• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multidisciplinary Modeling and Optimization Method of Remote Sensing Satellite Parameters Based on SysML-CEA

    2023-02-26 10:17:58ChangyongChuChengfangYinShuoShiShaohuiSuandChangChen

    Changyong Chu,Chengfang Yin,Shuo Shi,Shaohui Su and Chang Chen

    1School of Mechanical Engineering,Hangzhou Dianzi University,Hangzhou,310018,China

    2State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,Wuhan,430074,China

    ABSTRACT To enhance the efficiency of system modeling and optimization in the conceptual design stage of satellite parameters,a system modeling and optimization method based on System Modeling Language and Co-evolutionary Algorithm is proposed.At first,the objectives of satellite mission and optimization problems are clarified,and a design matrix of discipline structure is constructed to process the coupling relationship of design variables and constraints of the orbit,payload,power and quality disciplines.In order to solve the problem of increasing nonlinearity and coupling between these disciplines while using a standard collaborative optimization algorithm,an improved genetic algorithm is proposed and applied to system-level and discipline-level models.Finally,the CO model of satellite parameters is solved through the collaborative simulation of Cameo Systems Modeler(CSM)and MATLAB.The result obtained shows that the method proposed in this paper for the conceptual design phase of satellite parameters is efficient and feasible.It can shorten the project cycle effectively and additionally provide a reference for the optimal design of other complex projects.

    KEYWORDS SysML;remote sensing satellite;multidisciplinary design optimization;collaborative optimization

    1 Introduction

    Remote sensing satellite is a well-known large-scale complex system whose design process involves multiple disciplines,such as mission analysis,orbit,remote sensing payload,structures,attitude determination and control system,power,thermal,communication and command data(C&DH),etc.It is a conventional system engineering.Satellite system design[1–3]is to determine overall goal and constraints on the basis of mission demand analysis,and obtains a satellite design that can satisfy the requirements.Designers from various disciplines communicate and negotiate with each other in this process.Researches and developments of satellite model usually depend on the experience of designers while selecting the design alternatives based on design history inheritance[4–8].

    The conventional mode of satellite system design is document-centric,which is also known as Text-Based Systems Engineering (TBSE).With the appearance of serious problems caused by large amounts of information and constantly revised data.The inefficiency of TBSE that relies on ordinary files or other unrelated storage has become an obstacle for satellite system design.Proofreading,modification,and evaluation are time-consuming and need too many iterations in the design cycle[9–11].Moreover,requirements defined in documents or contracts often occur information missing or misunderstandings during the transmission in requirements analysis.Insufficient and in-depth understanding for user requirements makes repeated designs in the follow-up,or even causes the usage of satellites inconvenient.

    Due to the high coupling between satellite subsystems,coordinating requirements and indicators are in trouble.In conceptual design,each subsystem can only obtain the best solution of a single discipline or a certain subsystem when the design optimization of each subsystem was carried out separately.If the optimization result changes,engineers who are responsible for the remaining subsystems would re-coordinate these indicators,which affect the research and development efficiency seriously.Moreover,there are too many conflicts between various disciplines in satellite system design,which may cause the optimization of the design scheme hardly converge to a unique solution and get a nonoptimal design.For example,thicker side panels in the satellite structure can increase safety,but thinner side panels are lighter,the balance between satellite quality and structural design is required.Hence,TBSE is no longer suitable for the analysis and design which become further complex.To deal with aforementioned challenges,Model-Based Systems Engineering [12] (MBSE)and multidisciplinary design optimization [13] (MDO) are proposed,which would solve the design problems of complex engineering systems.

    Berrezzoug et al.[14] have researched the geostationary (GEO) communication satellite and proposed a gravity search algorithm based on the law of interaction between gravity and mass under the consideration of system performance indicators such as quality,size,cost,reliability,etc.The result shows that the total mass of the GEO communication satellite has been reduced by 185.3 kg.Wu et al.[15]have discussed the commonalities between overall satellite parameter optimization and MDO,and they established an optimization model for MDO-oriented earth observation satellite.Shi et al.[16]have proposed an agent-assisted MDO framework composed of multiple modules to solve the multi-disciplinary problem of GEO satellite.The results show that the total mass of the satellite designed under this optimization framework is reduced by 7.3%,as provided a valuable reference for the design of other spacecraft systems.Cencetti et al.[17] have studied the relevant content of the integrated design optimization framework in the MBSE and evaluate the feasibility,advantages and disadvantages of this connection.Hesse et al.[18] have used the MBSE method in research of the relationship between passenger aircraft vibration and cabin comfort.With this addition,the advantages of this method in overall cabin design gradually become prominent.Rocha et al.[19]have proposed a technology for process integration and design exploration in which test data can be stored on a common platform,and all components used in optimization could be traced to its source and target product.The result shows that the MBSE method is effective for the optimization design.Boggero [20] has established the structure,behavior,and parameter diagrams of System Modeling Language(SysML)in the research of MDO technology for spacecraft system research and development and constructed all the relationships between disciplines in terms of input and output.SysML and MDO in their research are loosely coupled and applied to the spacecraft requirement analysis and function combing stage to establish the connection between disciplines and the design workflow.Gray et al.[21]have proposed an open source MDO framework openMDAO,which takes advantage of state-of-the-art algorithms to solve coupled models.

    The above research mainly focused on requirements analysis and function defining stage,and the connection between SysML and MDO is a “l(fā)oose coupling”.While in this work,the main focus of SysML-based MDO is on the aspect of numerical processing,which runs through the entire design and optimization process.There are some tools developed to support MBSE in complex system design and modeling.However,none of them has got the functionality of supporting system optimization.There are some tools to support MDO,but none of them is integrated with design models in SysML.This work is motivated by this gap and aims to develop effective methods to support automatic system optimization for MBSE.

    MBSE and MDO are both methods for designing complex products.They focus on modularity and coupling between multiple disciplines.In system analysis and design of aerospace,shipbuilding,and vehicles,the improvement of comprehensive performance of complex systems depends on coupling coordination between various disciplines.MBSE can describe and analyze the relationship between the product and its components from all aspects of the product life cycle formally and clearly,while the MDO method can achieve overall design optimization on the basis of model-based design.In this work,the MBSE model is used as an intermediate data model to facilitate the data exchange between different disciplines in analysis and improve the efficiency of resource optimization allocation and sharing.Meanwhile,it is more convenient than the process model in the previous MDO optimization strategy to process coupled information.However,there are relatively few researches on integrating the system model generated by the system design stage and the optimization model generated in the subsequent multidisciplinary optimization[22–25].

    This paper proposes a modeling and optimization method for complex product and multidisciplinary system based on SysML and Co-evolutionary Algorithm (CEA) which aims to increase the efficiency of system modeling and optimization in the conceptual design phase of complex products.The method regard system objectives and optimization problems as a guide and establish an optimization model of efficiency evaluation indicators which involves quality analysis,track,payload,and power source disciplines.It uses Co-simulation by CSM and MATLAB for verification.The result shows that the improved genetic algorithm (GA) is more efficient at solving the multidisciplinary optimization problem on the basis of the SysML model after comparing and verifying the effectiveness and engineering value of the SysML-CEA method in the optimization of overall parameters of remote sensing satellites,and this method can also be applied in the design process of other complex products.

    2 Optimization Model for Multidisciplinary Design of Remote Sensing Satellite

    2.1 System Objectives and Optimization Issues

    In this paper,the objective of the research and development mission for the remote sensing satellite is to monitor the forest fire situation and atmospheric environment in the Middle East,Africa and the regions between the north and south latitudes 40° in the world.The weight of the total satellite is required to be no more than 800 kg.Its orbit should achieve global coverage and meet energy security and it should have capabilities of camera imaging and image downloading with a resolution of less than 2.0 m.During orbit control,it is able to capture the initial attitude,and adjust inclination and orbit height.Before the orbit control,it can also perform a 90° roll/pitch attitude maneuver.In the process of orbit control,the attitude angle control accuracy is less than 3°.As for fuel configuration,it should meet the requirements for maintaining orbit and avoiding debris during the life,and de-orbit at the end of the life.

    The acquisition of an index is one of the important parts in satellite design.Based on the concept of system engineering,indicators are defined and classified as measures of effectiveness (MOE),measures of performance (MOP) and technical performance measures (TPM).The MOE is used to measure the degree to which user needs are achieved in the system design,and establish a threelevel index decomposition tree which consists of mission-level,system-level,and standalone-level.Index decomposition is necessary.On the one hand,index decomposition provides data support for the establishment of a multidisciplinary optimization mathematical model by using these indicators as parameters to measure the feasibility of the plan.On the other hand,these indicators can be decomposed into subsystems and standalone and used as value attributes to further perfect the logical architecture model.This paper focuses on analyzing the design of the key parameters that have a greater effect on the satellite design.It is the main content in the overall parameter design of the satellite which involves the disciplines like orbit,power,payload and quality.In this paper,the system’s optimization goals are determined by referring missions to remote sensing satellite and selecting important parameters as design variables.Hence,the method is universal.

    According to the knowledge of the domain experts,an indicator decomposition tree in the system model is established by using these obtained indicators; it consists of task-level MOE,system-level MOP,and standalone-level TPM.MOE includes the observation areaCoverage,imaging capability and quality(ICQ),satellite quality(mass),and Mission Life.MOP includes thirteen indicators such as local time of descending intersection (DNT),orbit height (h),Ground pixel resolution (GSD),signal-noise-ratio (SNR),Swath,etc.TPM includes sixteen indicators such as the quality of each subsystem,CCD camera focal length(f),battery capacity(Q),solar array windsurfing material type(Tsolar),camera spectrum range(Spectral Band),etc.

    According to the index decomposition result in Fig.1,the accumulated result of MOE is used as the objective function of the plan weighing.The subsystems decomposed into the index are the payload subsystem,power subsystem and attitude orbit control subsystem.Design variables includeh,f,DNT,Q,TandA.While other subsystems and transmission variables involved are determined in accordance with conventional design experience so that it will not be reflected in the optimization process of this paper.

    In Eq.(1),Xis the design variable.Wiis the weight coefficient of each design variable.F(X)is the system-level objective function.MOEiis the variable of each subsystem after quantification.Coverageis represented by center angle of observation coverage widthψ,ICQis represented byGSD,andMission Lifeis given by the demand that no less than 3 years.Mass is also given by the demand that no more than 800 kg.MOEi0is a fixed value introduced for normalization.

    According to the discipline analysis above,subsystems of the satellite are highly coupled and various parameters among different subsystems are related to each other.The coupling relationship among orbit,power,payload and mass are shown in the structural design matrix in Fig.2.The horizontal line represents the subject output variable and the vertical line represents the subject input variable.While nodes represent coupling variables between disciplines.

    Figure 1:Satellite index breakdown diagram

    Figure 2:The satellite structure design matrix

    2.2 Orbital Discipline Analysis

    The orbit of the remote sensing satellite is sun-synchronous orbit.The output of the discipline parameter analysis includes Orbit periodT,earth shadow timeTe,andβ,the angle between sunlight and array line of solar cell.In order to figureβ,the first step is to calculate the right ascension and declination of the sun on the day because the incident angle of the sun changes with the variation of the sun’s position throughout the year.

    In Eqs.(2) and (3),tpresents the time and its value range is 0~365.In the calculation of the right ascension of the sun,summer solstice is taken as the boundary andttakes 182.5.εis the observation range of the north-south latitude of the subsatellite point.After theDNTis obtained,the right ascension of the ascending node of the satellite orbit can be converted as follows:

    The angle between the sun’s rays and the orbital surface can be seen in the equation below:

    In Eq.(5),iis the orbital inclination angle.If the angle between the solar cell array and the orbital plane isα,the angle between the sun’s rays and the normal of the solar array isβ=γ?α.

    Under the condition that the eclipse zone factorKeis known,the earth shadow time can be obtained in the calculation below:

    The orbital period T is calculated below:

    In Eq.(7),Reis the earth’s equatorial radius (6371 km).μ is the gravity constant and μ=3.986 × 103km3/s2.This discipline needs to meet the constraints of the sunshine durationTsand the earth shadow durationTe.

    The ground coverage area can be represented byψ,the half center angle of the satellite observation coverage width.

    In Eq.(9),Reis the radius of the earth.εis the minimum observation elevation angle andε=20°.

    2.3 Power Discipline Analysis

    The output of power source parameter analysis includes solar array battery type,solar array output power,solar array area and battery pack rated capacity,etc.The type of solar array battery directly affects the design parameters,quality and area of the solar panel,and the system objective function would be affected indirectly.There are two kinds of batteries: silicon battery and gallium arsenide battery,they are represented as 0 and 1 respectively in the optimization.The power consumption of each subsystem can be divided into long-term power consumptionP0and short-term power consumptionPs.The minimum output power under a single-turn energy balance isPc,and the required powerPNof the solar array can be obtained

    The long-term power consumption solar cell array needs to meet the charging power demand of the load and battery pack whose value is 649 W.The output powerPBOLat the beginning of the battery life can be seen in the equation below:

    In Eq.(11),S0is the solar constant andS0=1353 W/m2.ηis the single-chip photoelectric conversion efficiency of the solar battery.The value ofηfor silicon battery and gallium arsenide battery are 0.14 and 0.18,respectively.Fsis the combined loss factor of the solar batteries array with a value of 0.98.Ftis the temperature correction factor of the solar batteries array with a value of 0.48.Ais the area of the solar batteries array.βis the angle between the sunlight and the normal line of the solar batteries array.

    The mission requirement diagram demands that the satellite lifetime L should not less than 3 years.Due to the annual decline rate of the solar array’s output power being 2.2%,the output power at the end of the life can be calculated

    The minimum rated capacity of the battery pack is calculated as follows:

    In Eqs.(13) and (14),Qdischargis the discharged power of the battery pack.DODis the depth of discharge of a given battery pack with a value of 10.7%.PLis the long-term load power during the ground shadow period.Psis the short-term load power during the ground shadow period.Vcellis the discharge voltage of the single battery.Nsis the number of battery cells connected in series.FLossis the line loss factor.ηDis the discharge efficiency of the discharge regulator.

    The calculation of the mass of the battery and the solar panel is as follows:

    In Eq.(15),Qis the battery capacity.VDBis the battery load voltage and the value is 28 V.ρa(bǔ)cis the specific energy of the battery with a value of 39.6 W.h/kg.

    In Eq.(16),ρsolaris the solar cell density andρsolar=2.6 kg/m2.Ais the area of the solar windsurfing board.This discipline should satisfy the relationship between the output powerPEOLand the battery capacityQat the end of the life of the solar array as follows:

    2.4 Payload Discipline Analysis

    The payload of the remote sensing satellite in this paper is a five-band CCD camera whose image quality can be determined by two major parts: image radiation quality and geometric quality.Its evaluation indicators include ground pixel resolution,imaging width,spectral band configuration and ground observation angle.The input of the payload discipline analysis model is the orbit height and the focal length of the CCD camera.The output is camera quality,GSD,andSNR.GSDis the evaluation index of satellite geometric imaging quality.The main influencing factors areh,f,andp,which are calculated by the equation below:

    In Eq.(18),the value of the pixel sizepis 1.3 ?10–5m.Meanwhile,GSDis directly proportional tohand inversely proportional tof.When thehandfdecrease,the resolution of the ground pixel increases,and vice versa.Therefore,the design should choose a lowerhand a higherfas much as possible in order to improve theGSD.

    The quality and power of the CCD camera are related to the incident aperture,the estimation equations of them are as follows:

    In Eqs.(19)and(20),mpayloadis the quality of the CCD camera.Ppayloadis the power consumption.dcamis the entrance aperture of the camera,its value is 1/4 of thef.

    The spectral range is also a key indicator for satellite camera imaging.The spectrum range of the CCD camera generally selects a full chromatographic band and multiple multispectral bands in the range of 0.4 to 1.5 μm.The spectrum range of the CCD camera in this paper is 0.45~0.52 μm,0.52~0.59 μm,0.63~0.69 μm,0.77~0.89 μm,0.51~0.73 μm.

    On orbit signal-to-noise ratio (SNR) is the core evaluation index of satellite radiation imaging,which is the ratio of output image signal to noise.SNRcan be solved by the following equation:

    In Eqs.(21)and(22),VCCDis the output voltage of the CCD camera.VN1andVN2can be provided by the CCD device manual.VN3andVN4are as follows:

    In Eqs.(23)and(24),?is the charge output conversion efficiency.Vsatis the quantized saturation voltage,and QN is the number of quantized bits.The constraints that the discipline should satisfy are as follows:

    3 Optimization Method for Multidisciplinary Design Based on SysML

    3.1 The Main Content of MBSE-MDO

    Model-based multidisciplinary design optimization(MBSE-MDO)is the inheritance and development of MDO on the basis of the MBSE system model.It obtains a set of engineering design variable that meet various constraints by exploring the coupling relationship between mathematical models,simulation analysis models and multi-disciplinary optimization models of these disciplines.The process of establishment of the SysML model in Fig.3 is the reference source for the establishment of the multidisciplinary optimization design model which defines the mapping relationship between requirements,functions,parameters and structure of the remote sensing satellite system.It determines the stakeholder’s need and related constraints in the system model,which is conducive to the sensitivity analysis of the overall parameters of remote sensing satellites and improves the reliability of the discipline optimization model.In addition,the establishment process of the optimization model in Fig.3 is carried out on the basis of the analysis models of these disciplines.The variables in the optimization process can be obtained through the decomposition of the efficiency indicators in system model and the coupling relationship between the variables would be simplified in line with mission demand and experience.

    Figure 3:Comprehensive analysis and optimization method based on SysML

    According to the features of data interaction,the system can be divided into hierarchical and nonhierarchical systems shown in Fig.4 in order to choose a suitable optimization algorithm to solve the MDO problem easily.The structure of the hierarchical system is a tree structure in which the system at all levels can only exchange data with the upper system,and direct data interaction relationship between the same layer of systems does not exist.The non-hierarchical system does not have a fixed hierarchical relationship and data can be exchanged among these systems.

    Due to the different forms of organization in specific complex coupled design problems,MDO methods can be divided into two main groups: single-level optimization methods and multi-level optimization methods [26,27].Single-level methods employ a single optimizer for the whole design problem which connects each discipline and analyzes and optimizes only at the system-level.Multilevel or distributed methods have the features of analysis and optimization that enables disciplinary autonomy.It decomposes complex design optimization problems into disciplines set(discipline-level)and manage interdisciplinary consistency by system-level coordination,which obtain the parallel inter-discipline optimization and coordinated optimization results between disciplines during systemlevel optimization.Typical single-level optimization methods include multiple discipline feasible method,individual discipline feasible method and all-at–once method.Multi-level optimization methods include concurrent subspace optimization method (CSSO) [28,29],collaborative optimization method (CO) [30–32],bi-level integrated system synthesis (BLISS) [33] and analytical target Cascading method(ATC)[34].

    Figure 4:Hierarchical and non-hierarchical systems and their data interaction

    The disciplines such as orbit,payload,power and quality that mentioned in this paper have complex coupling relationships,which belong to a non-hierarchical system.The optimization problem in this paper requires analysis and optimization of each discipline-level module,so that the singlelevel optimization method is not used.The CSSO method requires the introduction of proxy model technology but all of the discipline model for the optimization problem in this paper are engineering estimation models.The ATC method is suitable for solving the distributed decision-making problem of the hierarchical structure[35]rather than the non-hierarchical system optimization problem.The BLISS method would obtain the sensitivity information from the coupled multidisciplinary system,which is very time-consuming.The CO method decomposes the optimization problem,which features small data transmission,high discipline autonomy,and a simple algorithm structure[36].Hence,the CO method is chosen to optimize the design of the satellite’s parameters in this paper.

    3.2 Collaborative Optimization Algorithm

    CO algorithm is one of the methods applied to solve MDO problems which has been widely used in complex engineering problems.However,the CO algorithm has some defects.It usually falls into local solutions or cannot converge in nonlinear programming problems,causing multiple locally optimal solutions when meeting the nonconvex or even discontinuous design space of optimization problems in actual engineering problems.The multi-level optimization problem of CO research needs to establish two-level models: system level and subsystem level.The constraints at the system-level are the optimal target value after subsystem optimization and the optimal target value at the systemlevel can be obtained only when it meets the consistency constraints.The empty feasible region of the system level optimization model is inevitable,which makes the optimal design solution could not be obtained[37].

    CO algorithm solves MDO problem by applying hierarchical strategy to decompose the complex system problem into multiple discipline-level problems and using a system-level optimization model to coordinate the discipline-level optimization results.The CO framework is shown in Fig.5.The process of the solution is to minimize the D-value between the design optimization plan of discipline-level and system-level by the establishment of system-level and subsystem-level optimizers.

    Figure 5:Collaborative optimization framework

    (1)System-level mathematical model

    In Eq.(26),Xis the system-level design variable.The upper and lower boundaries areXLandXU.F(X)is the system-level optimization objective function.xij?is the optimal value of thej-th shared design variable at thei-th discipline-level.Xjis thej-th design variable at system-level.kis the number of discipline-level model.Ji?(X)is constraint conditions of the consistency equation provided for thei-th discipline.

    (2)Discipline-level mathematical model

    In Eq.(27),Ji(xi)is the optimization objective function of discipline-levelJi?.xijis thej-th design variable of thei-th subject level.Xj?is a system-level transmission variable.g(xi) is the discipline constraint function.

    The organizational structure of the CO model is consistent with actual problems,and the information exchange between different disciplines is required to simplify.However,the standard CO algorithm is prone to absent the Lagrange multipliers in the system-level optimization and difficult to satisfy Kuhn-Tucker[38],which causes difficulties in optimization convergence.In order to improve the convergence of the CO algorithm,a modern intelligent optimization algorithm for solving the CO model is proposed in this paper.This algorithm does not require the mathematical model and derivative information of the optimization problem and can improve the convergence of optimization result.

    3.3 SysML-CEA Description

    A detailed analysis of the CO algorithm is shown in the section above.It can be seen that the nonlinear enhancement caused by the system decomposition and the complex coupling between disciplines led to the computational difficulties of the algorithm.The SysML-CEA algorithm can achieve collaboration among multiple disciplines by establishing a collaborative framework and integrating all the way of available discipline analysis(such as modules,tools,codes,etc.)which can solve MDO problems.SysML-CEA is a co-evolutionary algorithm based on SysML,which uses the improved GA [39] to search and optimize the two-level model of the CO algorithm to reduce the continuity and conductivity requirements of the optimization problem.The steps of the solution in the algorithm include the treatment of the CO model,the encapsulation of SysML constraint blocks and the application of improved GA optimization.The block definition diagram and parameter diagram in Fig.6 contain the system-level and subject-level mathematical models for the optimization problem.The block and constraint block are shown in the left picture,the binding between values and parameters in the module is shown in the right picture.The data to be optimized is temporarily contained in the block after establishing the SysML model,which completes the preprocessing of the algorithm and performs the iterative solution later.

    System-level and discipline-level iterators use the improved GA to solve the problem represented by the model.Selection,crossover,and mutation operations in GA are improved to fix the numerical solution in multidisciplinary optimization in this section.

    (1) Select operation

    In selection operation,several chromosomes are selected from the primary population to form a new population and then obtain a convergent population finally after enough iterations in which the fitness value of chromosomes in this population will tend to the optimal solution.The most commonly used method for the chromosome probability calculation is the roulette selection method while the improved selection operation uses the best retention strategy after roulette selection to completely retain the chromosomes with the highest fitness in the population to the next generation.

    (2) Cross operation

    In crossover operation,the improved crossover pairs individuals with low fitness and low fitness,and pairs with high fitness and high fitness.Chaotic sequences [40] is adopted to determine the crossover positions of genes in chromosomes.If the crossover operation is performed on chromosomes U1(λ12,λ22,λ32,...λ102)and U2(λ12,λ22,λ32,...λ102),the chaotic sequence would be used in form of the equation below:

    Figure 6:Collaborative optimization model in SysML model

    In Eq.(28),xnis the initial value randomly generated in(0~1).xn+1is the initial value of the chaos iteration of the next generation.The chaos value generated in each generation is kept and multiplied by 10 to get the locus in the chromosome.

    (3) Mutation operation

    The mutation operation is the operation that mutate the target value of a certain segment of genetic gene on the chromosome,which would generate a new chromosome.By pre-setting the mutation rate of the gene,the position of the mutation gene would selected randomly.An improved mutation operator is applied to ensure that the optimal chromosome mutation rate changes adaptively during the process of solution.The improved adaptive mutation rate is shown as follows:

    In Eq.(29),Pmis the mutation rate,with a value that ranging from 0.0001 to 0.1.PmaxandPminare the upper and lower bounds of the value.kmaxis the maximum genetic algebra.

    The improved GA is adopted to optimize the two-level model of CO respectively as the step below.First,the discipline-level optimizer obtains the input variable of the discipline from the system-level optimizer and uses it as a fixed value in the optimization of the discipline.Secondly,variables of discipline-level design are combined for analyzing to obtain the discipline output variables,constraint values,and the D-value between discipline design variables and system-level design variables.The optimization goal is to minimize the D-value under the premise of satisfying the constraints.Finally,the system-level optimizer coordinates the D-value between these disciplines.The process of solution is shown in Fig.7.

    Step 1: Design variables are initialized and expected values are assigned to the discipline-level optimizer.The initial value of the design variables,the constraint value,and the maximum number of iterations of the model are defined based on the demand of the problem.

    Step 2: The discipline-level optimizer receives the input optimizer optimization indicators and combines these design variables of the system.GA is used in optimization to obtain the optimization results of design variables in the subsystem.

    Step 3:GA parameters in Step 2 which include population,number of individuals,chromosome length,and genetic generation number are assigned.The operation of the genetic operator is performed to obtain the individual with the greatest fitness.

    Step 4:After the completion of the optimization of each discipline,the optimal target valueJiis transmitted to the system-level optimizer andJi?(X)=0 is adopted as the constraint in optimization.The system-level optimization coordinates the inconsistency of optimization result at each disciplinelevel.

    Step 5: Whether the consistency constraints meet the condition would be judged.If they meet the condition,the algorithm would finish the iterative process and get the result.Otherwise,it would return to Step 2 to continue execution.

    Figure 7:SysML-CEA solving process

    4 Example of Optimization for Multidisciplinary Design of Remote Sensing Satellites

    4.1 Satellite Multidisciplinary Collaborative Optimization Model

    (1)System-level mathematical model

    In Eq.(30),Xis the design variable.Wiis the weight coefficient.F(X) is the system-level objective function.MOEiis the variable of each subsystem after quantification.MOEi0is a fixed value introduced for normalized,gi?(X)is the system-level constraint of CO,which means it is the minimum value of the sub-system objective function in CO.

    (2)Orbit discipline-level model

    In Eq.(31),his the shared system-level design variable.DNT,ψare discipline-level design variables of this discipline.β,Teare coupled state variables and the output of this discipline which required by power supply discipline.

    (3)Payload discipline-level model

    In Eq.(32),his the shared system-level design variable.fis the discipline-level design variable of this discipline.Ppayloadis the coupling state variable which input by the power supply discipline.mpayloadis the coupling state variable and the output of this discipline which required by quality discipline.

    (4)Power discipline-level model

    In Eq.(33),his the shared system-level design variable.A,Q,Tsolaris the discipline-level design variable of this discipline.mac,msolaris the coupled state variable and the output of this discipline required by the quality discipline.

    4.2 Process of Optimization

    The normalization method [41] is adopted to process variables which can make the CO model more stable in solution and more convenient to obtain the optimal solution.Variables which in the range of 102~103such as orbit height,required power,and satellite quality are all reduced by 102times.While variables with a range of 10~102are reduced by 10 times.Variables in range of 0~10 are taken the original value.Due to the condition for the constraints of the original equation are stringent and hard to satisfy,the algorithm is adjusted in this paper for which the new condition is thatgi?(xi)is less than 0.001.Equality constraints after adjusted are as follows:

    CSM enables to perform calculation based on the parameter diagram of the system model.It contains a built-in script compiler that can implement languages such as JavaScript and Python and execute simple mathematical models.However,standard library files in CSM are insufficient and cannot use mature discipline analysis codes.By integrating the Matlab into the CSM,the usage of the M file is realized and the calculation of the CO model is completed,as Fig.8 shows.

    In standard CO algorithm the two-level model is solved by the sequential quadratic programming(SQP)algorithm and GA while in SysML-CEA algorithm it is solved by the improved GA.In order to ensure the accuracy of the D-value between two optimization results,several consecutive optimizations are performed as follows:

    (1) The optimization model of satellite multidisciplinary design is determined on the basis of actual needs to ensure that the system optimization target is the maximum of index of user requirements and it includes system-level design variables,discipline-level design variables,constraints,and several coupling state variables in these disciplines.Expected values of the subject-level optimization model are assigned in initialization and the population size of the GA is set to 50,the maximum genetic algebra is set to 60,and the maximum number of models call for CO is set to 100.

    Figure 8:The calculation process of the optimization module under the CSM platform

    (2) The discipline optimizer of orbit,payload and power disciplines is executed respectively,and the improved GA is used to search and optimize the discipline objective function.After the optimization,the objective function value of the discipline is returned to the system-level optimizer as a constraint,and the optimal value of design variables of each discipline is returned at the same time.

    (3) After the objective function and design variables from the discipline-level are received by the system-level optimizer,it searches and optimizes the objective function and updated systemlevel design variables are obtained as the input of the discipline analysis model to continue on the optimization.

    (4) Whether the maximum number of calls to the discipline model is reached is judged in this step.If it is reached,the iteration and output the current optimal solution would be stopped.Otherwise,the workflow would return to Step(2)and continue with the next iteration until the optimization process is completed.

    4.3 Result Analysis

    The satellite CO model is optimized and solved separately and the optimization results are shown as follows.The system objective function value result in Fig.9 and the system-level consistency constraints in Fig.10 show that the constraint value of standard CO algorithm tends to be near 5 ?10?4in the fifth iteration and satisfies system consistency constraints so that the first set of optimized design variables is obtained.Due to the solving process applying the hierarchical solution strategy of the CO method,the objective function approximates the result only when the three disciplines satisfy the consistency constraint at the same time.The objective function value tends to converge after ten iterations.In contrast,the SysML-CEA algorithm satisfies the consistency constraint in the fourth iteration and the objective function value is converged after the eighth iteration,which means the efficiency is significantly better than the standard CO algorithm.In the iteration of SysML-CEA algorithm,the improved GA adopted by the optimizer performs a large-scale search on the solution set.In order to prevent falling into the local optimum when searching out the solution near the optimal value,an adaptive mutation rate is set in this paper.Fig.9 shows that the curve fluctuates greatly in the initial stage of the algorithm iteration and tends to be stable in the later stage,which verifies the effectiveness of the adaptive mutation rate.

    Figure 9:System-level objective function iteration curve

    Figure 10:System-level constraint iteration curve(a)SQP(b)GA(c)SysML-CEA

    Table 1 shows that the optimization results of the standard CO algorithm and the SysML-CEA algorithm are both within the upper and lower bounds.Optimization results of these two discrete design variables ofDNTandTsolarare the same according to the comparative analysis,which is consistent with the given initial plan.While D-values exist in other design variables.The total mass of satellite optimized by the SysML-CEA algorithm is reduced by 3.7%when compared to the initial solution and the orbit height is 5.49% higher than the initial plan.The resolution of ground pixels is increased according to the quality and capabilities of satellite imaging.In summary,the SysMLCEA algorithm is better than the standard CO algorithm in the size of the objective function value,the convergence of the optimization process and the range of system-level consistency constraints.The result shows that the SysML-CEA algorithm proposed in this paper can effectively support the overall parameter design in satellite conceptual design stage and rise efficiency of modeling and optimization in satellite system design.

    Table 1: Variables and optimization results of various disciplines

    5 Conclusions

    This paper proposes an MDO based on MBSE for remote sensing satellite models’research and development tasks.Analysis modeling and multidisciplinary coupling analysis for the orbit,payload,power supply and quality disciplines are completed.The SysML-CEA algorithm solution of the multidisciplinary optimization model is researched and the importance of the integration of MBSE and MDO in satellite conceptual demonstration and program design is confirmed.

    The coupling relationship of the design variable related to subsystems in the MDO optimization problem is sorted out and the overall optimization objective function is established,which is based on the research mission and discipline knowledge of remote sensing satellite.The index variables are assigned to the corresponding discipline by the establishment of a three-level index decomposition tree.Based on the MBSE system model and discipline analysis model for multi-discipline design optimization,a co-evolutionary algorithm based on SysML is proposed.An improved GA that can solve two levels of the CO model is proposed to deal with problems of nonlinearity and coupling enhancement in discipline decomposition.The efficiency of the SysML-CEA algorithm in satellite multidisciplinary optimization design is verified by comparing the solution process.

    The MDO method based on SysML has good expansibility.In addition to being applied to the remote sensing satellite in this paper,it can also be used to solve the design problems of other complex products.SysML MDO method can effectively save the time of information processing and integrate the computing strategy into one platform for processing,and facilitate information transmission.

    Funding Statement: This work was supported by Open Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology of China(Grant No.DMETKF2022015).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    黑人巨大精品欧美一区二区蜜桃| 91av网站免费观看| 777久久人妻少妇嫩草av网站| 在线观看舔阴道视频| 欧美久久黑人一区二区| 最近最新免费中文字幕在线| 80岁老熟妇乱子伦牲交| 成年人午夜在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 51午夜福利影视在线观看| 久久精品熟女亚洲av麻豆精品| 精品国产亚洲在线| 午夜激情av网站| 亚洲自偷自拍图片 自拍| 欧美日韩国产mv在线观看视频| 国产成人av教育| 一个人免费在线观看的高清视频| 99久久人妻综合| 午夜视频精品福利| 日韩免费av在线播放| 老司机靠b影院| 岛国在线观看网站| 国产精品欧美亚洲77777| 99香蕉大伊视频| 国产福利在线免费观看视频| 亚洲,欧美精品.| 国产又色又爽无遮挡免费看| 天天影视国产精品| 99re在线观看精品视频| 99久久人妻综合| 国产成人精品久久二区二区免费| 精品国产乱码久久久久久小说| 五月开心婷婷网| 亚洲少妇的诱惑av| 欧美精品啪啪一区二区三区| 男女高潮啪啪啪动态图| 欧美精品一区二区免费开放| 大香蕉久久网| 久久狼人影院| 飞空精品影院首页| 欧美成人午夜精品| 岛国在线观看网站| 啦啦啦视频在线资源免费观看| 麻豆国产av国片精品| 最近最新中文字幕大全免费视频| 黄色视频不卡| 久久人妻福利社区极品人妻图片| 俄罗斯特黄特色一大片| 日本a在线网址| 亚洲成av片中文字幕在线观看| 国产不卡一卡二| 男女无遮挡免费网站观看| 亚洲第一av免费看| 国产真人三级小视频在线观看| 亚洲精品久久成人aⅴ小说| 精品亚洲成国产av| 99久久99久久久精品蜜桃| 亚洲国产欧美在线一区| av片东京热男人的天堂| 99久久国产精品久久久| 国产极品粉嫩免费观看在线| 久久中文字幕人妻熟女| 国产av一区二区精品久久| 18禁观看日本| 国产视频一区二区在线看| 亚洲午夜理论影院| 国产成人av激情在线播放| 国产精品免费大片| 日韩中文字幕视频在线看片| 大片电影免费在线观看免费| 麻豆av在线久日| 精品人妻熟女毛片av久久网站| 十八禁高潮呻吟视频| 五月天丁香电影| 50天的宝宝边吃奶边哭怎么回事| 这个男人来自地球电影免费观看| 他把我摸到了高潮在线观看 | 免费在线观看完整版高清| 91成人精品电影| 超碰97精品在线观看| 九色亚洲精品在线播放| 又黄又粗又硬又大视频| 美女福利国产在线| 一本久久精品| 国产精品98久久久久久宅男小说| 王馨瑶露胸无遮挡在线观看| 视频区图区小说| 一级片免费观看大全| 久久亚洲真实| 波多野结衣一区麻豆| 一级,二级,三级黄色视频| 日韩成人在线观看一区二区三区| 日韩欧美一区视频在线观看| 亚洲人成77777在线视频| 制服诱惑二区| 亚洲成国产人片在线观看| 亚洲情色 制服丝袜| 老司机亚洲免费影院| 每晚都被弄得嗷嗷叫到高潮| 国产高清激情床上av| 国产伦人伦偷精品视频| 老司机午夜十八禁免费视频| 亚洲成人手机| 国产成人欧美| 国产精品久久久人人做人人爽| 美女高潮喷水抽搐中文字幕| 国产成人精品久久二区二区91| 麻豆国产av国片精品| 成年女人毛片免费观看观看9 | 精品免费久久久久久久清纯 | 少妇被粗大的猛进出69影院| 成人18禁在线播放| 久久狼人影院| 99精品欧美一区二区三区四区| 国产一区二区三区综合在线观看| 精品国产乱码久久久久久男人| 亚洲国产欧美一区二区综合| 国产成人av教育| 久久久久精品国产欧美久久久| 丝袜美足系列| 天天躁日日躁夜夜躁夜夜| 久久久精品区二区三区| 啦啦啦免费观看视频1| 亚洲少妇的诱惑av| h视频一区二区三区| 在线播放国产精品三级| 99久久国产精品久久久| 一本—道久久a久久精品蜜桃钙片| 亚洲熟女精品中文字幕| 亚洲精华国产精华精| 在线看a的网站| 国产成人精品久久二区二区91| 精品国产一区二区三区久久久樱花| 亚洲久久久国产精品| 考比视频在线观看| 欧美在线黄色| 少妇精品久久久久久久| 99久久人妻综合| 大型黄色视频在线免费观看| 欧美 日韩 精品 国产| 变态另类成人亚洲欧美熟女 | 国产麻豆成人av免费视频| 久久午夜亚洲精品久久| 欧美色视频一区免费| 午夜福利在线观看吧| 岛国在线免费视频观看| 嫩草影院入口| 母亲3免费完整高清在线观看| 久久性视频一级片| 亚洲人成伊人成综合网2020| 亚洲精品456在线播放app | 中文字幕最新亚洲高清| 国产亚洲精品一区二区www| 国产精品98久久久久久宅男小说| www.自偷自拍.com| 日本五十路高清| 国产精品av视频在线免费观看| 国产一区在线观看成人免费| 巨乳人妻的诱惑在线观看| 搡老岳熟女国产| 国产精品久久久久久精品电影| 国产一区二区激情短视频| 一夜夜www| 香蕉国产在线看| 成年免费大片在线观看| tocl精华| 老司机午夜十八禁免费视频| 日韩欧美在线二视频| 国产精品野战在线观看| 激情在线观看视频在线高清| 一级黄色大片毛片| 九九在线视频观看精品| 一二三四在线观看免费中文在| 国产精品99久久久久久久久| 婷婷亚洲欧美| ponron亚洲| 婷婷六月久久综合丁香| 露出奶头的视频| 这个男人来自地球电影免费观看| 又大又爽又粗| 男人的好看免费观看在线视频| 夜夜夜夜夜久久久久| 久久久久久久久免费视频了| 91老司机精品| 午夜精品一区二区三区免费看| 亚洲最大成人中文| 大型黄色视频在线免费观看| 国产精品,欧美在线| 51午夜福利影视在线观看| 香蕉国产在线看| tocl精华| 国产69精品久久久久777片 | 亚洲欧美日韩东京热| 国产成人精品久久二区二区免费| 99国产精品一区二区三区| 伊人久久大香线蕉亚洲五| 亚洲熟妇中文字幕五十中出| 性色avwww在线观看| 久久久久国产一级毛片高清牌| 午夜激情欧美在线| 无人区码免费观看不卡| 夜夜夜夜夜久久久久| 亚洲国产中文字幕在线视频| 真实男女啪啪啪动态图| 天堂av国产一区二区熟女人妻| 熟妇人妻久久中文字幕3abv| 亚洲色图av天堂| 在线观看66精品国产| 午夜福利高清视频| 欧美黄色片欧美黄色片| 一个人免费在线观看的高清视频| 五月玫瑰六月丁香| 国产av不卡久久| a级毛片a级免费在线| 免费观看人在逋| 一个人观看的视频www高清免费观看 | 18禁观看日本| 亚洲精品一区av在线观看| 欧美av亚洲av综合av国产av| 一区福利在线观看| 日韩欧美一区二区三区在线观看| 哪里可以看免费的av片| 露出奶头的视频| 两性午夜刺激爽爽歪歪视频在线观看| 激情在线观看视频在线高清| 悠悠久久av| 国产精品av视频在线免费观看| 97人妻精品一区二区三区麻豆| 无遮挡黄片免费观看| 在线永久观看黄色视频| 国产精品一区二区三区四区久久| 精品久久久久久久末码| 成人亚洲精品av一区二区| 9191精品国产免费久久| 亚洲欧美精品综合一区二区三区| 亚洲人成网站在线播放欧美日韩| 日本免费一区二区三区高清不卡| 国产精品一及| 亚洲aⅴ乱码一区二区在线播放| 国产欧美日韩一区二区精品| 精品熟女少妇八av免费久了| 久99久视频精品免费| 97超级碰碰碰精品色视频在线观看| 成熟少妇高潮喷水视频| 在线观看舔阴道视频| 国产爱豆传媒在线观看| 久久久久久久久久黄片| 天天躁日日操中文字幕| 国产欧美日韩一区二区精品| 国产亚洲欧美98| 精品国内亚洲2022精品成人| 国产亚洲精品综合一区在线观看| 欧美日韩精品网址| 丁香欧美五月| 一个人免费在线观看的高清视频| 99精品久久久久人妻精品| 男女那种视频在线观看| 欧美激情久久久久久爽电影| 一区二区三区激情视频| 一区二区三区高清视频在线| 日韩欧美精品v在线| 亚洲av美国av| 18美女黄网站色大片免费观看| 成人亚洲精品av一区二区| 99国产精品一区二区三区| h日本视频在线播放| 99久久久亚洲精品蜜臀av| 巨乳人妻的诱惑在线观看| 免费高清视频大片| cao死你这个sao货| 99久久国产精品久久久| 级片在线观看| 国产亚洲精品一区二区www| 亚洲成人免费电影在线观看| 精品电影一区二区在线| 美女高潮喷水抽搐中文字幕| 久久性视频一级片| 久久久久国产一级毛片高清牌| 成人三级做爰电影| 亚洲欧洲精品一区二区精品久久久| 国产av麻豆久久久久久久| 激情在线观看视频在线高清| 悠悠久久av| avwww免费| 久久久久久国产a免费观看| 免费搜索国产男女视频| 18禁黄网站禁片午夜丰满| 欧洲精品卡2卡3卡4卡5卡区| 天堂av国产一区二区熟女人妻| 免费无遮挡裸体视频| 国产高清视频在线播放一区| www日本黄色视频网| 亚洲精品美女久久av网站| 欧美zozozo另类| 99久久国产精品久久久| 高清在线国产一区| 国产亚洲精品综合一区在线观看| 欧美日韩综合久久久久久 | 国产又黄又爽又无遮挡在线| 一个人看视频在线观看www免费 | 免费在线观看视频国产中文字幕亚洲| av天堂在线播放| 欧美日韩中文字幕国产精品一区二区三区| tocl精华| 欧美国产日韩亚洲一区| 午夜日韩欧美国产| 精品福利观看| 国产男靠女视频免费网站| 国产黄a三级三级三级人| 久久久国产成人免费| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 亚洲熟妇熟女久久| 国产精华一区二区三区| 色综合欧美亚洲国产小说| 特级一级黄色大片| 久久国产乱子伦精品免费另类| 制服丝袜大香蕉在线| 成人三级做爰电影| 欧美激情久久久久久爽电影| 18禁黄网站禁片免费观看直播| 久久久久久久午夜电影| 老鸭窝网址在线观看| 最新在线观看一区二区三区| 免费观看精品视频网站| 国产精品98久久久久久宅男小说| 国产精品久久久人人做人人爽| 这个男人来自地球电影免费观看| 亚洲天堂国产精品一区在线| 欧美日韩综合久久久久久 | 久久久久免费精品人妻一区二区| 久久国产精品影院| 久久人人精品亚洲av| 90打野战视频偷拍视频| 亚洲成a人片在线一区二区| 欧美乱色亚洲激情| 人人妻人人澡欧美一区二区| 国产高清视频在线观看网站| 中国美女看黄片| 老司机午夜十八禁免费视频| 成人欧美大片| 国产一区二区三区视频了| 亚洲av免费在线观看| 午夜精品在线福利| 亚洲av成人精品一区久久| 欧美日韩瑟瑟在线播放| 男女午夜视频在线观看| 午夜福利免费观看在线| 女警被强在线播放| 麻豆一二三区av精品| 日韩欧美 国产精品| 亚洲av成人av| 麻豆国产av国片精品| 怎么达到女性高潮| 日本黄色视频三级网站网址| 人人妻人人澡欧美一区二区| www.999成人在线观看| bbb黄色大片| 久久精品亚洲精品国产色婷小说| 在线观看免费视频日本深夜| 美女免费视频网站| 香蕉丝袜av| 欧美色欧美亚洲另类二区| 99热精品在线国产| 欧美三级亚洲精品| 91麻豆精品激情在线观看国产| 国产精品久久久久久人妻精品电影| 少妇的丰满在线观看| 韩国av一区二区三区四区| 又粗又爽又猛毛片免费看| 麻豆国产97在线/欧美| 好男人在线观看高清免费视频| 久久久久精品国产欧美久久久| 老司机在亚洲福利影院| 一a级毛片在线观看| 精品免费久久久久久久清纯| 又爽又黄无遮挡网站| 国产伦在线观看视频一区| 此物有八面人人有两片| 亚洲av日韩精品久久久久久密| 亚洲人成电影免费在线| 窝窝影院91人妻| 午夜福利高清视频| 久久精品综合一区二区三区| 国产欧美日韩一区二区精品| 啦啦啦观看免费观看视频高清| 欧美日韩黄片免| 老汉色av国产亚洲站长工具| 久久九九热精品免费| 高潮久久久久久久久久久不卡| 亚洲一区二区三区色噜噜| 五月玫瑰六月丁香| 成人性生交大片免费视频hd| 亚洲人成网站高清观看| 日韩欧美 国产精品| 成在线人永久免费视频| 亚洲男人的天堂狠狠| 免费看光身美女| 人人妻人人澡欧美一区二区| 欧美性猛交黑人性爽| 香蕉国产在线看| 丁香六月欧美| 国内揄拍国产精品人妻在线| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 久久中文看片网| 别揉我奶头~嗯~啊~动态视频| 中文字幕最新亚洲高清| 曰老女人黄片| 美女黄网站色视频| 国产成人一区二区三区免费视频网站| 亚洲专区字幕在线| 久久天堂一区二区三区四区| 久久久久性生活片| 国产亚洲精品av在线| 黄色 视频免费看| 亚洲熟妇熟女久久| 久9热在线精品视频| 窝窝影院91人妻| 亚洲成人精品中文字幕电影| 高清毛片免费观看视频网站| 欧美精品啪啪一区二区三区| 天堂动漫精品| 亚洲精品456在线播放app | 欧美乱码精品一区二区三区| 午夜福利18| 一个人免费在线观看的高清视频| 99久久综合精品五月天人人| 精品一区二区三区视频在线观看免费| 欧美性猛交╳xxx乱大交人| 非洲黑人性xxxx精品又粗又长| 成人欧美大片| 国产不卡一卡二| 久9热在线精品视频| 国产精品国产高清国产av| 日韩三级视频一区二区三区| 色综合欧美亚洲国产小说| 麻豆久久精品国产亚洲av| 精品免费久久久久久久清纯| 欧美日韩福利视频一区二区| 亚洲成av人片在线播放无| 美女午夜性视频免费| 又大又爽又粗| 小蜜桃在线观看免费完整版高清| 丁香欧美五月| 毛片女人毛片| 香蕉久久夜色| 在线永久观看黄色视频| 在线观看日韩欧美| 免费在线观看视频国产中文字幕亚洲| 88av欧美| 美女扒开内裤让男人捅视频| 一区二区三区高清视频在线| 噜噜噜噜噜久久久久久91| 亚洲第一欧美日韩一区二区三区| 三级男女做爰猛烈吃奶摸视频| 1024香蕉在线观看| 女警被强在线播放| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久人人做人人爽| 欧美色视频一区免费| 欧美三级亚洲精品| 欧美性猛交黑人性爽| 特大巨黑吊av在线直播| 成人特级黄色片久久久久久久| 久久精品综合一区二区三区| 91麻豆av在线| 成年女人看的毛片在线观看| 亚洲av电影在线进入| 蜜桃久久精品国产亚洲av| 色哟哟哟哟哟哟| 黄频高清免费视频| 天堂网av新在线| 成人三级黄色视频| 久久九九热精品免费| 看片在线看免费视频| 日韩 欧美 亚洲 中文字幕| 黄色片一级片一级黄色片| 在线观看免费视频日本深夜| av在线天堂中文字幕| 中文字幕久久专区| 日本 av在线| 真人一进一出gif抽搐免费| 久久精品国产综合久久久| 一进一出好大好爽视频| 久久这里只有精品19| 国产精品久久久久久久电影 | 国产黄a三级三级三级人| 在线播放国产精品三级| www日本黄色视频网| 97超级碰碰碰精品色视频在线观看| 在线观看66精品国产| 国产精品精品国产色婷婷| 级片在线观看| 国产不卡一卡二| 欧美一级毛片孕妇| 国产精品影院久久| 精品欧美国产一区二区三| 国产精品99久久99久久久不卡| 国产黄色小视频在线观看| 夜夜躁狠狠躁天天躁| 欧美在线黄色| 狂野欧美白嫩少妇大欣赏| 亚洲专区字幕在线| 91av网一区二区| 麻豆国产av国片精品| 网址你懂的国产日韩在线| 国产精品av久久久久免费| 国产精品野战在线观看| 丰满人妻一区二区三区视频av | 久久精品综合一区二区三区| 亚洲国产中文字幕在线视频| 人人妻人人澡欧美一区二区| 亚洲人与动物交配视频| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看| 国产成+人综合+亚洲专区| 亚洲熟妇中文字幕五十中出| 日韩欧美在线二视频| 一级a爱片免费观看的视频| 中文字幕精品亚洲无线码一区| 亚洲中文字幕一区二区三区有码在线看 | 久9热在线精品视频| 老司机在亚洲福利影院| 亚洲国产欧美人成| 黄色丝袜av网址大全| 大型黄色视频在线免费观看| 这个男人来自地球电影免费观看| 9191精品国产免费久久| 长腿黑丝高跟| 真实男女啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月天丁香| 精品国产乱子伦一区二区三区| 一区二区三区激情视频| 久久中文看片网| 99热这里只有精品一区 | 久久精品影院6| 两个人看的免费小视频| 男女下面进入的视频免费午夜| 欧美丝袜亚洲另类 | 亚洲av五月六月丁香网| 欧美性猛交黑人性爽| 91老司机精品| 欧美黑人欧美精品刺激| 九色国产91popny在线| 亚洲激情在线av| 亚洲人与动物交配视频| 又紧又爽又黄一区二区| 国产精品爽爽va在线观看网站| 久久久精品大字幕| 国产精品久久久人人做人人爽| 又爽又黄无遮挡网站| 97碰自拍视频| 久9热在线精品视频| 九九在线视频观看精品| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人看人人澡| 天堂√8在线中文| 欧美大码av| 最新中文字幕久久久久 | 国产午夜精品论理片| 我要搜黄色片| 天天一区二区日本电影三级| 九九热线精品视视频播放| 亚洲欧美日韩高清在线视频| 黄色女人牲交| 亚洲av电影不卡..在线观看| 午夜福利18| 在线看三级毛片| 又粗又爽又猛毛片免费看| 好男人在线观看高清免费视频| 99视频精品全部免费 在线 | 国产成人精品久久二区二区免费| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 精品国产三级普通话版| 精品日产1卡2卡| 在线视频色国产色| 成年免费大片在线观看| 亚洲av成人不卡在线观看播放网| 国产淫片久久久久久久久 | 黄色女人牲交| 欧洲精品卡2卡3卡4卡5卡区| 美女大奶头视频| 女人被狂操c到高潮| 国产男靠女视频免费网站| 免费在线观看亚洲国产| 最好的美女福利视频网| 亚洲第一欧美日韩一区二区三区| av国产免费在线观看| 91麻豆av在线| 最新中文字幕久久久久 | 黑人操中国人逼视频| 亚洲国产欧美人成| 脱女人内裤的视频| 免费高清视频大片| 亚洲欧美日韩高清在线视频| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 99国产综合亚洲精品| 亚洲自偷自拍图片 自拍| 国产黄色小视频在线观看| 亚洲欧美日韩东京热| 99国产精品一区二区蜜桃av| 精品福利观看| 欧美黑人巨大hd| 精品不卡国产一区二区三区| 久久久久九九精品影院| 亚洲电影在线观看av| 麻豆成人午夜福利视频| www.自偷自拍.com| 美女高潮的动态| avwww免费| 国产综合懂色|