• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of the Fractional-Order Lorenz Chaotic Systems with Caputo Fractional Derivative

    2023-02-26 10:17:54DandanDaiXiaoyuLiZhiyuanLiWeiZhangandYulanWang

    Dandan Dai,Xiaoyu Li,Zhiyuan Li,Wei Zhang and Yulan Wang,?

    1School of Physics and Electronic Information Engineering,Jining Normal University,Jining,012000,China

    2Department of Mathematics,Inner Mongolia University of Technology,Hohhot,010051,China

    3Institute of Economics and Management,Jining Normal University,Jining,012000,China

    ABSTRACT Although some numerical methods of the fractional-order chaotic systems have been announced,high-precision numerical methods have always been the direction that researchers strive to pursue.Based on this problem,this paper introduces a high-precision numerical approach.Some complex dynamic behavior of fractional-order Lorenz chaotic systems are shown by using the present method.We observe some novel dynamic behavior in numerical experiments which are unlike any that have been previously discovered in numerical experiments or theoretical studies.We investigate the influence of α1,α2,α3 on the numerical solution of fractional-order Lorenz chaotic systems.The simulation results of integer order are in good agreement with those of other methods.The simulation results of numerical experiments demonstrate the effectiveness of the present method.

    KEYWORDS Novel complex dynamic behavior;numerical simulation;fractional-order lorenz chaotic systems;high-precision

    1 Introduction

    In 1963,Edward Lorenz discovered a mathematical model for atmospheric convection.This model is also known as Lorenz chaotic system.The Lorenz system is widely used in electric circuits,forward osmosis and chemical reactions.In recent years,people have studied the chaotic behavior in the fractional dynamic system and found that the fractional dynamic system has unique properties that the integer dynamic system does not have.Therefore,the numerical simulation of fractional chaotic system is very important.In this paper,we simulate the fractional-order Lorenz chaotic dynamical systems[1–6]is as

    with the initial conditions

    The solutions of the fractional-order Lorenz chaotic dynamical systems are very hard to obtain analytically,and researchers,therefore,rely on numerical methods to provide an approximate solution that could be used for prediction.In the last decades,several numerical methods have been proposed.In [1],based on the qualitative theory,the authors investigated the existence and uniqueness of solutions for a class of fractional-order Lorenz chaotic systems (1).In [2],compared the dynamical regimes of fractional-order systems with dynamical regimes of the corresponding standard systems.In[3],Complex dynamics with interesting characteristics were presented by means of phase portraits,the largest Lyapunov exponent and bifurcation diagrams.In [4–6],the authors gave a dynamic analysis of a fractional-order Lorenz chaotic system.Although some numerical and analytical methods of the FDEs have been announced,such as spectral method [7–11],reproducing kernel method[12–19],homotopy perturbation method[20–23],high-precision numerical approach[24–27],and so on numerical and analytical methods[28–36].These researchers all say their own approach can accurately simulate chaotic systems.In fact,since chaotic systems have no exact solution,researchers do not know which method is more accurate.For the numerical simulation of chaotic systems,it is necessary to use numerical methods to study the long time properties of solutions of the fractional order chaotic systems.This paper introduces a high-precision numerical method [24–27] for solving system (1).Some complex dynamic behavior of the fractional-order Lorenz chaotic systems are discovered by using the present numerical approach.We observe some novel dynamic behavior in numerical simulations which are unlike any that have been previously discovered in numerical simulations or theoretical studies.The simulation results of numerical experiments demonstrate the effectiveness of the present method.

    Fractal and fractional calculus[37–48]have been widely concerned.In the last three decades,there have existed many inequivalent definitions[49–51]of fractional derivatives.The most famous of these definitions that have been widely popularized in the world of fractional calculus is Riemann-Liouville fractional definition,Grünwald-Letnikov fractional derivative(GLFD)and Caputo fractional derivative definition.

    Definition 1.1.Riemann-Liouville fractional derivative of orderαof a functiony(t)aboutton the interval(t0,t)is defined as

    Definition 1.2.Caputo fractional derivative of orderαof a functiony(t)∈Cn[t0,t]aboutton the interval(t0,t)is defined as

    Definition 1.3.The Grünwald-Letnikov fractional derivative ofα-order on the interval(t0,t) is defined as

    where

    Therefore,theα-order Grünwald-Letnikov derivative in Eq.(4)is transformed into the following form:

    Using Newton’s binomial theorem,we know

    We can proof the following form:

    (1?z)αis called 1-order generating function ofα-order Grünwald-Letnikov derivative on the interval(t0,t).

    Theorem 1.4.Iff(t)is continuous and differentiable of ordern?1 on the interval(t0,t),andf (n)(t)is integrable,then Grünwald-Letnikov derivative can be written in the following integral form:

    and,the Grünwald-Letnikov derivative,Riemann-Liouville derivative and Caputo derivative have the following relationship:

    Proof1.For the proof,please refer to[49].

    From Theorem(1.4),it follows that,ify(j)(t0)=0,j=0,1,...,n?1,then(t).If existsj,such thaty(j)(t0)/=0,j=0,1,...,n?1,we use Taylor form,let(t)=y(t)?.For convenience of expression,we denote

    2 Numerical Approach

    In[24–27],in order to obtain hig her precision,author given the construction method of generating function for arbitraryp,and then give a recursive method of fractional derivative and integral based on the generating function.

    Definition 2.1.Ap-order polynomial function is defined as

    Theorem 2.2.Theporder polynomial functiongp(z)could be written as

    wheregkis the solutions of the following equation[24–27]:

    Proof 2.It can be seen from Eqs.(13)and(14)

    Substitutingz=1 into Eq.(16),there is

    Multiply both ends of Eq.(16)byzand find the first derivative ofz,then

    Then substitutez=1 into Eq.(18),then there is

    Multiply both ends of Eq.(16)byz,and then find the first derivative ofz

    Substitutingz=1 into Eq.(19),we can derive

    Repeating the above process,the following equation can be established:

    The matrix form of the equation is formula(15),which is proved by the theorem.

    Definition 2.3.Ihep-order generating functiongαp(z)ofα-order Grünwald-Letnikov derivative is defined as

    Theorem 2.4.If the generating functiongαp(z)can be written as

    where the subsequent coefficientω(α,p)kcan be recursively calculated by the following formula[24–27]:

    Proof 3.Letz=0 in Eq.(20),then it can be proved=gα0.Rewritten Eq.(20),it can be seen that

    where,ifk <0,then=0.Find the first derivative ofzon both sides of Eq.(23),it can be concluded that

    Both sides of Eq.(24)are multiplied by(g0+g2z+···+gpzp)at the same time,it can be seen

    Substituting Eq.(23)into Eq.(25),we can get

    then its right end can be written

    By comparing the same square coefficient ofzin Eq.(27),we can get

    Move Eq.(29)back one step,letk=k?1,then the equation can become

    Ifk/=0,it is thus clear that

    where,whenk<0,=0.The above formula is recursive,so the theorem is proved.

    Corollary 2.5.Thep-order generating functiongαp(z) ofα-order Grünwald-Letnikov derivative could be written as[24–27]

    where

    Theα-order Grünwald-Letnikov fractional derivative withp-order generating functiongαp(z) is given as

    Applying(34),an approximate computation scheme of theα-order Caputo fractional derivative withp-order generating functiongαp(z)is given as

    and limm→∞ym=Dαt y(t).

    So,a high-precision numerical approach of the fractional-order Lorenz chaotic systems(1)is given by

    3 Numerical Experiment

    In this section,some numerical examples are studied.Some novel chaotic behaviors are shown.We consider the systems (1) with the initial conditionsx(0)=?15,y(0)=?15,z(0)=20.h=0.01,p=20.The complex dynamic behaviors of the systems(1)are shown in Figs.1–21.Fig.1 shows time series plots of the systems(1)with parameters[σ,ρ,β]=[10,28,8/3]at differentα.Figs.2 and 3 show time series plots of the systems(1)with different parameters[σ,ρ,β]and different fractional derivativeα.Figs.4–19 projected on the(x,y),(x,z),(y,z)-plane and show phase diagram ofx,y,zof the systems(1)with different parameters[σ,ρ,β]and different fractional derivativeα.Figs.20 and 21 show chaotic attractor of fractional-order Lorenz systems(1)with different parameters[σ,ρ,β]and different fractional derivativeα.The rich chaotic attractor of fractional-order Lorenz systems(1) is shown in Figs.20 and 21.The simulation results of integer order are in good agreement with those of other methods.In this paper,many novel chaotic attractors for fractional systems are obtained.

    Figure 1: (Continued)

    Figure 1:Time series plots of the systems(1)at[σ,ρ,β]=[10,28,8/3]with parameters α

    Figure 2: (Continued)

    Figure 2:Time series plots of the systems(1)with different parameters

    Figure 3:Numerical results for the systems(1)at α=[1.16,1.18,1.15],[σ,ρ,β]=[35,20,15],T=100

    Figure 4:Numerical results for the systems(1)at α=[0.9,1.29,1.28],[σ,ρ,β]=[8,12,10],T=100

    Figure 5:Numerical results for the systems(1)at α=[1.29,1.2,1.1],[σ,ρ,β]=[8,12,10],T=100

    Figure 6:Numerical results for the systems(1)at α=[0.95,1.02,1.03],[σ,ρ,β]=[10,28,8/3],T=100

    Figure 7:Numerical results for the systems(1)at α=[1.1,1.15,1.18],[σ,ρ,β]=[10,28,8/3],T=100

    Figure 8:Numerical results for the systems(1)at α=[0.9,1.02,1.27],[σ,ρ,β]=[5,12,10],T=100

    Figure 9:Numerical results for the systems(1)at α=[0.9,1.18,1.38],[σ,ρ,β]=[3,10,11],T=100

    Figure 10:Numerical results for the systems(1)at α=[1,1.18,1.38],[σ,ρ,β]=[1,8,15],T=100

    Figure 11:Numerical results for the systems(1)at α=[1.22,2.21,1.19],[σ,ρ,β]=[20,10,9]

    Figure 12:Numerical results for the systems(1)at α=[1,1.12,1.18],[σ,ρ,β]=[4,9,9],T=100

    Figure 13:Numerical results for the systems(1)at α=[1,1.12,1.18],[σ,ρ,β]=[6,8,9],T=100

    Figure 14:Numerical results for the systems(1)at α=[1,0.98,1.15],[σ,ρ,β]=[15,20,10],T=100

    Figure 15: Numerical results for the systems (1) at α=[1.12,1.26,1.28],[σ,ρ,β]=[30,30,10],T=100

    Figure 16: Numerical results for (1) at α=[1.35,1.25,1.2],[c1,c2,c3]=[?18,?25,20],[σ,ρ,β]=[35,15,9],T=100

    Figure 17: Numerical results for the systems (1) at α=[0.92,0.99,1.01],[σ,ρ,β]=[20,30,8/3],T=100

    Figure 18:Numerical results for the systems(1)at α=[0.92,1,1],[σ,ρ,β]=[5,30,8/3],T=100

    Figure 19:Numerical results for the systems(1)at α=[1,1,1],[σ,ρ,β]=[10,28,8/3],T=100

    Figure 20: (Continued)

    Figure 20:Chaotic attractor of fractional-order Lorenz systems(1)with different parameters

    Figure 21: (Continued)

    Figure 21:Chaotic attractor of fractional-order Lorenz systems(1)with different parameters

    4 Conclusions and Remarks

    In this paper,some complex dynamic behavior of fractional-order Lorenz chaotic systems are shown by using the present method.We observe many novel dynamic behaviors in numerical experiments which are unlike any that have been previously discovered in numerical experiments or theoretical studies.We investigate the influence ofα1,α2,α3on the numerical solution of fractionalorder Lorenz chaotic systems.The simulation results of integer order are in good agreement with those of other methods.The results presented in this paper suggested that the present numerical method is also readily applicable to a more chaotic system.

    All computations are performed by the MatlabR2017b software.

    Acknowledgement: The authors would like to express their thanks to the unknown referees for their careful reading and helpful comments.

    Funding Statement: This paper is supported by the Natural Science Foundation of Inner Mongolia[2021MS01009]and Jining Normal University[JSJY2021040,Jsbsjj1704,jsky202145].

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲av一区综合| 看免费av毛片| 免费看光身美女| 国产免费一级a男人的天堂| 亚洲精品成人久久久久久| 色综合站精品国产| 日本一二三区视频观看| 亚洲第一电影网av| 白带黄色成豆腐渣| 亚洲国产精品sss在线观看| 国产国拍精品亚洲av在线观看| 一边摸一边抽搐一进一小说| 亚洲第一欧美日韩一区二区三区| 国产精品不卡视频一区二区 | 美女cb高潮喷水在线观看| 免费黄网站久久成人精品 | 欧美激情在线99| 国产日本99.免费观看| 夜夜躁狠狠躁天天躁| 在线观看66精品国产| 欧美在线黄色| 俄罗斯特黄特色一大片| aaaaa片日本免费| 国产精品电影一区二区三区| 在线a可以看的网站| 97碰自拍视频| 麻豆国产97在线/欧美| 午夜免费激情av| 精品人妻熟女av久视频| 亚洲avbb在线观看| 中文资源天堂在线| 国产精品一区二区三区四区免费观看 | 91麻豆av在线| 激情在线观看视频在线高清| 午夜福利欧美成人| 老鸭窝网址在线观看| 婷婷丁香在线五月| 国产午夜精品论理片| 此物有八面人人有两片| 淫秽高清视频在线观看| xxxwww97欧美| 91在线观看av| 欧美日本亚洲视频在线播放| 国产91精品成人一区二区三区| 国产欧美日韩精品亚洲av| 黄色女人牲交| 国产精品,欧美在线| 亚洲内射少妇av| 极品教师在线免费播放| 欧美黑人巨大hd| 久久久国产成人免费| 国产亚洲欧美98| 国产麻豆成人av免费视频| 国产亚洲av嫩草精品影院| 亚洲欧美激情综合另类| 欧美xxxx性猛交bbbb| 亚洲人成电影免费在线| aaaaa片日本免费| 欧美黄色淫秽网站| 亚洲第一电影网av| 淫妇啪啪啪对白视频| 成人精品一区二区免费| 国内精品一区二区在线观看| 国内精品美女久久久久久| 村上凉子中文字幕在线| 少妇丰满av| 日韩中字成人| www.色视频.com| 热99在线观看视频| 男女下面进入的视频免费午夜| 男人舔女人下体高潮全视频| 欧美成人性av电影在线观看| 成人性生交大片免费视频hd| 欧美极品一区二区三区四区| 精品一区二区三区av网在线观看| 看免费av毛片| 久久国产精品影院| 亚洲自拍偷在线| 亚洲av成人av| 国产精品久久久久久人妻精品电影| 国产精品久久视频播放| 欧美成狂野欧美在线观看| 日韩 亚洲 欧美在线| 成年女人毛片免费观看观看9| 观看免费一级毛片| 亚洲,欧美,日韩| 精品一区二区三区视频在线观看免费| 欧美+日韩+精品| 久久天躁狠狠躁夜夜2o2o| 精品无人区乱码1区二区| 国产视频内射| 美女被艹到高潮喷水动态| 亚洲经典国产精华液单 | 一个人免费在线观看电影| 久久午夜福利片| 亚洲人成电影免费在线| 免费在线观看日本一区| 婷婷精品国产亚洲av| 人人妻人人澡欧美一区二区| 国产不卡一卡二| av视频在线观看入口| 欧美成人免费av一区二区三区| 伊人久久精品亚洲午夜| 久久婷婷人人爽人人干人人爱| 中国美女看黄片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产一区二区激情短视频| 国产精品嫩草影院av在线观看 | 小蜜桃在线观看免费完整版高清| 久久人人精品亚洲av| 听说在线观看完整版免费高清| 国产美女午夜福利| 久久久久免费精品人妻一区二区| 日韩中字成人| 啪啪无遮挡十八禁网站| 国产aⅴ精品一区二区三区波| 一区二区三区激情视频| 久久久久久久久大av| 中国美女看黄片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 69av精品久久久久久| 国产精品久久电影中文字幕| 熟女电影av网| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器| 成人永久免费在线观看视频| 国产真实伦视频高清在线观看 | 内地一区二区视频在线| 不卡一级毛片| 久久精品综合一区二区三区| 精品人妻熟女av久视频| 国产精品乱码一区二三区的特点| 少妇被粗大猛烈的视频| 桃红色精品国产亚洲av| 国产激情偷乱视频一区二区| 人人妻人人澡欧美一区二区| 中亚洲国语对白在线视频| 直男gayav资源| 精品一区二区三区视频在线观看免费| 九九热线精品视视频播放| 免费在线观看成人毛片| 日韩精品中文字幕看吧| 在线免费观看的www视频| 欧美成狂野欧美在线观看| 国产精品电影一区二区三区| 91av网一区二区| 国产黄色小视频在线观看| 极品教师在线视频| 夜夜看夜夜爽夜夜摸| 国产av不卡久久| 午夜激情福利司机影院| h日本视频在线播放| 他把我摸到了高潮在线观看| 99国产精品一区二区蜜桃av| www.www免费av| 在线观看av片永久免费下载| 成人毛片a级毛片在线播放| 亚洲美女视频黄频| 国产精品女同一区二区软件 | 桃红色精品国产亚洲av| 亚洲久久久久久中文字幕| 日日摸夜夜添夜夜添av毛片 | 国产精品久久久久久亚洲av鲁大| 国产主播在线观看一区二区| 国产精品女同一区二区软件 | 亚洲第一欧美日韩一区二区三区| 天堂网av新在线| 在线播放无遮挡| 国产精品亚洲美女久久久| 日本黄大片高清| 久久精品国产自在天天线| 亚洲国产欧美人成| 男人的好看免费观看在线视频| 久久久色成人| 精品久久久久久久久久久久久| 看黄色毛片网站| 夜夜看夜夜爽夜夜摸| 一a级毛片在线观看| 99国产综合亚洲精品| 成人无遮挡网站| www.熟女人妻精品国产| 国产精品不卡视频一区二区 | 老鸭窝网址在线观看| 97超级碰碰碰精品色视频在线观看| 一本精品99久久精品77| 婷婷精品国产亚洲av| 国产精品电影一区二区三区| 国产精品98久久久久久宅男小说| 村上凉子中文字幕在线| 国产成人福利小说| 午夜福利在线观看吧| 亚洲欧美日韩高清专用| 久久久国产成人精品二区| 精品久久久久久久人妻蜜臀av| h日本视频在线播放| 美女免费视频网站| 久久久久久大精品| 男女视频在线观看网站免费| 欧美黄色淫秽网站| 免费观看精品视频网站| 白带黄色成豆腐渣| 日韩成人在线观看一区二区三区| 丰满乱子伦码专区| 国产精品嫩草影院av在线观看 | 男女视频在线观看网站免费| 亚洲第一欧美日韩一区二区三区| 搡老熟女国产l中国老女人| 日本免费一区二区三区高清不卡| 精品午夜福利在线看| 禁无遮挡网站| 日本一本二区三区精品| 国产免费一级a男人的天堂| 91av网一区二区| 成人欧美大片| 亚洲一区二区三区色噜噜| 婷婷色综合大香蕉| 俄罗斯特黄特色一大片| 能在线免费观看的黄片| 日日夜夜操网爽| 动漫黄色视频在线观看| 日本精品一区二区三区蜜桃| 桃红色精品国产亚洲av| 看片在线看免费视频| 精品人妻视频免费看| 99国产精品一区二区蜜桃av| 99热这里只有精品一区| 国产精品1区2区在线观看.| 亚洲片人在线观看| 中国美女看黄片| 久久伊人香网站| 国产精品爽爽va在线观看网站| 91麻豆精品激情在线观看国产| 哪里可以看免费的av片| 日日干狠狠操夜夜爽| 成人性生交大片免费视频hd| 脱女人内裤的视频| 中文字幕av成人在线电影| 亚洲国产欧美人成| 国产淫片久久久久久久久 | 亚洲欧美日韩高清在线视频| 变态另类成人亚洲欧美熟女| 五月伊人婷婷丁香| а√天堂www在线а√下载| 国产麻豆成人av免费视频| 国产午夜精品论理片| 久久欧美精品欧美久久欧美| 美女高潮喷水抽搐中文字幕| 好男人在线观看高清免费视频| 99精品在免费线老司机午夜| 亚洲av成人不卡在线观看播放网| 亚洲av美国av| 欧美成人一区二区免费高清观看| 老司机福利观看| 欧美+日韩+精品| 国产av在哪里看| a级毛片a级免费在线| 欧美色欧美亚洲另类二区| 欧美最黄视频在线播放免费| 亚洲中文字幕日韩| 国产蜜桃级精品一区二区三区| 搡老妇女老女人老熟妇| 久久久久性生活片| 熟妇人妻久久中文字幕3abv| avwww免费| 成人无遮挡网站| 人妻丰满熟妇av一区二区三区| 日本免费一区二区三区高清不卡| 超碰av人人做人人爽久久| 精品日产1卡2卡| 国产乱人伦免费视频| 久久这里只有精品中国| 岛国在线免费视频观看| 内地一区二区视频在线| 午夜两性在线视频| 亚洲熟妇中文字幕五十中出| 亚洲一区高清亚洲精品| 在线播放无遮挡| 久久久久久久久大av| 国产精品美女特级片免费视频播放器| 18+在线观看网站| av欧美777| 岛国在线免费视频观看| 日韩欧美在线二视频| 三级国产精品欧美在线观看| 国产成年人精品一区二区| 欧美乱妇无乱码| netflix在线观看网站| eeuss影院久久| 日韩av在线大香蕉| 中出人妻视频一区二区| av天堂中文字幕网| 国产蜜桃级精品一区二区三区| 91在线精品国自产拍蜜月| 国产av一区在线观看免费| 亚洲电影在线观看av| 男女下面进入的视频免费午夜| 久久久国产成人免费| 成人欧美大片| 亚洲精品在线观看二区| 久久天躁狠狠躁夜夜2o2o| 乱码一卡2卡4卡精品| 1000部很黄的大片| 国产黄a三级三级三级人| 极品教师在线视频| 久久香蕉精品热| 精品乱码久久久久久99久播| 日本 欧美在线| www.熟女人妻精品国产| 精品人妻偷拍中文字幕| 嫩草影院新地址| 亚洲人成网站在线播| av在线蜜桃| 国产精品影院久久| 丰满乱子伦码专区| 久久久国产成人精品二区| 麻豆成人av在线观看| 90打野战视频偷拍视频| 午夜福利成人在线免费观看| av在线蜜桃| 精品久久国产蜜桃| 成年女人毛片免费观看观看9| 一个人看视频在线观看www免费| 国产午夜福利久久久久久| 搡老岳熟女国产| 有码 亚洲区| 国产真实乱freesex| 国产熟女xx| 色在线成人网| av在线天堂中文字幕| 日本撒尿小便嘘嘘汇集6| 国内久久婷婷六月综合欲色啪| 熟女人妻精品中文字幕| 一级作爱视频免费观看| 岛国在线免费视频观看| 国产成人av教育| 日韩欧美在线乱码| 久久这里只有精品中国| 一区二区三区免费毛片| 最新在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 免费av毛片视频| 国产精品美女特级片免费视频播放器| 网址你懂的国产日韩在线| 成人特级av手机在线观看| 黄色丝袜av网址大全| av在线蜜桃| 啪啪无遮挡十八禁网站| 特大巨黑吊av在线直播| 亚洲电影在线观看av| 欧美在线黄色| 好男人在线观看高清免费视频| 久久久久久久久久成人| 国产精品久久久久久亚洲av鲁大| 午夜影院日韩av| 18禁在线播放成人免费| 在现免费观看毛片| 亚洲精品456在线播放app | 亚洲狠狠婷婷综合久久图片| 国产v大片淫在线免费观看| 亚洲电影在线观看av| 天堂动漫精品| 嫩草影院新地址| 国产精品一区二区免费欧美| av福利片在线观看| 免费高清视频大片| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添av毛片 | 啦啦啦观看免费观看视频高清| 真人做人爱边吃奶动态| 国产av在哪里看| 九九热线精品视视频播放| 久久久精品欧美日韩精品| 简卡轻食公司| 精品一区二区三区av网在线观看| 国产毛片a区久久久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av.av天堂| 欧美黑人巨大hd| 午夜福利成人在线免费观看| 韩国av一区二区三区四区| 2021天堂中文幕一二区在线观| 久久精品综合一区二区三区| 亚洲人成电影免费在线| 国产午夜精品论理片| 男女床上黄色一级片免费看| 国产精品久久视频播放| 久99久视频精品免费| 嫩草影院新地址| 男女那种视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲第一区二区三区不卡| 一级a爱片免费观看的视频| av女优亚洲男人天堂| netflix在线观看网站| 精品人妻偷拍中文字幕| 久久久久久大精品| 中文字幕精品亚洲无线码一区| 成人一区二区视频在线观看| 亚洲欧美日韩无卡精品| 69人妻影院| 亚洲人成电影免费在线| 99热精品在线国产| 我的老师免费观看完整版| 亚州av有码| 欧美成人a在线观看| 国产大屁股一区二区在线视频| 久久久久久久久久成人| 久久欧美精品欧美久久欧美| 偷拍熟女少妇极品色| 国产久久久一区二区三区| 黄色一级大片看看| 嫩草影视91久久| 丰满人妻一区二区三区视频av| 久久性视频一级片| 色尼玛亚洲综合影院| 少妇高潮的动态图| a级毛片免费高清观看在线播放| 特大巨黑吊av在线直播| 亚洲成人久久性| 我要搜黄色片| 国产又黄又爽又无遮挡在线| 欧美日韩黄片免| 嫩草影院新地址| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 我要看日韩黄色一级片| 免费观看的影片在线观看| 搡老熟女国产l中国老女人| 午夜福利欧美成人| x7x7x7水蜜桃| 欧美激情久久久久久爽电影| 国产一区二区激情短视频| 国产成人欧美在线观看| 好男人电影高清在线观看| 亚洲国产欧洲综合997久久,| 夜夜夜夜夜久久久久| 欧美日韩黄片免| av国产免费在线观看| 久久久国产成人免费| 色5月婷婷丁香| 91字幕亚洲| 亚洲国产欧洲综合997久久,| 如何舔出高潮| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| 久久久久久久久久黄片| 丰满人妻熟妇乱又伦精品不卡| 五月玫瑰六月丁香| 色综合婷婷激情| 少妇的逼好多水| 18+在线观看网站| 女生性感内裤真人,穿戴方法视频| 国产熟女xx| 成人午夜高清在线视频| 中文字幕av在线有码专区| 亚洲狠狠婷婷综合久久图片| 成人高潮视频无遮挡免费网站| 欧美性猛交黑人性爽| 免费看光身美女| 亚洲黑人精品在线| 国产乱人伦免费视频| 午夜精品在线福利| 国产精品99久久久久久久久| 国产精品女同一区二区软件 | 人妻制服诱惑在线中文字幕| 久久精品久久久久久噜噜老黄 | 中文字幕精品亚洲无线码一区| 国产精品人妻久久久久久| 免费观看人在逋| 麻豆一二三区av精品| 3wmmmm亚洲av在线观看| 淫妇啪啪啪对白视频| 亚洲精品色激情综合| 欧美高清成人免费视频www| 亚洲av日韩精品久久久久久密| 国产伦一二天堂av在线观看| 欧美性感艳星| 国产在线精品亚洲第一网站| 久久中文看片网| 亚洲,欧美精品.| 国产精品三级大全| 国产aⅴ精品一区二区三区波| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看 | 51午夜福利影视在线观看| 99久久成人亚洲精品观看| 日韩免费av在线播放| 色精品久久人妻99蜜桃| 欧美最黄视频在线播放免费| 午夜福利高清视频| 国产高清有码在线观看视频| 观看免费一级毛片| av天堂在线播放| 免费观看的影片在线观看| 美女被艹到高潮喷水动态| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| 欧美三级亚洲精品| 长腿黑丝高跟| 精品午夜福利视频在线观看一区| 在线天堂最新版资源| 亚洲激情在线av| 首页视频小说图片口味搜索| 又粗又爽又猛毛片免费看| 国产亚洲av嫩草精品影院| 国产精品久久久久久久电影| 男女之事视频高清在线观看| 亚洲国产精品合色在线| 亚洲黑人精品在线| 精品人妻偷拍中文字幕| 成年免费大片在线观看| 久久中文看片网| 亚洲中文日韩欧美视频| 一个人免费在线观看电影| 一区二区三区激情视频| 午夜精品久久久久久毛片777| 91av网一区二区| 久久草成人影院| 精品午夜福利在线看| 熟妇人妻久久中文字幕3abv| 亚洲aⅴ乱码一区二区在线播放| 1000部很黄的大片| 极品教师在线免费播放| 一级黄色大片毛片| 97超级碰碰碰精品色视频在线观看| 午夜福利18| 乱码一卡2卡4卡精品| 久久亚洲精品不卡| 丁香六月欧美| 欧美性猛交╳xxx乱大交人| 免费av观看视频| 在线观看午夜福利视频| 成人高潮视频无遮挡免费网站| 日韩亚洲欧美综合| 成人国产一区最新在线观看| 精品久久久久久成人av| 日本 av在线| 久久久久久久亚洲中文字幕 | 欧美日韩亚洲国产一区二区在线观看| 丰满人妻一区二区三区视频av| 蜜桃久久精品国产亚洲av| 精品人妻视频免费看| 色尼玛亚洲综合影院| 深夜a级毛片| 国产色婷婷99| 亚洲av电影在线进入| 欧美最新免费一区二区三区 | 一本精品99久久精品77| 亚洲狠狠婷婷综合久久图片| 在线播放无遮挡| 一本久久中文字幕| 一区二区三区高清视频在线| 亚洲av不卡在线观看| 婷婷六月久久综合丁香| 人妻丰满熟妇av一区二区三区| 欧美成人性av电影在线观看| 成人av一区二区三区在线看| 97超级碰碰碰精品色视频在线观看| 久久中文看片网| 窝窝影院91人妻| 亚洲精华国产精华精| 久久精品国产亚洲av涩爱 | 老司机午夜福利在线观看视频| 国产高清激情床上av| 真人做人爱边吃奶动态| 一个人免费在线观看电影| 我的老师免费观看完整版| 日本黄色片子视频| 日韩欧美一区二区三区在线观看| 91狼人影院| 男女之事视频高清在线观看| 成人毛片a级毛片在线播放| 亚洲欧美精品综合久久99| 亚洲综合色惰| 91九色精品人成在线观看| 99国产精品一区二区蜜桃av| 男人舔奶头视频| 热99re8久久精品国产| 国产私拍福利视频在线观看| 国内久久婷婷六月综合欲色啪| 国产高清视频在线观看网站| 伦理电影大哥的女人| 性色avwww在线观看| 精品人妻视频免费看| 一级av片app| 麻豆国产97在线/欧美| 欧美最新免费一区二区三区 | 看十八女毛片水多多多| 亚洲欧美清纯卡通| 美女大奶头视频| a级一级毛片免费在线观看| 极品教师在线免费播放| 三级国产精品欧美在线观看| 桃红色精品国产亚洲av| 亚洲精品在线观看二区| 午夜精品一区二区三区免费看| 免费搜索国产男女视频| 国产一区二区三区视频了| 亚洲av电影不卡..在线观看| 男人舔女人下体高潮全视频| 少妇的逼水好多| 亚洲成av人片免费观看| 久久精品人妻少妇| 国产精品一区二区免费欧美| 搡老妇女老女人老熟妇| 我的女老师完整版在线观看| 国产精品人妻久久久久久| a在线观看视频网站| 波多野结衣高清无吗| 国产大屁股一区二区在线视频| 一区二区三区四区激情视频 | 亚洲最大成人手机在线| 91久久精品电影网| 黄色丝袜av网址大全| 亚洲七黄色美女视频|