various cases,it has been found that fractional order derivative is more powerful than classical and describes the dynamics of various real world phenomena with more details(see[17–19]).Therefore,researchers have used FDEs in the study of dynamical problems of different natures.Among these real-world problems,Lorenz studied the Lorenz system first.The said problem has a chaotic solution for some parametric and initial values.

    The said famous classical Lorenz system has been described in[20]given by

    where the constantssigma,gammaandbare system parameters proportional to Prandtl,Rayleigh,and certain physical layer dimensions.The quantities involved are x,which is proportional to the rate of convection,y,which is proportional to the variation in horizontal temperature,and z,which is proportional to the variation in vertical temperature.The Lorenz system has many applications in simplified models for lasers,thermosyphon,brushers,DCmotors,electric circuits,chemical reactions,forward osmosis,etc.Due to the interesting behavior of the aforesaid model,the Lorenz system has been investigated by many researchers.

    Keeping in mind the importance of the said model,it has never been investigated till now by using CFFD.

    Instead of ordinary calculus fractions,order derivatives and integrals are more practical in nature and preserve a greater degree of freedom.Using this type of operator,additional short and longmemory terms are better explained.Because power law singular kernels are used in Caputo and Reimann-Liouville operators.in numerical discretization,it causes difficulties.Therefore,by using those differential operators which involve exponential type kernels,the descriptions of some problems are more easily understood.Therefore,in this regard,the first one,which is increasingly used as CFFD,The Lorenz model has been investigated under various fractional order concepts by using different techniques.In most cases,researchers have investigated the approximate solution of the Lorenz model by using differential transform techniques [21],the homotopy perturbation method[22],and the Adomian decomposition method[23],etc.Also,authors[24]have studied the fractional order Lorenz system by using the homotopy analysis method.Further authors [25] investigated the numerical-analytical solution of nonlinear fractional-order Lorenz’s system.But in all the mentioned studies,the existence theory of the fractional order Lorenz system has not been investigated.

    Also,to the best of our knowledge,the Lorenz system under CFFD for semi-analytical solutions by using Laplace Adomian decomposition has never been investigated.Therefore,we update the model(1)under CFFD as given in(2)as

    whereα∈(0,1]andCFDtdenoted CFFD,where we take values for the parameters asσ=10,b=8/3,γ=28.

    It is a tedious job to deal with problems under the concept of fractional calculus for their exact or numerical solutions.Several algorithms,tools,and procedural theories have been established during the past few decades.A dynamical problem should be first treated for the criteria of its existence.Because,without knowing about its existence,we do not implement other techniques to compute numerical or semi-analytical results.For the existence theory,various tools have been developed.For instance,fixed point approaches,coincidence degree theories due to Mawhin and Schauder,etc.,have been used very well.The most powerful one is the use of the fixed point approach to investigate a dynamical problem whether it has a solution or not (see [6]).On the other hand,numerous tools,including perturbation and decomposition techniques,have been used to approximate solutions to various dynamical problems(for details,see[26–30]).The mentioned tools have been used in excessive numbers for classical fractional order problems.Also,those problems involving the CFFD have been treated by using the homotopy and decomposition methods in various articles;for instance,see a few as[31–37].

    Inspired by the aforesaid work,we are going to derive some adequate results for the existence of approximate solutions to the nonlinear system given in(2)under CFFD.We apply some fixed point approaches due to Krassnoselskii and Banach to establish the existence theory for the solution of the intended problem.Some stability results are also provided here in this work by using the U-H concept.Also,some approximations for the solution are established via a hybrid method due to the Laplace transform and Adomian decomposition.We also present some graphical representations of Lorenz equations using computational software such as Matlab.

    Our work is organized as: We first provide some literature and refer to it in Section 1.In the Section 2,we recollect some elementary results.In Section 3,we provide our first portion of the main results.In Section 5,stability results are developed.In Section 4,we provide general algorithms of analytical results.In Section 5,some graphical presentations are provided.Finally,we will give a brief conclusion.

    2 Elementary Results

    Definition 2.1.[4]Let h ∈H1(0,θ),θ >0,α∈(0,1),then the CFFD is recalled as

    M(α)is called a normalization function which obeys M(1)=M(0)=1.Also if h is not in H1(0,θ),then we have

    Definition 2.2.[4]For the function h,the Caputo-Fabrizio integral is define as

    Lemma 2.1.[4]Let l ∈L[0,θ],forα∈(0,1],if right hand sides vanish at 0,then the solution of

    can be calculated as

    Definition 2.3.[4]The Laplace transform ofCFDtαh(t)with M(α)=1 is given as

    Definition 2.4.Here we setI=[0,θ] and 0≤t≤θ <∞and define the Banach space asX=C([0,θ]×R,R)equipped with norm as

    Theorem 2.5.[38]Let X be a Banach space andΩ:X→X be a contraction operator with constant 0≤K<1,thenΩhas a unique fixed point.

    Theorem 2.6.[38]If U be a closed,bounded and convex subset of X,the equation S1(V)+S2(V)=V has at leat one fixed point,where S1,S2satisfy

    1.S1(V)+S2(V)∈U for every V ∈U;

    2.S1is contraction;

    3.S2is continuous and compact.

    Theorem 2.7.Inview of conditions x>0,y>0,z>0 at allt≥0,then the approximate solution of the model(2)satisfies x≥0,y≥0,z≥0,for allt>0.

    Proof.Proof Keeping in mind the initial data of solution of the model(2),it is obvious that

    therefore x≥0,y≥0,z≥0,for allt≥0.

    3 Main Result for the Model(2)

    This portion is devoted to the first part of our main results.Here we establish the existence criteria for our adopted model(2).We set the model(2)as

    while f,g,h:I×R2→Rare continuous functions.Using Lemma 2.1 and applyingCFI tαon both sides of(4)and plugging values of initial conditions,one has

    Further,we can write(5)as

    where

    We need the following hypothesis to be exist for onward analysis.

    (A1)Subject constants Lψ >0,for every V,∈X,one has

    (A2)For constantsCψ,Cψ >0 and Mψ >0,one has

    |ψ(t,V(t))|≤Cψ|V|+Mψ.

    Using(6)and(7),we define two operators as

    Theorem 3.1.Thank to hypothesis(A1,A2)and continuity ofψ,integral Eq.(6)has at least one solution under the condition

    Proof.Consider a closed bounded set as U={V ∈X:‖V‖∞≤ρ,ρ >0}of X,we have to derive that S1:U→U is contraction.Let V,∈U,we have

    Hence S1is contraction.

    For S2to be relatively compact,consider V ∈U,one has

    Hence (9) implies that S2is bounded.Alsoψis continuous so is S2.In same fashion,one can deduce that S2is equi-continues by takingt1

    Since att2→t1,we observe that right side in(10)vanish.Also as S2is bounded and continuous operator overI.So

    ‖S2(V)(t2)?S2(V)(t1)‖∞→0,ast2→t1.

    Therefore S2is relatively compact as uniformly continuous.Thus the operator S2is completely continuous.Inview of Theorem 2.6,the problem(2)has atleast one solution.

    Theorem 3.2.Together with hypothesis(A1) and if the condition<1 holds,then the considered system(2)has a unique solution.

    Proof.Let defineΩ:X→X by

    As a result,Ωis contraction,and the proposed system(6)has a unique solution,implying that the Lorenz system(2)has a unique approximate solution.

    4 Stability Results

    Here we recollect basic notions for U-H stability from[1,2,8,15]

    Definition 4.1.The integral Eq.(6)is U-H stable withδ >0 if for inequality

    we have at most one solutionand constantCψ,with

    Also the integral Eq.(6) is generalized U-H stable if there exists a nondecreasing mappingν:(0,1)→R+such that

    withν(0)=0.

    The given remark is needed.

    Remark 1.Letφbe a function independent of V ∈X and also vanishes at zero,such that

    1.|φ(t)|≤δ,at every,t∈I;

    2.CFDαtV(t)=ψ(t,V(t))+φ(t),at every,t∈I.

    Remark 2.Let the perturbed problem be described as

    Then the solution of(13)is computed as

    Hence using Remark 1,(14)yields

    where

    Theorem 4.2.Inview of hypothesis(A1)and using Remarks 1 and 2,the solution of the integral Eq.(2)is U-H stable if

    Moreover,the approximate solution of the model(2)is generalized U-H stable.

    Proof.Let V,∈X be any solution and at most one solution respectively of the problem(6),then one has

    From(16),upon simplification one has

    Thus(6)is U-H stable.Settingν(δ)=δ,then(17)yields

    Obviously in (18),we see thatν(0)=0.Hence we conclude that the model (2) is U-H and generalized U-H stable,respectively.

    5 Algorithms for Approximate Solution of the Model(2)

    We first develop a general algorithms for approximate solution to(2)as

    Using initial condition,(19)yields

    The solution we are computing can be expressed as

    Also,the nonlinear terms can be decomposed as

    Here few initial terms of Adomian polynomials are computed from(22)as

    n=0:P0(x,z)=x0z0,

    n=1:P1(x,z)=x1z0+x0z1,

    n=2:P2(x,z)=x2z0+x1z1+x2z0,

    n=3:P3(x,z)=x3z0+x2z1+x1z2+x0z3

    and so on.

    Thus we calculate few terms(23)as

    n=0:Q0(x,y)=x0y0,

    n=1:Q1(x,y)=x1y0+x0y1,

    n=2:Q2(x,y)=x2y0+x1y1+x2y0,

    n=3:Q3(x,y)=x3y0+x2y1+x1y2+x0y3

    and so on.Using(21),(22)and(23)in(20),we have

    Comparing terms on both sides of(24),we have

    Applying inverse Laplace transform to both sides of(25),the following result can be obtained

    Using D1=σ(y0?x0),D2=γx0?y0?x0z0,D3=?bz0+x0y0,then one has from(26),we have

    and so on.In this way the other terms are easy to compute.From(27),the approximate solution for each compartment of the model can be written as

    Theorem 5.1.[34]If X be the Banach spaces andΩ: X→X is a contraction operator,then for V,∈X,we have

    Using Banach theoremΩhas a unique fixed point V,withΩ(V)=V,where V=(x,y,z).The series given in(28),we can rewrite as

    Also V0=V0∈Uρ(V),with Uρ(V)=we have

    1.Vn∈U ?X;

    2.limn→∞Vn=V0.

    5.1 Some Graphical Investigation

    A phase portrait is a geometric description of a dynamical system’s paths in the phase plane.The collection of initial conditions is represented by a separate curve or point.Phase portraits are an immensely valuable tool in the study of dynamical systems.They are comprised of a structure of common state-space trajectories.This shows whether the selected parameter values have an attractor,repeller,or limit cycle.Phase portraits of a dynamical system can be used to study the directed characteristics of that system.In Fig.1,the phase portraits of the approximate solution given (28)are shown for the first five terms.Here we use values of parameters from[20]to present the obtained five-term solution graphically.

    Figure 1:The phase portraits presenting the dynamics of the attractor in the system(2)with different fractional orders

    5.2 Time Series Analysis

    A time series is a collection of data points that are indexed (listed or graphed)vs.timetin mathematics.It is a collection of points taken at evenly spaced intervals over a period of time.As a result,it is just a collection of discrete-time data.The time series includes sunspot counts and ocean tide heights,to name a few.Time series analysis depicts the behavior of state variables for each tiny value of time in the case of dynamical systems.Analyzing the time series data makes it simple to study the system’s stability and instability.In Fig.2,we show the behavior of x(t),y(t) and z(t) vs.timetwith various fractional orders using five terms of solution.Here we use values of parameters from[20]to present the obtained five-term solution graphically.

    5.3 Sensitivity Towards Initial Conditions

    When a system is chaotic in its nature,it shows sensitive dependence on initial conditions.A very small change results in a great change in the dynamics of the system when it has chaotic behavior.Therefore,we present the dependence of our considered system on initial conditions.In Figs.3a–3c,the sensitivity of x(t),y(t) and z(t) are presented.For the blue line in Fig.3,initial conditions are considered as[x0,y0,z0]=[0.1,0.1,0.1],while for the red line the initial conditions are considered as[x0,y0,z0]=[0.1,0.1,0.105].From the sensitivity of different state variables of the system(2),it is observed that the system highly depends upon initial conditions and is very sensitive.This proves the chaos in system(2).Here we use values of parameters from[20]to present the obtained five terms solution graphically.

    Figure 2:The dynamics of the state variables in the system(2)with different fractional orders vs.t

    Figure 3: (Continued)

    Figure 3:The sensitivity of the state variables in the system(2)towards initial conditions vs.t

    6 Conclusion

    In the present work,we have derived some theoretical results based on some fixed point theorems due to Banach and Krassnoselskii for the existence and uniqueness of approximate solutions and their computation corresponding to the famous Lorenz nonlinear dynamical system.Sufficient conditions have been developed for the existence and uniqueness of solutions to the proposed model.Also,utilizing U-H and generalized U-H concepts,we have derived a few results for stability under some conditions for the considered system.Further,using a hybrid technique based on the Laplace transform and the Adomian decomposition method,we have also established an algorithm for approximate solutions.Some chaotic behaviors of the Lorenz system have been presented under the given fractional order by using five terms of approximate solution.Also,convergence and sensitivity of the model have been discussed.The proposed method has some features like being easy to implement,no need for prior discretization,and neither depends on auxiliary parameters like the homotopy analysis method.Also,the method is rapidly convergent in many cases.In future,we will investigate the aforesaid Lorenz model under piece-wise equations with fractional order derivative.

    Funding Statement: The authors would like to acknowledge the financial support of Taif University Researchers Supporting Project No.(TURSP-2020/162),Taif University,Taif,Saudi Arabia.The authors extends their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant No.R.G.P.1/195/42.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    色精品久久人妻99蜜桃| av天堂中文字幕网| 国产在线精品亚洲第一网站| 禁无遮挡网站| 亚洲精品久久国产高清桃花| 色精品久久人妻99蜜桃| 欧美日本亚洲视频在线播放| 少妇人妻一区二区三区视频| 色综合站精品国产| 悠悠久久av| 最新中文字幕久久久久 | 免费观看的影片在线观看| a级毛片在线看网站| 偷拍熟女少妇极品色| 母亲3免费完整高清在线观看| 天天躁日日操中文字幕| 国产精品九九99| 亚洲精品粉嫩美女一区| 国产高清有码在线观看视频| 这个男人来自地球电影免费观看| 香蕉国产在线看| 又大又爽又粗| 欧美黄色淫秽网站| 亚洲 欧美一区二区三区| 不卡av一区二区三区| 国产视频一区二区在线看| 人妻夜夜爽99麻豆av| 日韩中文字幕欧美一区二区| 亚洲精品在线观看二区| av欧美777| 久久久久久久久久黄片| 久久中文字幕人妻熟女| a级毛片在线看网站| 国产亚洲精品久久久com| 中国美女看黄片| av女优亚洲男人天堂 | 亚洲欧美日韩高清专用| 亚洲av美国av| 国产精品久久久久久久电影 | 91麻豆av在线| 窝窝影院91人妻| 一个人看视频在线观看www免费 | 在线播放国产精品三级| 九色国产91popny在线| 最新美女视频免费是黄的| 亚洲av中文字字幕乱码综合| 日本熟妇午夜| 九九在线视频观看精品| 99视频精品全部免费 在线 | 免费人成视频x8x8入口观看| 久久久色成人| 欧美成人免费av一区二区三区| 国产成人精品久久二区二区91| 日韩欧美精品v在线| 999久久久国产精品视频| 啦啦啦免费观看视频1| 黄色女人牲交| 人人妻,人人澡人人爽秒播| 亚洲国产看品久久| www.999成人在线观看| a级毛片a级免费在线| 一个人免费在线观看电影 | 搡老熟女国产l中国老女人| 在线国产一区二区在线| 国产精品1区2区在线观看.| 每晚都被弄得嗷嗷叫到高潮| 国产高清激情床上av| 深夜精品福利| 色播亚洲综合网| 非洲黑人性xxxx精品又粗又长| 热99re8久久精品国产| 禁无遮挡网站| 国产高清三级在线| 男人和女人高潮做爰伦理| 国产精品久久视频播放| 欧美在线黄色| 免费看光身美女| 美女 人体艺术 gogo| 亚洲黑人精品在线| 亚洲狠狠婷婷综合久久图片| 国内揄拍国产精品人妻在线| 女人高潮潮喷娇喘18禁视频| 国产精品98久久久久久宅男小说| 久久香蕉精品热| 在线观看一区二区三区| 亚洲乱码一区二区免费版| 亚洲av成人不卡在线观看播放网| 男女床上黄色一级片免费看| 午夜福利在线观看吧| 成人鲁丝片一二三区免费| 久久精品国产99精品国产亚洲性色| 国产人伦9x9x在线观看| 国产v大片淫在线免费观看| 久久午夜亚洲精品久久| 免费观看人在逋| 九九久久精品国产亚洲av麻豆 | 亚洲成人中文字幕在线播放| 国产精品影院久久| 亚洲中文字幕日韩| 国产极品精品免费视频能看的| 国产三级在线视频| 亚洲精品美女久久av网站| 中亚洲国语对白在线视频| 热99re8久久精品国产| 真实男女啪啪啪动态图| 国产成+人综合+亚洲专区| 亚洲人成网站在线播放欧美日韩| 亚洲乱码一区二区免费版| 十八禁网站免费在线| 这个男人来自地球电影免费观看| 免费在线观看亚洲国产| www国产在线视频色| 成人欧美大片| 1024手机看黄色片| 久久国产精品人妻蜜桃| a级毛片在线看网站| 久久精品影院6| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久亚洲av鲁大| 国产精品亚洲美女久久久| 丁香六月欧美| 欧美最黄视频在线播放免费| 久久精品91无色码中文字幕| 一个人免费在线观看电影 | 免费无遮挡裸体视频| 黄色成人免费大全| 变态另类成人亚洲欧美熟女| 精品人妻1区二区| 男人舔女人下体高潮全视频| 精品久久久久久,| 国产主播在线观看一区二区| 97人妻精品一区二区三区麻豆| 国内少妇人妻偷人精品xxx网站 | 成年女人毛片免费观看观看9| 久久久久久人人人人人| 亚洲天堂国产精品一区在线| 法律面前人人平等表现在哪些方面| 在线播放国产精品三级| 欧美大码av| 欧美3d第一页| 免费看日本二区| 色精品久久人妻99蜜桃| 日韩av在线大香蕉| 十八禁网站免费在线| 身体一侧抽搐| 99视频精品全部免费 在线 | 国产伦精品一区二区三区视频9 | 亚洲一区二区三区色噜噜| 久久久久久久久免费视频了| 中文字幕久久专区| 成人亚洲精品av一区二区| 午夜福利视频1000在线观看| 嫁个100分男人电影在线观看| 岛国在线免费视频观看| 90打野战视频偷拍视频| 亚洲美女视频黄频| 欧美不卡视频在线免费观看| 国产精品美女特级片免费视频播放器 | 激情在线观看视频在线高清| 亚洲欧美日韩东京热| 欧美不卡视频在线免费观看| 一个人看的www免费观看视频| 制服人妻中文乱码| 日本 欧美在线| 制服丝袜大香蕉在线| www.999成人在线观看| 亚洲性夜色夜夜综合| 99热6这里只有精品| 窝窝影院91人妻| 亚洲第一电影网av| 国产伦一二天堂av在线观看| 最好的美女福利视频网| 日韩中文字幕欧美一区二区| 综合色av麻豆| 亚洲av第一区精品v没综合| 在线观看美女被高潮喷水网站 | 我要搜黄色片| 女生性感内裤真人,穿戴方法视频| 日本免费a在线| 三级毛片av免费| 国产伦精品一区二区三区四那| 国产黄片美女视频| 久久精品aⅴ一区二区三区四区| 亚洲五月天丁香| 成人18禁在线播放| 精品久久久久久久人妻蜜臀av| 亚洲中文字幕日韩| 国产欧美日韩一区二区三| 日本精品一区二区三区蜜桃| 男人的好看免费观看在线视频| 午夜成年电影在线免费观看| 1000部很黄的大片| 91av网一区二区| 免费观看人在逋| 日本黄色片子视频| 一本精品99久久精品77| 国产精品亚洲一级av第二区| 国产欧美日韩精品亚洲av| 久久性视频一级片| svipshipincom国产片| 色老头精品视频在线观看| 日韩欧美精品v在线| 舔av片在线| 欧美日韩福利视频一区二区| 国产成人精品久久二区二区免费| 亚洲成人精品中文字幕电影| 成人午夜高清在线视频| 欧美大码av| 国产乱人伦免费视频| 欧美在线黄色| 亚洲精品久久国产高清桃花| 欧美最黄视频在线播放免费| 2021天堂中文幕一二区在线观| 成人特级av手机在线观看| 无人区码免费观看不卡| 99国产精品一区二区三区| 97人妻精品一区二区三区麻豆| 91在线精品国自产拍蜜月 | 巨乳人妻的诱惑在线观看| 欧美性猛交黑人性爽| 国产淫片久久久久久久久 | 免费在线观看亚洲国产| 丰满人妻熟妇乱又伦精品不卡| 丁香六月欧美| 欧美三级亚洲精品| 日韩三级视频一区二区三区| 免费人成视频x8x8入口观看| 一夜夜www| 日韩欧美 国产精品| 中文字幕精品亚洲无线码一区| 色av中文字幕| 久久伊人香网站| 成人精品一区二区免费| 又黄又爽又免费观看的视频| 成人高潮视频无遮挡免费网站| 中国美女看黄片| 亚洲精品久久国产高清桃花| 午夜亚洲福利在线播放| 51午夜福利影视在线观看| 午夜免费激情av| 桃色一区二区三区在线观看| 精品日产1卡2卡| 91九色精品人成在线观看| 久久久久久人人人人人| 久久久水蜜桃国产精品网| 亚洲精华国产精华精| xxxwww97欧美| 国产1区2区3区精品| 99国产精品一区二区三区| 婷婷精品国产亚洲av在线| 男人舔女人下体高潮全视频| 老汉色av国产亚洲站长工具| 国产黄色小视频在线观看| 99精品欧美一区二区三区四区| 亚洲国产欧美一区二区综合| 久久久久久久久免费视频了| 悠悠久久av| 国产精品免费一区二区三区在线| 一夜夜www| 国内久久婷婷六月综合欲色啪| 国产三级中文精品| 亚洲欧美日韩高清专用| 国产亚洲av高清不卡| 免费大片18禁| 人人妻人人看人人澡| 国产伦精品一区二区三区视频9 | 最近最新免费中文字幕在线| 看片在线看免费视频| 久久国产乱子伦精品免费另类| 在线观看午夜福利视频| 欧美日韩国产亚洲二区| 亚洲精品粉嫩美女一区| 丰满人妻熟妇乱又伦精品不卡| 午夜免费成人在线视频| 真人一进一出gif抽搐免费| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久| 亚洲avbb在线观看| 欧美日本亚洲视频在线播放| bbb黄色大片| 在线观看66精品国产| 天天添夜夜摸| 老司机福利观看| 三级国产精品欧美在线观看 | 亚洲欧美精品综合一区二区三区| 观看美女的网站| 成人欧美大片| 十八禁网站免费在线| www.精华液| 日韩欧美国产一区二区入口| 亚洲人成电影免费在线| 亚洲电影在线观看av| 欧美zozozo另类| 99国产精品99久久久久| 日韩欧美三级三区| 国产av一区在线观看免费| 在线视频色国产色| 麻豆成人午夜福利视频| 一区二区三区激情视频| 欧美黑人巨大hd| 亚洲国产日韩欧美精品在线观看 | 给我免费播放毛片高清在线观看| 一个人看的www免费观看视频| 久久中文字幕人妻熟女| 午夜日韩欧美国产| 国产精品日韩av在线免费观看| 国产久久久一区二区三区| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 手机成人av网站| 亚洲狠狠婷婷综合久久图片| 中文字幕高清在线视频| 天堂√8在线中文| 九色国产91popny在线| 最新中文字幕久久久久 | 色哟哟哟哟哟哟| 免费搜索国产男女视频| 国产精品国产高清国产av| a级毛片a级免费在线| 夜夜躁狠狠躁天天躁| 国产免费av片在线观看野外av| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 很黄的视频免费| 国产高清视频在线播放一区| 99在线视频只有这里精品首页| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 久久精品亚洲精品国产色婷小说| 噜噜噜噜噜久久久久久91| 国产精品一区二区免费欧美| 久久久成人免费电影| 狂野欧美激情性xxxx| 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 国产精品99久久99久久久不卡| 欧美日韩乱码在线| 久久精品国产综合久久久| 十八禁网站免费在线| 日本黄色片子视频| 在线观看免费视频日本深夜| 国产三级在线视频| 久久欧美精品欧美久久欧美| 欧美一区二区国产精品久久精品| 老司机午夜十八禁免费视频| 国产亚洲精品av在线| 午夜免费成人在线视频| 久久久精品欧美日韩精品| 亚洲人成伊人成综合网2020| 久久精品国产综合久久久| 精品人妻1区二区| 国产黄色小视频在线观看| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久久电影 | 日本与韩国留学比较| 欧美zozozo另类| 一本精品99久久精品77| 三级国产精品欧美在线观看 | 日本三级黄在线观看| 在线a可以看的网站| 狠狠狠狠99中文字幕| 亚洲一区二区三区不卡视频| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲| 免费看美女性在线毛片视频| 亚洲国产日韩欧美精品在线观看 | 18禁黄网站禁片午夜丰满| 久久精品91蜜桃| 免费搜索国产男女视频| 国产精品99久久99久久久不卡| 一个人观看的视频www高清免费观看 | 男人舔女人的私密视频| 国产成人一区二区三区免费视频网站| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片午夜丰满| 一进一出抽搐gif免费好疼| 国产亚洲av嫩草精品影院| 全区人妻精品视频| 欧美乱妇无乱码| 成人特级黄色片久久久久久久| 亚洲七黄色美女视频| 99久久精品一区二区三区| www.999成人在线观看| 午夜成年电影在线免费观看| 丰满的人妻完整版| 午夜成年电影在线免费观看| 免费av毛片视频| 国产av一区在线观看免费| 国产免费av片在线观看野外av| 亚洲精品乱码久久久v下载方式 | 免费人成视频x8x8入口观看| www日本在线高清视频| 在线观看美女被高潮喷水网站 | 99久久精品国产亚洲精品| 久久精品人妻少妇| 热99re8久久精品国产| 成人国产一区最新在线观看| 欧美色欧美亚洲另类二区| 嫩草影视91久久| 在线免费观看不下载黄p国产 | 亚洲第一欧美日韩一区二区三区| 欧美在线黄色| 日本在线视频免费播放| 免费电影在线观看免费观看| 国产aⅴ精品一区二区三区波| 91av网一区二区| 久久久国产成人免费| 欧美一区二区精品小视频在线| 精品福利观看| 一区二区三区激情视频| 噜噜噜噜噜久久久久久91| 18禁黄网站禁片午夜丰满| 91九色精品人成在线观看| 国产一区二区在线观看日韩 | 男人舔奶头视频| 最近视频中文字幕2019在线8| 免费看日本二区| 亚洲精品在线美女| 欧美黑人欧美精品刺激| 欧美3d第一页| 免费av不卡在线播放| 久久精品综合一区二区三区| 欧美一级毛片孕妇| 成年女人看的毛片在线观看| 性色av乱码一区二区三区2| 午夜久久久久精精品| 成人av一区二区三区在线看| 免费搜索国产男女视频| 亚洲 欧美一区二区三区| 久久亚洲精品不卡| 久99久视频精品免费| 老熟妇乱子伦视频在线观看| 日日干狠狠操夜夜爽| av天堂中文字幕网| 在线观看午夜福利视频| 国产一区二区三区视频了| 国产真实乱freesex| 悠悠久久av| 亚洲人成伊人成综合网2020| 99国产极品粉嫩在线观看| 午夜激情福利司机影院| 亚洲国产精品999在线| 老司机午夜福利在线观看视频| 成人三级黄色视频| 亚洲天堂国产精品一区在线| 在线免费观看的www视频| 欧美在线一区亚洲| 在线免费观看的www视频| 免费在线观看亚洲国产| 三级男女做爰猛烈吃奶摸视频| 国产精品爽爽va在线观看网站| 黄色丝袜av网址大全| 国产真人三级小视频在线观看| 老鸭窝网址在线观看| 亚洲av片天天在线观看| 变态另类丝袜制服| 亚洲av成人精品一区久久| 国产精品香港三级国产av潘金莲| 日本黄色片子视频| 午夜免费成人在线视频| 亚洲成av人片免费观看| 亚洲专区字幕在线| 香蕉丝袜av| 国产午夜精品论理片| 久久久国产精品麻豆| 99热这里只有是精品50| 精品国产美女av久久久久小说| 欧美中文日本在线观看视频| 精品国产超薄肉色丝袜足j| 性色av乱码一区二区三区2| 亚洲人成网站高清观看| 亚洲成人中文字幕在线播放| 热99re8久久精品国产| 亚洲专区字幕在线| 久久久国产精品麻豆| 国产在线精品亚洲第一网站| 日韩欧美精品v在线| 国产亚洲欧美98| 男人舔奶头视频| 日韩三级视频一区二区三区| 国产成人福利小说| 在线免费观看不下载黄p国产 | 91字幕亚洲| 国产黄a三级三级三级人| 老司机福利观看| 国产99白浆流出| 亚洲无线在线观看| 日韩欧美国产在线观看| 99国产极品粉嫩在线观看| 一本久久中文字幕| 伦理电影免费视频| 欧美日韩黄片免| 老汉色av国产亚洲站长工具| 午夜免费激情av| 最近最新中文字幕大全电影3| 欧美av亚洲av综合av国产av| 国产精品女同一区二区软件 | 国产精品,欧美在线| 久久中文字幕人妻熟女| 一级毛片女人18水好多| 久久久久亚洲av毛片大全| 成年人黄色毛片网站| 88av欧美| 老鸭窝网址在线观看| 日韩国内少妇激情av| 中文字幕人成人乱码亚洲影| 亚洲欧美日韩高清专用| 欧美三级亚洲精品| 久久99热这里只有精品18| 色av中文字幕| 亚洲电影在线观看av| 18美女黄网站色大片免费观看| 真实男女啪啪啪动态图| 日韩欧美三级三区| 热99在线观看视频| 亚洲av片天天在线观看| 亚洲国产高清在线一区二区三| 黄色视频,在线免费观看| 日本一本二区三区精品| 亚洲成人免费电影在线观看| 色播亚洲综合网| 成人一区二区视频在线观看| 1024香蕉在线观看| 大型黄色视频在线免费观看| 婷婷亚洲欧美| 韩国av一区二区三区四区| 美女免费视频网站| 别揉我奶头~嗯~啊~动态视频| 脱女人内裤的视频| 亚洲美女黄片视频| 午夜亚洲福利在线播放| 日韩欧美在线乱码| 97碰自拍视频| 两性夫妻黄色片| 亚洲国产中文字幕在线视频| 色综合婷婷激情| 欧美黑人欧美精品刺激| 国模一区二区三区四区视频 | 亚洲第一欧美日韩一区二区三区| 日韩欧美国产一区二区入口| 午夜亚洲福利在线播放| 天堂av国产一区二区熟女人妻| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类 | 12—13女人毛片做爰片一| 国产高清激情床上av| a在线观看视频网站| 国内精品久久久久精免费| 久久精品影院6| 亚洲在线观看片| 精品国产三级普通话版| 一卡2卡三卡四卡精品乱码亚洲| avwww免费| 热99re8久久精品国产| 欧美又色又爽又黄视频| 亚洲五月婷婷丁香| 欧美三级亚洲精品| 亚洲av日韩精品久久久久久密| 天堂av国产一区二区熟女人妻| av欧美777| 伦理电影免费视频| 亚洲精品色激情综合| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 亚洲精华国产精华精| 久久国产精品影院| 国产三级黄色录像| 少妇的逼水好多| 欧美日本亚洲视频在线播放| 老司机午夜福利在线观看视频| 午夜福利欧美成人| 在线免费观看不下载黄p国产 | www日本在线高清视频| 两个人视频免费观看高清| 久久热在线av| 五月伊人婷婷丁香| 国产久久久一区二区三区| 国产一区二区三区视频了| 国产精品美女特级片免费视频播放器 | 亚洲色图av天堂| 免费电影在线观看免费观看| 久久人妻av系列| 99视频精品全部免费 在线 | 精品午夜福利视频在线观看一区| 亚洲自拍偷在线| 色综合欧美亚洲国产小说| 午夜福利在线观看免费完整高清在 | 色视频www国产| 男人舔女人下体高潮全视频| 非洲黑人性xxxx精品又粗又长| 黑人巨大精品欧美一区二区mp4| 免费看十八禁软件| 欧美高清成人免费视频www| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲| 久久天堂一区二区三区四区| 日本一本二区三区精品| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲熟女毛片儿| 在线观看午夜福利视频| 精品国产超薄肉色丝袜足j| 99国产精品一区二区蜜桃av| 女同久久另类99精品国产91| 黄色视频,在线免费观看| 久久久久国产精品人妻aⅴ院| 少妇人妻一区二区三区视频| 亚洲国产精品久久男人天堂| 国产91精品成人一区二区三区| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 午夜免费激情av| 国产精品影院久久| 亚洲av电影不卡..在线观看| 国产高清视频在线播放一区|