• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Three-Parameter Inverse Weibull Distribution with Medical and Engineering Applications

    2023-02-26 10:17:32RefahAlotaibiHassanOkashaHodaRezkandMazenNassar

    Refah Alotaibi,Hassan Okasha,Hoda Rezk and Mazen Nassar

    1Department of Mathematical Sciences,College of Science,Princess Nourah bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    2Department of Statistics,Faculty of Science,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    3Department of Mathematics,Faculty of Science,Al-Azhar University,Nasr City,11884,Cairo,Egypt

    4Department of Statistics,Faculty of Commerce,Al-Azhar University,Nasr City,11884,Cairo,Egypt

    5Department of Statistics,Faculty of Commerce,Zagazig University,Zagazig,44519,Egypt

    ABSTRACT The objective of this article is to provide a novel extension of the conventional inverse Weibull distribution that adds an extra shape parameter to increase its flexibility.This addition is beneficial in a variety of fields,including reliability,economics,engineering,biomedical science,biological research,environmental studies,and finance.For modeling real data,several expanded classes of distributions have been established.The modified alpha power transformed approach is used to implement the new model.The data matches the new inverse Weibull distribution better than the inverse Weibull distribution and several other competing models.It appears to be a distribution designed to support decreasing or unimodal shaped distributions based on its parameters.Precise expressions for quantiles,moments,incomplete moments,moment generating function,characteristic generating function,and entropy expression are among the determined attributes of the new distribution.The point and interval estimates are studied using the maximum likelihood method.Simulation research is conducted to illustrate the correctness of the theoretical results.Three applications to medical and engineering data are utilized to illustrate the model’s flexibility.

    KEYWORDS Inverse weibull distribution;modified alpha power transformation method;moments;order statistics

    1 Introduction

    Recently,many statistical distributions have been proposed by statisticians.The necessity to develop new distributions appear either due to practical investigations or theoretical concerns or both.Many applications in domains including dependability analysis,finance and risk modelling,insurance,and biological sciences,among others,have indicated in recent years that data sets that follow standard distributions are more often the exception than the usual.Because modified distributions are necessary,significant progress has been made in the modification of several classic distributions and their efficient utilization to challenges in these fields.Lately,specifically since 1980,the direction of statisticians to develop new distributions is on adding parameter(s)to some existing distributions or integrating classical distributions,see Lee et al.[1].This addition of parameter(s) has been demonstrated valuable in analysing tail properties and also for enhancing the goodness of fit of the family under consideration.For more details about the methods of adding parameters,one can refer to Mudholkar et al.[2],Marshall et al.[3]and Mahdavi et al.[4].

    The inverse-Weibull (IW) distribution has many vital applications in life testing and reliability studies.The IW distribution bears some other names like Fréchet distribution.The IW distribution is viewed as reciprocal to the usual Weibull distribution,see Drapella[5]and Mudholkar et al.[6],it is used to describe the degradation of mechanical components in diesel engines,such as the crankshaft and pistons,see Keller et al.[7].Several academics proposed several modified variations of the IW distribution to increase its flexibility.Khan[8]looked at the beta IW distribution,for example.The generalized IW distribution was proposed by de Gusmao et al.[9],the modified IW distribution was proposed by Khan et al.[10],the Kumaraswamy generalized IW distribution was proposed by Oluyede et al.[11],and the Kumaraswamy modified IW distribution was proposed by Aryal et al.[12].In addition,Okasha et al.[13]suggested the Marshall-Olkin IW distribution,Basheer[14]proposed the alpha power IW distribution,Dey et al.[15]discussed the logarithmic transformed IW distribution,and Afify et al.[16]suggested the logarithmic transformed IW distribution.

    Assume thatXis a random variable follows IW distribution withδas the scale parameter andθas the shape parameter,whereδ,θ >0.Then,the probability density function(PDF)ofXcan be written as follows:

    The cumulative distribution function(CDF)of Eq.(1)is

    See Johnson et al.[17]for further information on the IW distribution.In this study,we offer a new three-parameter IW distribution utilizing the same idea proposed by Alotaibi et al.[18].The modified alpha power transformed IW(MAPTIW)distribution is the name given to the new distribution.Two shape parameters and one scale parameter are included.It includes some lifetime distributions,such as IW,inverted exponential and inverse Rayleigh distributions.Recently,The alpha power transformation approach was used by Alotaibi et al.[18]to suggest a new method for adding a new shape parameter to a baseline distribution.Modified alpha power transformation(MAPT)was the name given to the approach they proposed.The CDF and PDF of MAPT method are expressed as

    and

    whereαis a new shape parameter.This article seeks to furnish a new lifetime model with the lowest number of parameters,yet satisfactory to depict more complicated data patterns; one scale and two shape parameters are involved to accommodate for decreasing and upside-down bathtubshaped failure rates.The MAPTIW distribution is motivated by the following causes: (1) It is a comprehensive distribution that holds some well-known lifetime distributions.(2) It is established in Section 2 that the MAPTIW distribution can be considered as a mixture of the traditional IW distribution.(3)The MAPTIW distribution can deliver decreasing and unimodal hazard rates which makes it outstanding from some other distributions.(4)The MAPTIW can be viewed as a practical model for modelling skewed data which can not be adequately modelled by other distributions.(5)The MAPTIW distribution furnishes more significant flexibility when compared with many well-known distributions in two real data applications.We seek that it will attract wider applications in medicine,engineering and other fields of research.

    The remainder of this article is structured as follows.The MAPTIW distribution is introduced and its mixed representation is derived in Section 2.In Section 3,we will look at some of the MAPTIW’s most important characteristics.Section 4 shows how to estimate unknown parameters using maximum likelihood estimation.We present the simulation results in Section 5 to show how well the estimations performed.Three real-life data sets are used to assess the importance of the MAPTIW distribution in Section 6.Section 7 presents the conclusion.

    2 MAPTIW Distribution

    We may define the CDF of the MAPTIW distribution in the following form by inserting the CDF of the IW distribution obtained by Eq.(2)into the CDF of the MAPT generator given by Eq.(3)

    The PDF that corresponds to the CDF in Eq.(5)can be expressed as follows:

    MAPTIW distribution has the following special sub-models.Ifα→1,it reduces to the IW distribution.Ifθ=1 andα→1,it reduces to the inverted exponential distribution.Ifθ=2 andα→1,it reduces to the inverse Rayleigh distribution.Also,whenθ=1,it reduces to the MAPT-inverted exponential distribution.Finally,whenθ=2,it simplifies to the MAPT-Rayleigh distribution.The MAPTIW distribution’s reliability function (RF) and hazard rate function (HRF)are

    and

    respectively.Henceforth,we will useXto refer to the random variable that possesses the PDF in Eq.(6).

    The various plots of the PDF of the MAPTIW distribution withδ=1 in all settings and different values forαandθare shown in Fig.1.The newly introduced parameterαoffered more extra flexibility to the PDF of the MAPTIW distribution,as seen in Fig.1.The MAPTIW distribution is rightskewed,and because of this,it is more suited to modelling right-skewed data than other competing distributions.The many forms of the HRF of the MAPTIW distribution are shown in Fig.2.It shows that the MAPTIW distribution’s HRF can be decreasing or unimodal in form.

    Figure 1:MAPTIW PDF plots

    Figure 2:HRF plots for the MAPTIW distribution

    The PDF in Eq.(6) might be used to obtain various statistical characteristics of the MAPTIW distribution.Finding the PDF’s mixture structure in Eq.(5) is a simple method.Observe the power series below:

    whereyis a variable and log(α)is a constant,as well as the generalized binomial expansion,which has the form

    whereyis a variable,ais a constant andΓ(a)is the gamma function defined asΓ(a)=

    When Eqs.(9) and (10) are applied to the PDF in Eq.(6),the following is a suitable linear representation for the PDF

    whereg(x;(m+1)δ,θ) is the PDF of the IW distribution with scale parameter(m+1)δand shape parameterθ,and

    On the other hand,the expansion of the CDF in Eq.(5)may be provided as by integrating Eq.(11)as

    HenceG(x;(m+1)δ,θ)is the CDF corresponding tog(x;(m+1)δ,θ).

    3 MAPTIW Distribution’s Properties

    The quantile function,moments and stress-strength parameter are some of the properties of the MAPTIW distribution that we derive in this part.

    3.1 Quantile Function

    The quantile function for the MAPTIW distribution may be calculated as follows using Eq.(5):

    One can employ Eq.(13)to simulate the random variableXby takingu~Uniform(0,1).

    3.2 Moments

    Moments play an essential part in statistics.Numerous vital aspects of any statistical distribution can be explored via moments.For the MAPTIW distribution,thenthmoment can be obtained as

    whereΓ(.)is the gamma function.In particular,the first two moments can be obtained as

    and

    The following formulae can also be used to obtain the variance(var),skewness(Sk),and kurtosis(Ku):

    and

    whereμ=μ′1.The propositions that follow are an explanation of three different types of moments,namely,incomplete moments (IMs),moment generating function (MGF),characteristic generating function(CGF)and conditional moments(CMs).

    Prop 3.1.IfX~MAPTIW,then the IMs ofXis given as follows:

    whereγ(.,.)is the incomplete gamma function.

    Prop 3.2.IfX~MAPTIW,then the MGF,denoted byM(t),and the cumulant generating function,denoted byK(t),ofXare,respectively,given by

    Prop 3.3.IfX~MAPTIW,then the CGF ofXis

    Prop 3.4.IfX~MAPTIW,then the CMs ofXis

    whereψn(t)is thenthIM ofX.

    3.3 Entropies of MAPTIW Distribution

    Entropy is used to measure uncertainty.It recreates a vital role in the area of engineering,probability,statistics,information theory and financial analysis.For example,Gen?ay et al.[19]delivered a relative analysis of the stock market during the 1987 and 2008 financial crises.Rashidi et al.[20]examined and simulated the heat transfer flow employing entropy generation in solar still.The Rényi entropy(RE)for the MAPTIW distribution may be calculated using Eq.(6)as follows:

    The Shannon entropy can also be calculated as

    3.4 Order Statistics

    LetX1,...,Xn? be a MAPTIW random sample of sizen.Assume thatX(1),...,X(n)? are the corresponding order statistics.Theithorder statistic’s PDF is then presented as follows:

    The beta function is represented asB(.,.).Using Eqs.(5),(6)and after some simplifications,we can obtain

    whereg(x;(l+ 1)δ,θ) is the PDF of the IW distribution with scale parameter(l+ 1)δand shape parameterθ,and

    Using Eq.(17),we can derive the properties ofX(i)directly from the properties ofZ(l+1),whereZ(l+1)follows IW distribution with scale parameter(l+1)δand shape parameterθ.Also,theqthmoments ofX(i)can be derive as follows:

    3.5 Moments of Residual Life and Reversed Failure Rate Function

    The mean residual lifetime has been studied by engineers and survival analysts.Given a feature or a system is of aget,the remaining lifetime aftertis a random variable.The expected value of this random residual lifetime is named the mean residual life.The mean residual lifetime is often a significant measure for discovering an optimal burn-in time for a feature.Therthmoment of the residual life ofXis given by

    Using Eqs.(5)and(6),and the binomial expansion of(x?t)r,we get

    The mean residual lifetime can be obtained from the last equation by settingr=1.Therthmoment of the reversed residual lifetime can be obtained as follows:

    Based on Eqs.(5),(6)and using the binomial expansion of(t?x)r,we can write

    3.6 Stress-Strength Model

    LetY1~MAPTIW(α1,θ1,δ1) andY2~MAPTIW(α2,θ2,δ2).IfY1describes the stress andY2describes the strength,then the MAPTIW distribution’s stress-strength parameter,indicated byR.It has a wide range of applications in engineering and research.We will concentrate on two different cases.

    Case one:α1/=α2,δ1=δ2=δandθ1=θ2=θ

    Using the series expansion in Eq.(10),it follows:

    Using the series expansion in Eq.(9),we can obtain

    where

    Case two:α1/=α2,δ1/=δ2andθ1/=θ2

    Using the series expansion in Eq.(10),we have

    Using the series expansion in Eq.(9),we can obtain

    4 Parameter Estimation

    In this section,we consider the maximum likelihood approach to estimate the unknown parameters of the MAPTIW distribution.Furthermore,the approximate confidence intervals(ACIs)of the unknown parameters are acquired.

    4.1 Maximum Likelihood Estimation

    Given a random sample of sizentaken from the MAPTIW distribution with PDF given by Eq.(6),we can express the log-likelihood function as

    The maximum likelihood estimates (MLEs) denoted by,andcan be got by solving the following normal equations simultaneously

    where

    and

    To get the MLEs ofα,δandθ,any numerical technique can be used to solve Eqs.(21)–(23).Using the asymptotic properties of the MLEs,we can construct the ACIs ofα,δandθ.It is known t hatwhereI0?1(α,δ,θ)is the asymptotic variance-covariance of the MLEs.Here,we employ the approximate asymptotic variance-covariance matrix of the MLEs denoted bywhich obtained based on the observed Fisher information matrix to compute the ACIs as follows:

    whereIαα,Iδα=Iαδ,Iαθ=Iθα,Iδθ=Iθδ,IδδandIθθare derived from Eq.(20)as

    and

    where

    Therefore,the(1?γ)%ACIs ofα δ,andθare as follows:

    wherezγ/2is the upper(γ/2)thpercentile point of a standard normal distribution.

    5 Simulation Study

    In this part,we use a simulation with variable sample sizesnand various values of the parametersα,δ,andθto show how well the MLEs of the MAPTIW distribution perform.The results are based on sample sizes of 20,50,and 100 with parameter valuesα=(1.5,3,5),δ=(0.5,1.5,3) andθ=(1.5,3,5),respectively.We get MLEs,mean square errors (MSEs),and confidence lengths (CLs) in each case.The simulation study is implemented using the steps below:

    1.Establish the sample size and parameter initial values.

    2.Create a random sample of sizenfrom the MAPTIW distribution using Eq.(13).

    3.Compute the MLEs ofα,δandθ.

    4.Compute the MSEs ofα,δandθ.

    5.Get the CLs ofα,δandθ.

    6.Redo Steps 2–5,1000 times.

    7.Determine the average values of estimates(AEs),MSEs,and CLs as follows:

    whereξis the unknown parameter andξjU,ξjLare the lower and upper confidence bounds,respectively.Tables 1–3 present the simulation results.We can see from these Tables that the AEs of the parameters tend to be the true parameter values as the sample size increases.As a result,the MLEs perform like asymptotically unbiased estimators.In all cases,the MSEs decrease as the sample size grows,indicating that the MLEs are consistent.In all situations,the CLs decrease as the sample size increases,as expected,because asnincreases,some new information is acquired.

    Table 1: AEs,MSEs(in parentheses)and CLs of the parameters at sample size,n=20

    Table 2: AEs,MSEs(in parentheses)and CLs of the parameters at sample size,n=50

    Table 3: AEs,MSEs(in parentheses)and CLs of the parameters at sample size,n=100

    6 Applications

    In this part,we illustrate the MAPTIW distribution’s flexibility by using three real data sets.The MAPTIW distribution is compared to other models such as,alpha power inverse Lomax(APILo)distribution by ZeinEldin et al.[21],inverse Lomax(ILo)distribution,alpha power inverse Weibull (APIW) distribution by Basheer [14],alpha power inverse Lindley (APILi) distribution by Dey et al.[22]and Weibull(We)distribution.Table 4 displays the PDFs of these distributions.

    The first data(Data 1)describes the mortality rates due to the COVID-19 pandemic in the United Kingdom for 76 days,from 15 April to 30 June 2020.The data is originally investigated by Mubarak et al.[23].The entire data set is as follows: 0.0587,0.0863,0.1165,0.1247,0.1277,0.1303,0.1652,0.2079,0.2395,0.2751,0.2845,0.2992,0.3188,0.3317,0.3446,0.3553,0.3622,0.3926,0.3926,0.4110,0.4633,0.4690,0.4954,0.5139,0.5696,0.5837,0.6197,0.6365,0.7096,0.7193,0.7444,0.8590,1.0438,1.0602,1.1305,1.1468,1.1533,1.2260,1.2707,1.3423,1.4149,1.5709,1.6017,1.6083,1.6324,1.6998,1.8164,1.8392,1.8721,1.9844,2.1360,2.3987,2.4153,2.5225,2.7087,2.7946,3.3609,3.3715,3.7840,3.9042,4.1969,4.3451,4.4627,4.6477,5.3664,5.4500,5.7522,6.4241,7.0657,7.4456,8.2307,9.6315,10.187,11.1429,11.2019,11.4584.

    Table 4: The PDFs of different models

    The second data set (Data 2) describes the remission times (in months) of a random sample of 128 bladder cancer patients studied by Lee et al.[24] and recently investigated by Al-Zahrani et al.[25–27].The complete data set of is: 0.08,2.09,3.48,4.87,6.94,8.66,13.11,23.63,0.20,2.23,3.52,4.98,6.97,9.02,13.29,0.40,2.26,3.57,5.06,7.09,9.22,13.80,25.74,0.50,2.46,3.64,5.09,7.26,9.47,14.24,25.82,0.51,2.54,3.70,5.17,7.28,9.74,14.76,26.31,0.81,2.62,3.82,5.32,7.32,10.06,14.77,32.15,2.64,3.88,5.32,7.39,10.34,14.83,34.26,0.90,2.69,4.18,5.34,7.59,10.66,15.96,36.66,1.05,2.69,4.23,5.41,7.62,10.75,16.62,43.01,1.19,2.75,4.26,5.41,7.63,17.12,46.12,1.26,2.83,4.33,5.49,7.66,11.25,17.14,79.05,1.35,2.87,5.62,7.87,11.64,17.36,1.40,3.02,4.34,5.71,7.93,11.79,18.10,1.46,4.40,5.85,8.26,11.98,19.13,1.76,3.25,4.50,6.25,8.37,12.02,2.02,3.31,4.51,6.54,8.53,12.03,20.28,2.02,3.36,6.76,12.07,21.73,2.07,3.36,6.93,8.65,12.63,22.69.

    The third data set(Data 3)consists of the times of breakdown of a sample of 25 devices at 180°C and given by Pham[28].The complete data set of is:112,260,298,327,379,487,593,658,701,720,734,736,775,915,974,1123,1157,1227,1293,1335,1472,1529,1545,2029,4568.

    Before studying these data sets,we foremost scheme the corresponding TTT plots.Fig.3 displays the TTT plots of these data.It indicates that Data 1 has a decreasing failure rate function,while the TTT plots for Data 2 and 3 reveal an upside-down bathtub failure rate function.Therefore,we can infer that the MAPTIW distribution is reasonable to model these data sets.The MLEs and their standard errors (SEs) of the MAPTIW distribution and some other competitive distributions are displayed in Tables 5,6 and 7 for Data 1,2 and 3,respectively.In addition,some goodness of fit statistics,namely,Akaike information criterion (AIC),consistent Akaike information criterion (CAIC),Bayesian information criterion (BIC),Hannan-Quinn information criterion (HQIC)statistics,Anderson-Darling(A),Cramér-Von Mises(W?)and Kolmogorov-Smirnov(K.S)(with the correspondingp-value)are also presented in Tables 5,6 and 7 for Data 1,2 and 3,respectively.It is noted from these Tables that the MAPTIW distribution performed better than all other competitive distributions.As a result,the MAPTIW distribution is determined to be the best model to fit the given two data sets.Figs.4–6 display the fitted PDFs,CDFs,RFs and probability-probability (PP) plots of the MAPTIW distribution for Data 1,2 and 3,respectively.These figures demonstrate that the MAPTIW distribution can furnish a close fit to the given data sets.Generally,we can deduce that the MAPTIW distribution is appropriate for modelling the delivered data sets more preferably than some conventional and some lately suggested models.The ACIs of the unknown parameters of the MAPTIW distribution for Data 1,2 and 3 are obtained and displayed in Table 8.

    Figure 3:TTT Plots for Data 1(left)and Data 2(middle)and Data 3(right)

    Table 5: MLEs,SEs(in parentheses)and different statistics for Data 1

    Table 5 (continued)ModelEstimatesAICCAIC BICHQIC W?A?K.Sp-value APTILi?δ=22.103(19.446) 301.30 301.46 305.96 303.16 0.1780 1.1423 0.1498 0.0658 ?α=0.4869(0.0827)We?δ=0.8465(0.0743) 287.50 287.66 292.16 289.36 0.1133 0.7653 0.0805 0.7074 ?θ=0.5090(0.0771)

    Table 6: MLEs,SEs(in parentheses)and different statistics for Data 2

    Table 7: MLEs,SEs(in parentheses)and different statistics for Data 3

    Table 7 (continued)ModelEstimatesAICCAIC BICHQIC W?A?K.Sp-value APTILo?δ=0.0146(0.0252)405.94 407.08 409.60 406.95 0.1136 0.6681 0.2532 0.0669 ?θ=4661.4(8063.1)?α=11826.4(13877)IW?δ=2189.0(2214.2)401.71 402.25 404.14 402.38 0.1677 0.9896 0.1755 0.3796 ?θ=1.2222(0.1690)APIW?δ=5911(38464.99)399.49 400.63 403.15 400.50 0.1170 0.6805 0.1387 0.6709 ?θ=1.5763(0.9521)?α=85.338(256.11)APTILi?δ=36.5568(7.5308) 403.66 404.20 406.10 404.33 0.1269 0.7475 0.2460 0.0808 ?α=33636090(11863)We?δ=0.00006(0.0268) 396.96 397.51 399.40 397.639 0.0477 0.4254 0.1414 0.6993 ?θ=1.3821(0.00001)

    Figure 4:Plots of the fitted functions for the MAPTIW distribution and PP plot for Data 1

    Figure 5:Plots of the fitted functions for the MAPTIW distribution and PP plot for Data 2

    Figure 6:Plots of the fitted functions for the MAPTIW distribution and PP plot for Data 3

    Table 8: The ACIs of the unknown parameters for Data 1,2 and 3

    7 Conclusion

    As a new extension of the inverse Weibull model,we introduced a new three-parameter inverse Weibull distribution.Additionally,numerous theoretical properties of the distribution were explored in order to develop a more flexible model that includes the decreasing and unimodal shape for the hazard rate function.We described the method of maximum likelihood for estimating the parameters of the suggested distribution.A simulation study is also used to investigate the asymptotic behaviour of the maximum likelihood estimators.The model’s efficiency is demonstrated using three real data sets to show its applicability in real life.The proposed distribution is a better distributional model for fitting such data sets than many of its related models,as well as several newly produced distributions,using various information measures.

    Acknowledgement: The authors convey their sincere appreciation to the reviewers and the editors for making some valuable suggestions and comments.The authors extend their appreciations to Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R50),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Funding Statement: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R50),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲熟妇中文字幕五十中出| 一个人免费在线观看的高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日日摸夜夜添夜夜添小说| 国产精品香港三级国产av潘金莲| 国产成人精品在线电影| xxx96com| 色在线成人网| 亚洲欧美日韩另类电影网站| 国产在线观看jvid| 他把我摸到了高潮在线观看| 免费人成视频x8x8入口观看| 十分钟在线观看高清视频www| 正在播放国产对白刺激| 亚洲自偷自拍图片 自拍| 女性被躁到高潮视频| 每晚都被弄得嗷嗷叫到高潮| 久久天堂一区二区三区四区| av超薄肉色丝袜交足视频| 亚洲人成伊人成综合网2020| 看免费av毛片| 久久香蕉精品热| 国产男靠女视频免费网站| 色综合亚洲欧美另类图片| 丝袜美腿诱惑在线| 国产成人一区二区三区免费视频网站| 一级毛片女人18水好多| 一区二区三区激情视频| 久久精品aⅴ一区二区三区四区| 一个人免费在线观看的高清视频| 国产麻豆成人av免费视频| 黄色丝袜av网址大全| 老司机深夜福利视频在线观看| 国产精品综合久久久久久久免费 | 俄罗斯特黄特色一大片| 午夜老司机福利片| 亚洲中文日韩欧美视频| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久久久99蜜臀| 国产精品 国内视频| 国产成人精品久久二区二区91| 午夜精品在线福利| 久久人妻av系列| www日本在线高清视频| 97碰自拍视频| 久久精品人人爽人人爽视色| 国产极品粉嫩免费观看在线| 精品久久久久久久人妻蜜臀av | 亚洲av第一区精品v没综合| aaaaa片日本免费| 亚洲精品av麻豆狂野| 999久久久精品免费观看国产| 在线永久观看黄色视频| 国产色视频综合| 欧美大码av| 变态另类成人亚洲欧美熟女 | 成熟少妇高潮喷水视频| 国产三级黄色录像| 亚洲av电影不卡..在线观看| 国产成人影院久久av| 99热只有精品国产| 不卡一级毛片| 成人精品一区二区免费| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av日韩精品久久久久久密| 黑人巨大精品欧美一区二区蜜桃| 欧美国产日韩亚洲一区| 久久久精品欧美日韩精品| 亚洲久久久国产精品| 日韩欧美一区二区三区在线观看| 午夜免费成人在线视频| 免费在线观看完整版高清| 99riav亚洲国产免费| 中文字幕最新亚洲高清| 亚洲国产欧美日韩在线播放| 亚洲人成77777在线视频| 人人妻人人澡人人看| 99精品在免费线老司机午夜| 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| 久久草成人影院| 香蕉久久夜色| 日本 av在线| 欧美在线一区亚洲| 久久人妻av系列| 亚洲精品在线美女| 国产精品九九99| 久久香蕉激情| 咕卡用的链子| 美女午夜性视频免费| 亚洲七黄色美女视频| 久久久国产成人精品二区| 一本综合久久免费| 国产av一区二区精品久久| 亚洲国产欧美一区二区综合| 亚洲情色 制服丝袜| 亚洲 欧美 日韩 在线 免费| 十八禁网站免费在线| 久久人妻福利社区极品人妻图片| 女生性感内裤真人,穿戴方法视频| 国产真人三级小视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 无人区码免费观看不卡| 国产一区二区在线av高清观看| 少妇熟女aⅴ在线视频| 成年女人毛片免费观看观看9| 国内毛片毛片毛片毛片毛片| 亚洲精品在线观看二区| bbb黄色大片| 黄频高清免费视频| 1024视频免费在线观看| 免费观看精品视频网站| 久久人人精品亚洲av| 免费观看人在逋| 免费不卡黄色视频| 曰老女人黄片| 91精品三级在线观看| 国产av又大| 日日爽夜夜爽网站| 亚洲国产精品sss在线观看| 亚洲av第一区精品v没综合| 亚洲av电影不卡..在线观看| 国产一区二区三区视频了| 国产欧美日韩一区二区三| 99国产综合亚洲精品| 99国产精品免费福利视频| 极品人妻少妇av视频| 国产精品一区二区在线不卡| 波多野结衣巨乳人妻| 女同久久另类99精品国产91| 亚洲精品国产区一区二| 亚洲精品久久成人aⅴ小说| 欧美成人性av电影在线观看| 十分钟在线观看高清视频www| 黄色毛片三级朝国网站| 成人国产综合亚洲| 亚洲国产欧美日韩在线播放| 无遮挡黄片免费观看| ponron亚洲| 久久人人97超碰香蕉20202| 午夜免费成人在线视频| 国产又爽黄色视频| www.999成人在线观看| 在线天堂中文资源库| 亚洲熟妇熟女久久| 极品教师在线免费播放| 国产成人精品无人区| 性少妇av在线| 亚洲国产精品久久男人天堂| 99国产精品99久久久久| ponron亚洲| 在线免费观看的www视频| 国产高清有码在线观看视频 | 91九色精品人成在线观看| 欧美精品亚洲一区二区| 国产又色又爽无遮挡免费看| or卡值多少钱| 这个男人来自地球电影免费观看| 啦啦啦 在线观看视频| 高清毛片免费观看视频网站| 在线播放国产精品三级| 中文字幕精品免费在线观看视频| 一区二区三区高清视频在线| 一级a爱片免费观看的视频| 91精品三级在线观看| 黄片大片在线免费观看| 久久精品国产99精品国产亚洲性色 | 99国产综合亚洲精品| www.www免费av| 中亚洲国语对白在线视频| 叶爱在线成人免费视频播放| 国产精品秋霞免费鲁丝片| 黑人欧美特级aaaaaa片| 色av中文字幕| 亚洲成a人片在线一区二区| 亚洲欧美日韩高清在线视频| 免费在线观看日本一区| 国产亚洲精品久久久久久毛片| 久久久久亚洲av毛片大全| 国产av一区二区精品久久| 丝袜美腿诱惑在线| 久久人妻福利社区极品人妻图片| 母亲3免费完整高清在线观看| 国产成人精品久久二区二区91| 日本 欧美在线| 国产97色在线日韩免费| 天堂影院成人在线观看| 91精品国产国语对白视频| 亚洲欧美精品综合一区二区三区| 亚洲av成人不卡在线观看播放网| 男女午夜视频在线观看| 久久天堂一区二区三区四区| 亚洲人成77777在线视频| 免费搜索国产男女视频| 性欧美人与动物交配| 欧美日本视频| 欧美+亚洲+日韩+国产| 精品久久久久久久毛片微露脸| 欧美人与性动交α欧美精品济南到| 欧美久久黑人一区二区| 欧美日韩精品网址| 女人高潮潮喷娇喘18禁视频| 欧美激情极品国产一区二区三区| 视频在线观看一区二区三区| 中国美女看黄片| 91麻豆av在线| 免费一级毛片在线播放高清视频 | 十八禁人妻一区二区| 校园春色视频在线观看| 不卡一级毛片| 欧美在线一区亚洲| 国产熟女xx| 国产欧美日韩一区二区三| 真人一进一出gif抽搐免费| 日韩国内少妇激情av| 午夜福利,免费看| 国产区一区二久久| 午夜精品国产一区二区电影| 在线观看午夜福利视频| 国产免费男女视频| 久久久国产精品麻豆| 亚洲第一电影网av| 巨乳人妻的诱惑在线观看| 久9热在线精品视频| 一夜夜www| xxx96com| 精品人妻在线不人妻| 欧美日韩福利视频一区二区| 中文亚洲av片在线观看爽| 叶爱在线成人免费视频播放| 成人欧美大片| 亚洲激情在线av| 久久久精品国产亚洲av高清涩受| 不卡一级毛片| www.www免费av| 精品久久久精品久久久| 黄色视频不卡| 欧美国产日韩亚洲一区| 国产真人三级小视频在线观看| 午夜精品久久久久久毛片777| 成人国产综合亚洲| 国产亚洲精品久久久久5区| 高潮久久久久久久久久久不卡| 免费少妇av软件| 欧美色视频一区免费| 少妇熟女aⅴ在线视频| 久久香蕉国产精品| 国产成人av激情在线播放| 亚洲国产看品久久| 极品人妻少妇av视频| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 黑人操中国人逼视频| 色哟哟哟哟哟哟| 国产欧美日韩精品亚洲av| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 久久午夜综合久久蜜桃| 女性被躁到高潮视频| 18禁观看日本| 亚洲av美国av| 亚洲色图 男人天堂 中文字幕| 脱女人内裤的视频| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 日本在线视频免费播放| 日本黄色视频三级网站网址| av有码第一页| 欧美成人免费av一区二区三区| 777久久人妻少妇嫩草av网站| 国产欧美日韩精品亚洲av| 极品人妻少妇av视频| 日韩精品中文字幕看吧| 天堂动漫精品| 免费不卡黄色视频| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区三区综合在线观看| 国产精品秋霞免费鲁丝片| 超碰成人久久| 免费少妇av软件| 91国产中文字幕| 免费一级毛片在线播放高清视频 | 免费在线观看黄色视频的| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品男人的天堂亚洲| 中国美女看黄片| 国内精品久久久久精免费| 亚洲国产欧美日韩在线播放| 午夜福利免费观看在线| 色av中文字幕| 每晚都被弄得嗷嗷叫到高潮| 午夜亚洲福利在线播放| 制服人妻中文乱码| 人人妻,人人澡人人爽秒播| 中文字幕另类日韩欧美亚洲嫩草| 欧美大码av| 黑人巨大精品欧美一区二区蜜桃| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码| 美国免费a级毛片| 亚洲专区中文字幕在线| 日韩精品青青久久久久久| 免费观看人在逋| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 亚洲精品国产精品久久久不卡| 国产成人系列免费观看| 亚洲精品国产精品久久久不卡| 女警被强在线播放| netflix在线观看网站| 日本五十路高清| 亚洲欧美一区二区三区黑人| 正在播放国产对白刺激| ponron亚洲| 亚洲七黄色美女视频| 级片在线观看| 国产精品综合久久久久久久免费 | 久久久久九九精品影院| 麻豆成人av在线观看| 69av精品久久久久久| 国产成+人综合+亚洲专区| 成人亚洲精品一区在线观看| 亚洲中文日韩欧美视频| 淫秽高清视频在线观看| 亚洲午夜理论影院| 露出奶头的视频| 一级毛片女人18水好多| 国产欧美日韩精品亚洲av| 国产日韩一区二区三区精品不卡| 黄片小视频在线播放| 国产激情久久老熟女| 久久国产乱子伦精品免费另类| 国产国语露脸激情在线看| 丝袜在线中文字幕| 国产欧美日韩一区二区精品| 999精品在线视频| 久久久久九九精品影院| 亚洲 欧美 日韩 在线 免费| 青草久久国产| 久久婷婷成人综合色麻豆| 成人手机av| 欧美精品亚洲一区二区| 欧美成人一区二区免费高清观看 | 久久午夜亚洲精品久久| 国产午夜福利久久久久久| 久久久久九九精品影院| 妹子高潮喷水视频| 好男人在线观看高清免费视频 | 中文字幕人妻丝袜一区二区| 欧美一级a爱片免费观看看 | 国产免费av片在线观看野外av| 精品欧美一区二区三区在线| 男人舔女人下体高潮全视频| 国产精品久久电影中文字幕| 亚洲精品久久成人aⅴ小说| 成人三级做爰电影| av在线播放免费不卡| 色综合欧美亚洲国产小说| 国产三级在线视频| 久久精品国产99精品国产亚洲性色 | 99精品欧美一区二区三区四区| 久久久久精品国产欧美久久久| 久热这里只有精品99| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产欧美日韩av| 女人被狂操c到高潮| 涩涩av久久男人的天堂| 少妇的丰满在线观看| 91成人精品电影| 最新在线观看一区二区三区| 日本欧美视频一区| 亚洲国产精品久久男人天堂| 1024香蕉在线观看| 高潮久久久久久久久久久不卡| 天堂动漫精品| 黄色毛片三级朝国网站| 久久久精品欧美日韩精品| 精品国产国语对白av| 日韩视频一区二区在线观看| 日韩视频一区二区在线观看| 精品久久久精品久久久| 亚洲七黄色美女视频| 欧美精品啪啪一区二区三区| 老鸭窝网址在线观看| 国产精品免费视频内射| 在线观看免费日韩欧美大片| 12—13女人毛片做爰片一| 欧美人与性动交α欧美精品济南到| 精品国产亚洲在线| 精品熟女少妇八av免费久了| 999精品在线视频| 亚洲一码二码三码区别大吗| 午夜福利影视在线免费观看| 最近最新中文字幕大全免费视频| 久热爱精品视频在线9| 在线观看午夜福利视频| 亚洲成人免费电影在线观看| 欧美色视频一区免费| ponron亚洲| 久久这里只有精品19| 亚洲成人免费电影在线观看| 99香蕉大伊视频| 亚洲 国产 在线| 精品无人区乱码1区二区| 涩涩av久久男人的天堂| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲精品不卡| 久久国产精品人妻蜜桃| 女生性感内裤真人,穿戴方法视频| 波多野结衣巨乳人妻| 极品教师在线免费播放| 美女国产高潮福利片在线看| 1024视频免费在线观看| 老汉色∧v一级毛片| 久99久视频精品免费| 99国产极品粉嫩在线观看| 在线av久久热| 一区二区日韩欧美中文字幕| 9色porny在线观看| 久久久久久久午夜电影| 搞女人的毛片| 1024视频免费在线观看| 悠悠久久av| 午夜老司机福利片| 一级a爱片免费观看的视频| 欧美中文综合在线视频| 欧美老熟妇乱子伦牲交| 国产1区2区3区精品| 亚洲无线在线观看| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 国产精品亚洲一级av第二区| 国产欧美日韩一区二区精品| 精品人妻1区二区| 狂野欧美激情性xxxx| 国产精品香港三级国产av潘金莲| 国产日韩一区二区三区精品不卡| 亚洲专区国产一区二区| 国产精品久久视频播放| 亚洲电影在线观看av| 欧美色视频一区免费| 此物有八面人人有两片| 成人亚洲精品av一区二区| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 一个人免费在线观看的高清视频| www日本在线高清视频| 色精品久久人妻99蜜桃| 精品一区二区三区视频在线观看免费| 日本一区二区免费在线视频| 亚洲国产毛片av蜜桃av| 天堂影院成人在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 激情视频va一区二区三区| 国产欧美日韩综合在线一区二区| 97人妻精品一区二区三区麻豆 | 免费观看精品视频网站| 视频区欧美日本亚洲| 亚洲专区字幕在线| 最近最新免费中文字幕在线| 亚洲精品中文字幕在线视频| 桃色一区二区三区在线观看| 午夜a级毛片| 制服人妻中文乱码| 久久久久久大精品| 曰老女人黄片| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av在线| 色av中文字幕| 91精品三级在线观看| 9191精品国产免费久久| 香蕉丝袜av| 欧美日韩精品网址| 欧美色视频一区免费| 国产亚洲精品第一综合不卡| www.熟女人妻精品国产| 亚洲中文av在线| 久久精品亚洲熟妇少妇任你| 大香蕉久久成人网| 日本五十路高清| 欧洲精品卡2卡3卡4卡5卡区| 黄色视频不卡| 女性被躁到高潮视频| 亚洲五月婷婷丁香| 波多野结衣高清无吗| 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 咕卡用的链子| 久久久久国内视频| 波多野结衣高清无吗| 精品久久久久久成人av| 天堂动漫精品| 欧美绝顶高潮抽搐喷水| 桃红色精品国产亚洲av| 亚洲少妇的诱惑av| 国产人伦9x9x在线观看| 亚洲中文av在线| 少妇熟女aⅴ在线视频| 午夜福利视频1000在线观看 | 久久伊人香网站| 天堂动漫精品| 搞女人的毛片| 亚洲成av人片免费观看| 久久国产乱子伦精品免费另类| 国产人伦9x9x在线观看| 免费高清在线观看日韩| 又紧又爽又黄一区二区| 国产成人av教育| 精品一品国产午夜福利视频| 一级毛片精品| av视频在线观看入口| 亚洲国产高清在线一区二区三 | 国内久久婷婷六月综合欲色啪| 啦啦啦 在线观看视频| 日韩国内少妇激情av| 禁无遮挡网站| 天天躁狠狠躁夜夜躁狠狠躁| 黄片播放在线免费| 叶爱在线成人免费视频播放| 午夜两性在线视频| 国产97色在线日韩免费| 免费在线观看完整版高清| 咕卡用的链子| 久久久久九九精品影院| 村上凉子中文字幕在线| 久久人人爽av亚洲精品天堂| 日本免费a在线| 黄网站色视频无遮挡免费观看| 久久久精品国产亚洲av高清涩受| av视频免费观看在线观看| 真人做人爱边吃奶动态| 久久亚洲真实| 精品一区二区三区视频在线观看免费| 欧美色视频一区免费| 18禁观看日本| 极品人妻少妇av视频| 涩涩av久久男人的天堂| 国产成人欧美在线观看| 91成人精品电影| 在线av久久热| 涩涩av久久男人的天堂| 99久久综合精品五月天人人| 黄色女人牲交| 夜夜躁狠狠躁天天躁| 国产精品日韩av在线免费观看 | 精品国产美女av久久久久小说| 级片在线观看| 国产一卡二卡三卡精品| 亚洲在线自拍视频| 天堂√8在线中文| 一级毛片高清免费大全| 亚洲人成77777在线视频| 欧美乱色亚洲激情| 18禁美女被吸乳视频| 9热在线视频观看99| 又大又爽又粗| 亚洲电影在线观看av| 亚洲色图 男人天堂 中文字幕| 日韩免费av在线播放| 操美女的视频在线观看| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 精品国产美女av久久久久小说| 精品一区二区三区av网在线观看| АⅤ资源中文在线天堂| 午夜日韩欧美国产| 国产亚洲精品久久久久5区| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 国产一级毛片七仙女欲春2 | 久久久久国产一级毛片高清牌| 午夜福利,免费看| 免费在线观看视频国产中文字幕亚洲| 久久久国产成人免费| 亚洲片人在线观看| 亚洲av成人一区二区三| 91国产中文字幕| 精品国产一区二区三区四区第35| 麻豆一二三区av精品| 久久人人爽av亚洲精品天堂| 欧美成人性av电影在线观看| 91字幕亚洲| 久久午夜综合久久蜜桃| 18禁美女被吸乳视频| 欧美一区二区精品小视频在线| 国内久久婷婷六月综合欲色啪| 国产精品精品国产色婷婷| 妹子高潮喷水视频| 精品久久久久久成人av| 国产精品爽爽va在线观看网站 | 亚洲三区欧美一区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产野战对白在线观看| 中文字幕久久专区| 最近最新免费中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 国产精品亚洲av一区麻豆| 久久精品aⅴ一区二区三区四区| 99久久99久久久精品蜜桃| 国产亚洲av嫩草精品影院| 日韩 欧美 亚洲 中文字幕| 亚洲中文日韩欧美视频| 禁无遮挡网站| 一区福利在线观看| 咕卡用的链子| 好男人在线观看高清免费视频 | 1024视频免费在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日日摸夜夜添夜夜添小说| 久久久久国内视频| 巨乳人妻的诱惑在线观看| 看黄色毛片网站| 久久午夜亚洲精品久久| 国产主播在线观看一区二区| 美国免费a级毛片|