• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bayesian Computation for the Parameters of a Zero-Inflated Cosine Geometric Distribution with Application to COVID-19 Pandemic Data

    2023-02-26 10:17:26SunisaJunnumtuamSaAatNiwitpongandSuparatNiwitpong

    Sunisa Junnumtuam,Sa-Aat Niwitpongand Suparat Niwitpong

    Department of Applied Statistics,Faculty of Applied Science,King Mongkut’s University of Technology North Bangkok,Bangkok,10800,Thailand

    ABSTRACT A new three-parameter discrete distribution called the zero-inflated cosine geometric (ZICG) distribution is proposed for the first time herein.It can be used to analyze over-dispersed count data with excess zeros.The basic statistical properties of the new distribution,such as the moment generating function,mean,and variance are presented.Furthermore,confidence intervals are constructed by using the Wald,Bayesian,and highest posterior density (HPD) methods to estimate the true confidence intervals for the parameters of the ZICG distribution.Their efficacies were investigated by using both simulation and real-world data comprising the number of daily COVID-19 positive cases at the Olympic Games in Tokyo 2020.The results show that the HPD interval performed better than the other methods in terms of coverage probability and average length in most cases studied.

    KEYWORDS Bayesian analysis;confidence interval;gibbs sampling;random-walk metropolis;zero-inflated count data

    1 I ntroduction

    Over-dispersed count data with excess zeros occur in various situations,such as the number of torrential rainfall incidences at the Daegu and the Busan rain gauge stations in South Korea [1],the DMFT (decayed,missing,and filled teeth) index in dentistry [2],and the number of falls in a study on Parkinson’s disease[3].Classical models such as Poisson,geometric,and negative binomial(NB) distributions may not be suitable for analyzing these data,so two classes of modified count models(zero-inflated(ZI)and hurdle)are used instead.Both can be viewed as finite mixture models comprising two components:for the zero part,a degenerate probability mass function is used in both,while for the non-zero part,a zero-truncated probability mass function is used in hurdle models and an untruncated probability mass function is used in ZI models.Poisson and geometric hurdle models were proposed and used by [4] to analyze data on the daily consumption of various beverages; in the intercept-only case(no regressors appear in either part of the model),the ZI model is equivalent to the hurdle model,with the estimation yielding the same log-likelihood and fitted probabilities.Furthermore,several comparisons with classical models have been reported in the literature.The efficacies of ZI and hurdle models have been explored by comparing least-squares regression with transformed outcomes(LST),Poisson regression,NB regression,ZI Poisson(ZIP),ZINB,zero-altered Poisson (ZAP) (or Poisson hurdle),and zero-altered NB (ZANB) (or NB hurdle) models [5]; the results from using both simulated and real data on health surveys show that the ZANB and ZINB models performed better than the others when the data had excess zeros and were over-dispersed.Recently,Feng[6]reviewed ZI and hurdle models and highlighted their differences in terms of their data-generating process;they conducted simulation studies to evaluate the performances of both types of models,which were found to be dependent on the percentage of zero-deflated data points in the data and discrepancies between structural and sampling zeros in the data-generating process.

    The main idea of a ZI model is to add a proportion of zeros to the baseline distribution [7,8],for which various classical count models (e.g.,ZIP,ZINB,and ZI geometric (ZIG)),are available.These have been studied in several fields and many statistical tools have been used to analyze them.The ZIP distribution originally proposed by[9]has been studied by various researchers.For instance,Ridout et al.[10]considered the number of roots produced by 270 shoots ofTrajanapple cultivars(the number of shoots entries provided excess zeros in the data),and analyzed the data by using Poisson,NB,ZIP,and ZINB models;the fits of these models were compared by using the Akaike information criterion (AIC) and the Bayesian information criterion (BIC),the results of which show that ZINB performed well.Yusuf et al.[11]applied the ZIP and ZINB regression models to data on the number of falls by elderly individuals;the results show that the ZINB model attained the best fit and was the best model for predicting the number of falls due to the presence of excess zeros and over-dispersion in the data.Iwunor[12]studied the number of male rural migrants from households by using an inflated geometric distribution and estimated the parameters of the latter;the results show that the maximum likelihood estimates were not too different from the method of moments values.Kusuma et al.[13]showed that a ZIP regression model is more suitable than an ordinary Poisson regression model for modeling the frequency of health insurance claims.

    The cosine geometric (CG) distribution,a newly reported two-parameter discrete distribution belonging to the family of weighted geometric distributions[14],is useful for analyzing over-dispersed data and has outperformed some well-known models such as Poisson,geometric,NB,and weighted NB.In the present study,the CG distribution was applied as the baseline and then a proportion of zeros was added to it,resulting in a novel three-parameter discrete distribution called the ZICG distribution.

    Statistical tools such as confidence intervals provide more information than point estimation andp-values for statistical inference [15].Hence,they have often been applied to analyze ZI count data.For example,Wald confidence intervals for the parameters in the Bernoulli component of ZIP and ZAP models were constructed by[16],while Waguespack et al.[17]provided a Wald-based confidence interval for the ZIP mean.Moreover,Srisuradetchai et al.[18]proposed the profile-likelihood-based confidence interval for the geometric parameter of a ZIG distribution.Junnumtuam et al.[19]constructed Wald confidence intervals for the parameters of a ZIP model;in an analysis of the number of daily COVID-19 deaths in Thailand using six models: Poisson,NB,geometric,Gaussian,ZIP,and ZINB,they found that the Wald confidence intervals for the ZIP model were the most suitable.Furthermore,Srisuradetchai et al.[20]proposed three confidence intervals:a Wald confidence interval and score confidence intervals using the profile and the expected or observed Fisher information for the Poisson parameter in a ZIP distribution;the latter two outperformed the Wald confidence interval in terms of coverage probability,average length,and the coverage per unit length.

    Besides the principal method involving maximum likelihood estimation widely used to estimate parameters in ZI count models,Bayesian analysis is also popular.For example,Cancho et al.[21]provided a Bayesian analysis for the ZI hyper-Poisson model by using the Markov chain Monte Carlo(MCMC) method; they used some noninformative priors in the Bayesian procedure and compared the Bayesian estimators with maximum likelihood estimates obtained by using the Newton-Raphson method and found that all of the estimates were close to the real values of the parameters as the sample size was increased,which means that their biases and mean-squared errors(MSEs)approached zero under this circumstance.Recently,Workie et al.[22]applied the Bayesian analytic approach by using MCMC simulation and Gibbs’sampling algorithm for modeling the Bayesian ZI regression model determinants to analyze under-five child mortality.

    Motivated by these previous studies,we herein propose Wald confidence intervals based on maximum likelihood estimation,Bayesian credible intervals,and highest posterior density (HPD)intervals for the three parameters of a ZICG distribution.Both simulated data and real-world data were used to compare the efficacies of the proposed methods for constructing confidence intervals via their coverage probabilities and average lengths.

    2 Methodology

    2.1 The ZICG Distribution

    The CG distribution is a two-parameter discrete distribution belonging to the family of weighted geometric distributions[14].The probability mass function(PMF)for a CG distribution is given by

    whereθ∈and

    Ifθ=0,then we can obtainCp,θ=1?pandYis a standard geometric distribution.LetXbe a random variable following a ZICG distribution with parametersω∈(0,1),p∈(0,1),andθ∈Subsequently,we can construct a new three-parameter discrete distribution with CG as the baseline distribution,and so the pmf ofXis given by

    whereωis the probability of zeros and 0≤ω≤1.Moreover,one can easily prove(X=x)=1.Fig.1 provides pmf plots for the ZICG distribution for different parameter combinations.It can be seen that even though the proportion of zeros (ω) is small (i.e.,ω=0.1),the probability of zeros is still high;e.g.,ω=0.1,p=0.5,andθ=1 providesP(X=0) >0.5.Moreover,whenpis large,the dispersion is high.Overall,the ZICG distribution,which is suitable for data that are over-dispersed with excess zeros,can be used to analyze ZI count data.

    2.2 Statistical Properties

    This section provides the cumulative distribution function (CDF),moment generating function(MGF),mean,and variance of a ZICG distribution,which are derived from the CG distribution[14].

    Figure 1:Pmf plots of the ZICG distribution for different values of the parameters ω,p,and θ

    Proposition 2.1.The cdf of a ZICG distribution with parametersω,p,andθis given by

    Proposition 2.2.The mgf of the ZICG distribution with parametersω,p,andθis given by

    Since the explicit expression for the moment using equality isμ′r=E(Xr)=M(r)(t) |t=0,then the first two moments respectively become

    SinceM′X(t=0)=E(X),then

    andMX′′(t=0)=E(X2),then

    SinceV(X)=E(X2)?(E(X))2,then

    The index of dispersion(D),a measure of dispersion,is defined as the ratio of the variance to the mean

    The values ofDfor selected values of the parametersω,p,andθare provided in Table 1.When the value of parameterpincreases,the index of dispersion also increases,and so the value ofpaffectsDmuch more than parametersωandθ.

    Table 1: Index of dispersion of the ZICG distribution for different values of parameters

    2.3 Maximum Likelihood Estimation for the ZICG Model with No Covariates

    The likelihood function of the ZICG distribution is

    while the log-likelihood function of the ZICG distribution can be expressed as

    In the case of a single homogeneous sample(p,θ,andωare constant or have no covariates),the log-likelihood function can be written as

    whereJis the largest observed count value;njis the frequency of each possible count value;j=x=0,1,2,...,J;n0is the number of observed zeros;and=nis the total number of observations or the sample size.Based on log-likelihood function(13),maximum likelihood estimates ?ω,?p,and ?Θare the roots of equationsandrespectively.

    Here,we have

    Algorithm 1:Obtaining the maximum likelihood estimates of ω,p,and θ.1.Fit a geometric model to obtain initial value p(0)for p of the CG model.2.Fit a CG model to obtain initial values p(1)for p and θ(1)for θ of the ZICG model.3.Iterate the schemes for ?p and ?Θ until convergence by using stopping rule | ?p(m+1)??p(m) |< ε,where ?p(m)and ?p(m+1)are estimates of p at the(m)th and(m+1)th iterations,respectively.4.Obtain ?ω by substituting ?p and ?Θ for p and θ.

    This provides the closed-form expression for,and so iteration is not required.However,since there are no closed-form expressions forand,they are solved by using an educated version of trialand-error.The general idea is to start with an initial educated guess of the parameter value,calculate the log-likelihood for that value,and then iteratively find parameter values with larger and larger log-likelihoods until no further improvement can be achieved.There are a variety of fast and reliable computational algorithms for carrying out these procedures,one of the most widely implemented being the Newton-Raphson algorithm[23].In this study,the maximum likelihood estimates of,,andcan be obtained by solving the resulting equations simultaneously by using thenlmfunction in[24].

    2.4 The Wald Confidence Intervals for the ZICG Parameters

    In this study,we assume that there is more than one unknown parameter.Meanwhile,the assumed parameter vector is=(β1,...,βk)Tand the maximum likelihood estimator for it is;i=1,2,...,k,wherekis the number of parameters.Thus,

    where

    Hence,the(1?α)100%Wald confidence interval can be constructed as

    Algorithm 2:Establishing the Wald confidence intervals for the ZICG parameters.1.Fit a geometric model to obtain initial value p(0)for p of the CG model.2.Fit a CG model by using the nlm function to obtain initial values p(1)for p and θ(1)for θ,and then plug in p(1)and θ(1)to obtain ω(1).3.Fit the ZICG model by using the initial values from Step 2 to obtain ?ω,?p,and ?Θ and their standard errors.4.Calculate the Wald confidence intervals for the parameters of the ZICG distribution by substituting in the estimates from Step 3.

    2.5 Bayesian Analysis for the Confidence Intervals for the ZICG Parameters

    SupposeX=x1,x2,...,xnis a sample from ZICG(ω,p,θ),then the likelihood function for the observed data is given by

    LetA=xi:xi=0,i=1,...,nandmbe the numbers in setA,then the likelihood function for ZICG can be written as

    Since the elements in setAcan be generated from two different parts:(1)the real zeros part and(2)the CG distribution,after which the an unobserved latent allocation variable can be defined as

    wherei=1,...,mand

    Thus,the likelihood function based on augmented dataD={X,I},whereI=(I1,...,Im) [25]becomes

    whereS=~Bin[m,p(ω,p,θ)].Thus,the likelihood function for ZICG based on the augmented data becomes

    and

    Since there is no prior information from historic data or previous experiments,we use the noninformative prior for all of the parameters.The prior distributions forωandpare assumed to be beta distributions while that ofθis assumed to be a gamma distribution.Thus,the joint prior distribution for ZICG is

    whereB(a,b)=andB(c,d)=In this study all of the parameters are assumed to have prior specifications,which areω~Beta(1.5,1.5),p~Beta(2,5),andθ~Gamma(2,1/3).Since the posterior distributions for the parameters can be formed as[7]

    the joint posterior distribution for parametersω,p,andθcan be written as

    Since the joint posterior distribution in (35) is analytically intractable for calculating the Bayes estimates similarly to using the posterior distribution method,MCMC simulation can be applied to generate the parameters [26,27].The Metropolis-Hastings algorithm is an MCMC method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult.Subsequently,the obtained sequence can be used to approximate the desired distribution.Moreover,the Gibbs’sampler,which is an alternative to the Metropolis-Hastings algorithm for sampling from the posterior distribution of the model parameters,can be used.Hence,the Gibbs’sampler can be applied to generate samples from the joint posterior distribution in(35).Clearly,the marginal posterior distribution ofωgivenpandθis

    Thus,the marginal posterior distribution ofωisBeta(S+a,n?S+b),and the marginal posterior distribution ofpgivenωandθis

    and the marginal posterior distribution ofθgivenωandpis

    Here,we applied the random-walk Metropolis (RWM) algorithm to generatepandθ.RWM is defined by using transition probabilityp(x→y) for one valuextoyso that the distribution of points converges toπ(x).Since RWM is a special case of the Metropolis-Hastings algorithm withp(x,y)=p(y,x)(symmetric)[28],then the acceptance probability can be calculated as

    The process proceeds as follows:

    1.Choose trial positionYj=Xj?1+?j,where?jis a random perturbation with distributiongthat is symmetric(e.g.,a normal distribution).

    2.Calculater=

    3.GenerateUjfromUniform[0,1].

    4.IfUj≤α(Xj?1,Yj),then accept the change and letXj=Yj,else letXj=Xj?1.

    The Gibbs’sampling steps are as follows:

    Algorithm 3:Establishing the Bayesian credible intervals.1.Take the initial values of ω,p,and θ(ω0,p0 and θ0,respectively).2.Take the values ωi,pi and θi for ω,p and θ at the ith step,then(a) Calculate p(ω0,p0,θ0)=ω0 ω0+(1?ω0)C(p0,θ0).(b) Generate Si from Bin(m,p(ωi?1,pi?1,θi?1)).(c) Generate ωi from Beta(Si+a,n?St+b)and obtain ωi+1.(d) Generate pi+1 by using the RWM algorithm.(e) Generate θi+1 by using the RWM algorithm.3.Repeat Step 2,N times.4.Posterior analysis:(a) Calculate the Bayesian estimators of g(ω,p,θ)by using1ΣNi=M+1g(ωi,pi,θi),where M is the number of burn-in samples.(b) Calculate the 100(1?α)% confidence interval as (g(α/2),g(1?α/2)),where g(α/2) is the α N?M 2-th quantile of g(ωi,pi,θi),and g(1?α/2)is the 1?α 2-th quantile of g(ωi,pi,θi),i=M+1,...,N.

    2.6 The Bayesian-Based HPD Interval

    The HPD interval is the shortest Bayesian credible interval containing 100(1?α)% of the posterior probability such that the density within the interval has a higher probability than outside of it.The two main properties of the HPD interval are as follows[29]:

    1.The density for each point inside the interval is greater than that for each point outside of it.

    2.For a given probability(say 1?α),the HPD interval has the shortest length.

    Bayesian credible intervals can be obtained by using the MCMC method[30].Hence,we used it to construct HPD intervals for the parameters of a ZICG distribution.This approach only requires MCMC samples generated from the marginal posterior distributions of the three parameters:ω,p,andθ.In the simulation and computation,the HPD intervals were computed by using theHDIntervalpackage version 0.2.2[31]from the R statistics program.

    Algorithm 4:Establishing the HPD intervals by using the MCMC algorithm.1.Take the initial values of ω,p,and θ(ω0,p0,and θ0,respectively).2.Take the values ωi,pi,and θi for ω,p,and θ at the ith step,then(a) Calculate p(ω0,p0,θ0)=ω0 ω0+(1?ω0)C(p0,θ0).(b) Generate Si from Bin(m,p(ωi?1,pi?1,θi?1)).(c) Generate ωi from Beta(Si+a,n?St+b)and obtain ωi+1.(d) Generate pi+1 by using the RWM algorithm.(e) Generate θi+1 by using the RWM algorithm.(Continued)

    Algorithm 4:(Continued)3.Repeat Step 2,N times.4.Posterior analysis:(a) Calculate the Bayesian estimators of g(ω,p,θ)by using1ΣNi=M+1g(ωi,pi,θi),where M is the number of burn-in samples.(b) Calculate the 100(1?α% HPD intervals for the parameters by using the HDInterval package in R program.N?M

    2.7 The Efficacy Comparison Criteria

    Coverage probabilities and average lengths were used to compare the efficacies of the confidence intervals.Suppose the nominal confidence level is 1?α,then confidence intervals that provide coverage probabilities of 1?αor better are selected.In addition,the shortest average length identifies the best confidence interval under the provided conditions.LetC(s)=1 if the parameter values fall within the confidence interval range,elseC(s)=0.The coverage probability is computed by

    and the average length is computed by

    whereU(s)andL(s)are the upper and lower bounds of the confidence interval for loops,respectively.

    3 Results and Discussion

    3.1 Simulation Study

    Sample sizen=50 or 100; proportion of zerosω=0.1,0.5,or 0.9;p=0.5 or 0.9; andθ=1 or 3 were the parameter values used in the simulation study.The simulation data were generated by using the inverse transform method[32],with the number of replications set as 1,000 and the nominal confidence level as 0.95.A flowchart of the simulation study is presented in Fig.2,while the coverage probabilities and average lengths of the methods are reported in Table 2.

    For sample sizen=50 or 100,the Bayesian credible intervals and the HPD intervals performed better than the Wald confidence intervals because they provided coverage probabilities close to the nominal confidence level(0.95)and obtained the shorter average lengths for almost all of the cases.However,when the proportion of zeros was high(i.e.,ω=0.9),none of the methods performed well.In addition,the average lengths of all of the methods decreased forn=100 compared ton=50.Overall,the Wald confidence intervals did not perform well,which might have been caused by poor optimization that can sometimes occur.Thus,the optimization was not a good choice in this case.Similarly,Srisuradetchai et al.[20] found that when the Poisson parameter has a low value and the sample size is small,the Wald confidence interval for the Poisson parameter of a ZIP distribution was inferior to the other two intervals tested.Moreover,for a small sample size,the coverage probabilities of the Wald confidence intervals tended to decrease as the proportion of zeros was increased.Likewise,Daidoji et al.[33]showed that the Wald-type confidence interval for the Poisson parameter of a zerotruncated Poisson distribution performed unsatisfactorily because its coverage probability was below the nominal value when the Poisson mean and/or sample size was small.Hence,in the present study,estimations by using the Bayesian credible intervals and the HPD intervals were more accurate than the Wald confidence interval for all of the test settings.

    Figure 2:A flowchart of the simulation study

    Table 2:The coverage probabilities and average lengths of the 95%confidence interval for parameters of the ZICG distribution

    Table 2 (continued)npθωMethodCPsALs ωpθωpθ 0.5Wald0.58120.8820.096143.93785.86326.715 Bayesian0.9830.8750.8660.7520.2834.020 HPD0.9410.8190.9460.7060.2673.908 0.9Wald0.7540.9250.63782.84059.0229.714 Bayesian0.9210.8440.8640.8860.5123.985 HPD0.8550.650.8970.8430.4693.836 500.910.1Wald0.5440.5560.03115865.933512.2280.011 Bayesian0.9860.9990.8780.25070.1113.878 HPD0.9650.9990.9760.2260.1113.722 0.5Wald0.4020.4000.0075550.402483.1880.019 Bayesian0.9730.9970.9060.3750.1493.962 HPD0.9700.9930.9810.3710.1483.863 0.9Wald0.7220.7220.027790.778544.4650.136 Bayesian0.9600.9710.8860.2910.2893.951 HPD0.9760.9480.9560.2670.2803.823 500.530.1Wald0.8720.8190.004174.91465.6430.871 Bayesian0.9990.6730.9990.3690.1634.646 HPD0.9990.6520.9990.3230.1604.460 0.5Wald0.9560.9110.02459.56020.0941.538 Bayesian0.8040.8960.9990.5920.2044.447 HPD0.6450.8500.9990.5370.1954.300 0.9Wald0.9520.9540.63197.29028.39969.825 Bayesian0.6340.6420.9990.8890.3854.075 HPD0.5280.4520.9990.8510.3513.947 500.930.1Wald0.4870.3930.00013654.005502.6190.014 Bayesian0.9850.9970.9990.2400.1164.720 HPD0.9550.9980.9990.2150.1154.525 0.5Wald0.4380.3640.0024698.163463.4540.027 Bayesian0.9370.9630.9990.3900.1584.694 HPD0.9210.9610.9990.3830.1574.518 0.9Wald0.7750.7120.013628.775428.6540.242 Bayesian0.8890.8150.9990.4110.3184.060 HPD0.8920.7830.9990.3830.3083.939 1000.510.1Wald0.4800.6940.005116.67155.9140.211 Bayesian0.9890.7650.8070.4650.1343.935 HPD0.9840.7730.9030.4180.1283.774 0.5Wald0.4850.7780.01690.84067.5651.003 Bayesian0.9360.8460.8100.6660.2303.966(Continued)

    Table 2 (continued)npθωMethodCPsALs ωpθωpθ HPD0.8730.8010.8980.6250.2213.841 0.9Wald0.7070.7670.397351.2846417.27715.518 Bayesian0.9260.8210.8410.7560.4843.991 HPD0.8770.6880.9090.7000.4543.856 1000.910.1Wald0.4800.4830.01113083.192408.0860.006 Bayesian0.9650.9980.8990.2020.0823.855 HPD0.9270.9980.9920.1870.0823.679 0.5Wald0.3800.3870.0074091.424341.9660.011 Bayesian0.9520.9990.8670.2630.1113.876 HPD0.9510.9990.9790.2600.1113.716 0.9Wald0.6400.6650.019700.136561.4760.059 Bayesian0.9470.9860.9080.1590.2163.985 HPD0.9600.9850.9550.1520.2143.888 1000.530.1Wald0.7250.7200.00688.31531.1670.325 Bayesian0.9990.8850.9990.2860.1524.706 HPD0.9960.8660.9990.2500.1494.510 0.5Wald0.8950.8300.00852.32419.1271.030 Bayesian0.7860.9080.9990.5700.2064.579 HPD0.6430.8650.9990.5260.1994.404 0.9Wald0.9270.8890.301116.85250.70114.860 Bayesian0.5680.5250.9990.8480.3494.130 HPD0.4560.4040.9990.8110.3274.020 1000.930.1Wald0.4010.2760.00010599.191376.3300.008 Bayesian0.9590.9990.9990.1900.0884.717 HPD0.9080.9990.9990.1750.0874.513 0.5Wald0.3800.2980.0013484.650334.2180.012 Bayesian0.9560.9990.9990.2520.1164.718 HPD0.9550.9990.9990.2500.1154.519 0.9Wald0.7550.7000.005489.154330.3620.089 Bayesian0.9270.9010.9990.2070.2374.346 HPD0.9380.8940.9990.1960.2354.235

    3.2 Applicability of the Methods When Using Real COVID-19 Data

    Data for new daily COVID-19 cases during the Tokyo 2020 Olympic Games from 01 July 2021 to 12 August 2021 were used for this demonstration.The data are reported by the Tokyo Organizing Committee on the Government website (https://olympics.com/en/olympic-games/tokyo-2020) and they are shown in Table 3,with a histogram of the data provided in Fig.3.

    Table 3: The number of daily COVID-19-positive cases during the olympic games in Tokyo 2020

    Figure 3:A histogram of the number of COVID-19-positive case during the olympic games in Tokyo 2020

    3.2.1 Analysis of the COVID-19 Data

    The information in Table 4 shows that the data are over-dispersed with an index of dispersion of 9.7149.The suitability of fitting the data to ZICG,ZIG,ZIP,ZINB,CG,geometric,Poisson,NB,and Gaussian distributions was assessed by using the AIC computed as AIC=2k?and the corrected AIC(AICc)computed as AICc=AIC+2k(k+1)/(n?k?1)based on the log-likelihood functionwherekis the number of parameters to fit.As can be seen in Table 5,the AIC and AICc values for ZICG were very similar (290.1166 and 290.7320) and the lowest recorded,thereby inferring that it provided the best fit for the data.

    Table 4: Descriptive statistics

    Table 5: Log-likelihood(l),AIC,and AICc values

    The 95%confidence intervals for the parameters of a ZICG distribution constructed by using the three estimation methods are provided in Table 6.The maximum likelihood estimates for parametersω,p,andθwere 0.0743,0.9238,and 0.4967,respectively.From the simulation results in Table 2 forn=50,ω=0.1,p=0.9,andθ=1,the HPD intervals provided a coverage probability greater than 0.95 for all of the parameters.Hence the HPD intervals are recommended for constructing the 95%confidence intervals for the parameters in this scenario.

    Table 6: Estimation of the number of daily COVID-19-positive cases during the olympic games in Tokyo 2020

    4 Conclusions

    We proposed a new mixture distribution called ZICG and presented its properties,namely the mgf,mean,variance,and Fisher information.According to the empirical study results,the ZICG distribution is suitable for over-dispersed count data containing excess zeros,such as occurred in the number of daily COVID-19-positive cases at the Tokyo 2020 Olympic Games.Confidence intervals for the three parameters of the ZICG distribution were constructed by using the Wald confidence interval,the Bayesian credible interval,and the HPD interval.Since the maximum likelihood estimates of the ZICG model parameters have no closed form,the Newton-Raphson method was applied to estimate the parameters and construct the Wald confidence intervals.Furthermore,Gibbs’sampling with the RWM algorithm was utilized in the Bayesian computation to approximate the parameters and construct the Bayesian credible intervals and the HPD intervals.Their performances were compared in terms of coverage probabilities and average lengths.According to the simulation results,the index of dispersion plays an important role:when it was small(e.g.,p=0.5),the Bayesian credible intervals and HPD intervals provided coverage probabilities greater than the nominal confidence level(0.95)in some cases whereas the Wald confidence interval did not perform at all well except for one case.Therefore,the Wald confidence interval approach is not recommended for constructing the confidence intervals for the ZICG parameters.Overall,the HPD interval approach is recommended for constructing the 95% confidence intervals for the parameters of a ZICG distribution since it provided coverage probabilities close to the nominal confidence level and the smallest average lengths in most cases.However,there are some cases where none of the methods performed well and so,in future research,other methods for estimating the parameters of a ZICG distribution will be investigated.For example,the prior part of the Bayesian computation should be further investigated to improve the efficiency of the Bayesian analysis.Furthermore,count data with more than one inflated value such as zeros-andones can occur,and so the zero-and-one inflated CG distribution could be interesting in this case.

    Acknowledgement: The first author acknowledges the generous financial support from the Science Achievement Scholarship of Thailand(SAST).

    Funding Statement:This research has received funding support from the National Science,Research and Innovation Fund(NSRF),and King Mongkut’s University of Technology North Bangkok(Grant No.KMUTNB-FF-65-22).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    Appendix A.R code for simulation study

    rCGD

    X=rep(0,n)

    for(j in 1:n){

    i=0

    #step 1:Generated Uniform(0,1)

    U=runif(1,0,1)

    #step 2:Computed F(k??1)and F(k?)

    cdf

    /(2+p ?((p?3)?cos(2 ?theta)+p?1))

    while(U>=cdf)

    {i=i+1;

    cdf=cdf+f(i,p,theta)}

    X[j]=i;

    }

    return(X)

    }

    C

    (2 ?(1?p)?(1?2 ?p ?cos(2 ?theta)+p∧2))/(2+p ?((p?3)?cos(2 ?theta)+p?1))}

    #Calculating log likelihood of CG

    loglikeCG

    p

    theta

    loglike

    n ?log(1?2 ?p ?cos(2 ?theta)+p∧2)?

    n ?log(2+p ?((p?3)?cos(2 ?theta)+p?1))+

    log(p)?sum(y)+2 ?sum(log(cos(y ?theta)))

    #note use of sum

    loglike

    }

    #Calculating the log-likelihood for ZICG

    loglikeZICG

    w

    p

    theta

    n0

    ypos0

    loglike

    +sum(log((1?w)?C(p,theta)?

    (p∧ypos)?cos(ypos ?theta)∧2))

    loglike

    }

    #Bayesian Confidence Interval

    gibbs

    nonzero_values=y[which(y!=0)]

    m

    ypos=y[which(y!=0)]

    prob.temp=numeric()

    S.temp=numeric()

    theta.temp=numeric(sample.size)

    w.temp=numeric(sample.size)

    p.temp=numeric(sample.size)

    p.temp[1]

    theta.temp[1]

    w.temp[1]

    prob.temp[1]

    ?1?2 ?p.temp[1]?cos(2 ?theta.temp[1])+p.temp[1]∧2))/(2+p.temp[1]?((p.temp[1]?3)

    ?cos(2 ?theta.temp[1])+p.temp[1]?1)))

    S.temp[1]

    w.temp[1]

    p.samp

    sigma=1)

    p.temp[1]

    theta.samp

    sigma=1)

    theta.temp[1]

    for(i in 2:(sample.size)){

    prob.temp[i]

    theta.temp[i?1]))

    S.temp[i]

    w.temp[i]

    ,n?S.temp[i]+0.5)

    p.samp

    theta=theta.temp[i?1],sigma=1)

    p.temp[i]

    theta.samp

    p=p.temp[i],sigma=1)

    theta.temp[i]

    return(cbind(w.temp,p.temp,theta.temp))}

    #random walk Metropolis for sample theta

    GenerateMCMCsample

    prior

    theta.samp

    theta.samp[1]

    for(j in 2:N){

    Yj

    if(0<=Yj&&Yj<=pi/2){

    alpha.cri

    (2+p ?((p?3)?cos(2 ?Yj)+p?1)))∧(n?m)?prod((cos(ypos ?Yj))∧2)?prior(Yj))/

    ((w+(1?w)?C(p,theta.samp[j?1]))∧m ?((1?w)?(2 ?(1?p)?

    (1?2 ?p ?cos(2 ?theta.samp[j?1])+p∧2))/

    (2+p ?((p?3)?cos(2 ?theta.samp[j?1])+p?1)))∧(n?m)?

    prod((cos(ypos ?theta.samp[j?1]))∧2)?prior(theta.samp[j?1]))

    }else{alpha.cri

    U

    if(is.na(alpha.cri)){theta.samp[j]

    if(U

    {theta.samp[j]

    }elsetheta.samp[j]

    }return(theta.samp)}

    ##Random Walk Metropolis sampler for p

    GenerateMCMC.p

    prior

    shape2=5)

    p.samp

    p.samp[1]

    for(j in 2:N){

    Yj

    if(0<=Yj&&Yj<=1){

    alpha.cri

    ?prior(Yj)/((w+(1?w)?C(p.samp[j?1],theta))∧m ?

    ((1?w)?C(p.samp[j?1],theta))∧(n?m)?p.samp[j?1]∧(sum(y)))?prior(p.samp[j?1])

    }else{alpha.cri

    U

    if(is.na(alpha.cri)){

    p.samp[j]

    else{if(U

    p.samp[j]

    }elsep.samp[j]

    return(p.samp)

    }

    i=0

    while(i

    suscept

    count

    y=suscept ?count

    if(max(y)==0){

    next

    }i=i+1

    p_hat

    p0=p_hat$parameters;theta0=0.5;

    #store starting values

    intvalues1=c(p0,theta0)

    resultCG

    mleCG

    mleCG.p

    mleCG.theta

    #formula for estimating w(omega)

    n0

    p1=mleCG.p;theta1=mleCG.theta;

    c_hat

    w1

    intvalues2=c(w1,p1,theta1)

    resultZICG

    mleZICG

    hess

    cov

    stderr

    mle.w

    mle.p

    mle.theta

    sd.w

    sd.p

    sd.theta

    #Wald confidence interval for w

    #lower bound of Wald CI for w

    Wald.w.L[i]

    #Upper bound of Wald CI for w

    Wald.w.U[i]

    Wald.CI.w=rbind(c(Wald.w.L[i],Wald.w.U[i]))

    Wald.CP.w[i]=ifelse(Wald.w.L[i]

    Wald.Length.w[i]=Wald.w.U[i]?Wald.w.L[i]

    #Wald confidence interval for p

    #lower bound of Wald CI for p

    Wald.p.L[i]

    #Upper bound of Wald CI for p

    Wald.p.U[i]

    Wald.CI.p=rbind(c(Wald.p.L[i],Wald.p.U[i]))

    Wald.CP.p[i]=ifelse(Wald.p.L[i]

    Wald.Length.p[i]=Wald.p.U[i]?Wald.p.L[i]

    #Wald confidence interval for theta

    #lower bound of Wald CI for theta

    Wald.theta.L[i]

    #Upper bound of Wald CI for theta

    Wald.theta.U[i]

    Wald.CI.theta=rbind(c(Wald.theta.L[i],Wald.theta.U[i]))

    Wald.CP.theta[i]=ifelse(Wald.theta.L[i]

    Wald.Length.theta[i]=Wald.theta.U[i]?Wald.theta.L[i]

    #########End Wald CI#############

    test

    n=n,p=p,theta=theta,w=w)

    #burn-in w estimator

    w.mcmc

    #estimator of w

    w.bayes

    #burn-in p estimator

    p.mcmc

    #estimator of p

    p.bayes

    #burn-in theta estimator

    theta.mcmc

    #estimator of theta

    theta.bayes

    #########Construct Bayesian confidence interval########

    L.w[i]=quantile(w.mcmc,alpha/2,na.rm=TRUE)

    U.w[i]=quantile(w.mcmc,(1?alpha/2),na.rm=TRUE)

    CIr1=rbind(c(L.w[i],U.w[i]))

    Bayes.CP.w[i]=ifelse(L.w[i]

    Bayes.Length.w[i]=U.w[i]?L.w[i]

    L.p[i]=quantile(p.mcmc,alpha/2,na.rm=TRUE)

    U.p[i]=quantile(p.mcmc,(1?alpha/2),na.rm=TRUE)

    CIr2=rbind(c(L.p[i],U.p[i]))

    Bayes.CP.p[i]=ifelse(L.p[i]

    Bayes.Length.p[i]=U.p[i]?L.p[i]

    L.the[i]=quantile(theta.mcmc,alpha/2,na.rm=TRUE)

    U.the[i]=quantile(theta.mcmc,(1?alpha/2),na.rm=TRUE)

    CIr3=rbind(c(L.the[i],U.the[i]))

    Bayes.CP.the[i]=ifelse(L.the[i]

    Bayes.Length.the[i]=U.the[i]?L.the[i]

    #########Construct HPD interval########

    w.hpd=hdi(w.mcmc,0.95)

    L.w.hpd[i]=w.hpd[1]

    U.w.hpd[i]=w.hpd[2]

    CIr4=rbind(c(L.w.hpd[i],U.w.hpd[i]))

    CP.w.hpd[i]=ifelse(L.w.hpd[i]

    Length.w.hpd[i]=U.w.hpd[i]?L.w.hpd[i]

    p.hpd=hdi(p.mcmc,0.95)

    L.p.hpd[i]=p.hpd[1]

    U.p.hpd[i]=p.hpd[2]

    CIr5=rbind(c(L.p.hpd[i],U.p.hpd[i]))

    CP.p.hpd[i]=ifelse(L.p.hpd[i]

    Length.p.hpd[i]=U.p.hpd[i]?L.p.hpd[i]

    theta.hpd=hdi(theta.mcmc,0.95)

    L.the.hpd[i]=theta.hpd[1]

    U.the.hpd[i]=theta.hpd[2]

    CIr6=rbind(c(L.the.hpd[i],U.the.hpd[i]))

    CP.the.hpd[i]=ifelse(L.the.hpd[i]

    Length.the.hpd[i]=U.the.hpd[i]?L.the.hpd[i]

    }

    好男人在线观看高清免费视频| 菩萨蛮人人尽说江南好唐韦庄 | 91精品国产九色| 成人av在线播放网站| 少妇人妻精品综合一区二区 | 国产成人a区在线观看| 亚洲av中文字字幕乱码综合| 久久久久免费精品人妻一区二区| 亚洲成人久久性| 亚洲av男天堂| 久久6这里有精品| 麻豆乱淫一区二区| 精品国内亚洲2022精品成人| 亚洲中文字幕日韩| 久久精品国产亚洲av香蕉五月| 天美传媒精品一区二区| 国模一区二区三区四区视频| 综合色av麻豆| 国产老妇女一区| 九草在线视频观看| 国产成人精品久久久久久| 欧美三级亚洲精品| 男的添女的下面高潮视频| ponron亚洲| 夜夜看夜夜爽夜夜摸| 亚洲,欧美,日韩| 国产伦精品一区二区三区四那| 成人综合一区亚洲| 黄色欧美视频在线观看| 男女那种视频在线观看| 在线播放国产精品三级| 国产在视频线在精品| 日本在线视频免费播放| 中文字幕久久专区| 欧美潮喷喷水| av黄色大香蕉| 国产 一区 欧美 日韩| 午夜久久久久精精品| 精品久久久噜噜| 伊人久久精品亚洲午夜| 亚洲真实伦在线观看| 男女边吃奶边做爰视频| 成人av在线播放网站| 青春草视频在线免费观看| 国产熟女欧美一区二区| 色综合亚洲欧美另类图片| 免费人成视频x8x8入口观看| 午夜福利成人在线免费观看| 少妇熟女aⅴ在线视频| 国产午夜精品久久久久久一区二区三区| a级毛片免费高清观看在线播放| 亚洲国产色片| 国产av麻豆久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 国产蜜桃级精品一区二区三区| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 九草在线视频观看| 一区福利在线观看| 免费搜索国产男女视频| 亚洲av不卡在线观看| 最新中文字幕久久久久| 岛国在线免费视频观看| 国产精品久久久久久久久免| 亚洲成av人片在线播放无| 国产三级中文精品| 舔av片在线| 少妇熟女欧美另类| 国产激情偷乱视频一区二区| 夫妻性生交免费视频一级片| 亚洲中文字幕一区二区三区有码在线看| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区人妻视频| 大型黄色视频在线免费观看| 欧美+亚洲+日韩+国产| 男人舔奶头视频| 男女啪啪激烈高潮av片| 亚洲成人精品中文字幕电影| 久久99热这里只有精品18| 26uuu在线亚洲综合色| 91久久精品国产一区二区三区| 最后的刺客免费高清国语| 男插女下体视频免费在线播放| 99riav亚洲国产免费| 久久国内精品自在自线图片| 国产精品美女特级片免费视频播放器| 美女 人体艺术 gogo| 午夜精品国产一区二区电影 | 一本久久精品| 熟女人妻精品中文字幕| 成熟少妇高潮喷水视频| 91精品一卡2卡3卡4卡| 内射极品少妇av片p| 久久亚洲国产成人精品v| 亚洲国产日韩欧美精品在线观看| 18+在线观看网站| 热99re8久久精品国产| 国产私拍福利视频在线观看| 天天躁日日操中文字幕| 亚洲av免费高清在线观看| 麻豆av噜噜一区二区三区| 日本一本二区三区精品| 日韩国内少妇激情av| 亚洲激情五月婷婷啪啪| 久久精品影院6| 精品一区二区三区视频在线| 午夜精品一区二区三区免费看| 亚洲最大成人中文| 黄片无遮挡物在线观看| 亚洲内射少妇av| 午夜亚洲福利在线播放| 国产精品美女特级片免费视频播放器| 亚洲国产精品国产精品| 91狼人影院| 老熟妇乱子伦视频在线观看| 99国产极品粉嫩在线观看| 亚洲自拍偷在线| 久久久国产成人精品二区| 欧美高清性xxxxhd video| 亚洲性久久影院| 1000部很黄的大片| 国产 一区精品| 99热只有精品国产| 91久久精品国产一区二区成人| 草草在线视频免费看| 亚洲aⅴ乱码一区二区在线播放| 麻豆av噜噜一区二区三区| 欧美潮喷喷水| 中文亚洲av片在线观看爽| eeuss影院久久| 亚洲最大成人av| 一级毛片我不卡| 熟女人妻精品中文字幕| 别揉我奶头 嗯啊视频| 亚洲在线自拍视频| 欧美人与善性xxx| 一进一出抽搐gif免费好疼| av在线观看视频网站免费| 久久99热这里只有精品18| 丰满乱子伦码专区| av在线播放精品| 97热精品久久久久久| 男插女下体视频免费在线播放| 又爽又黄无遮挡网站| 中文字幕免费在线视频6| 天堂网av新在线| 国产精品.久久久| 欧美日本亚洲视频在线播放| 天堂√8在线中文| 熟女人妻精品中文字幕| 免费看光身美女| 亚洲欧美成人综合另类久久久 | 麻豆国产av国片精品| 午夜免费男女啪啪视频观看| 精华霜和精华液先用哪个| 久久午夜福利片| 黄色欧美视频在线观看| 久久99蜜桃精品久久| 日韩av在线大香蕉| 日韩视频在线欧美| 久久99精品国语久久久| 卡戴珊不雅视频在线播放| 国产精品麻豆人妻色哟哟久久 | 美女脱内裤让男人舔精品视频 | 国产乱人偷精品视频| 三级国产精品欧美在线观看| 乱人视频在线观看| 日本三级黄在线观看| 亚洲一区二区三区色噜噜| 国产成人精品婷婷| 极品教师在线视频| 亚洲国产高清在线一区二区三| 男女边吃奶边做爰视频| 亚洲精品456在线播放app| 国产高清不卡午夜福利| 久久久久久久午夜电影| 成人亚洲精品av一区二区| 美女脱内裤让男人舔精品视频 | 久久人妻av系列| 亚洲精品亚洲一区二区| 91久久精品国产一区二区成人| 又黄又爽又刺激的免费视频.| 天天躁夜夜躁狠狠久久av| 偷拍熟女少妇极品色| 一级黄片播放器| 啦啦啦观看免费观看视频高清| 亚洲在久久综合| 乱码一卡2卡4卡精品| 美女脱内裤让男人舔精品视频 | 97超视频在线观看视频| 国产成人a∨麻豆精品| 蜜桃亚洲精品一区二区三区| 亚洲丝袜综合中文字幕| ponron亚洲| 亚洲国产欧美人成| 精品人妻熟女av久视频| 日韩一区二区视频免费看| 国产免费一级a男人的天堂| 国内揄拍国产精品人妻在线| 久久午夜福利片| 国产 一区 欧美 日韩| 黄色日韩在线| 国产三级中文精品| 国产伦理片在线播放av一区 | 高清在线视频一区二区三区 | 一级黄片播放器| 国产色婷婷99| 看十八女毛片水多多多| 蜜臀久久99精品久久宅男| 久久人妻av系列| 日韩一本色道免费dvd| а√天堂www在线а√下载| 老师上课跳d突然被开到最大视频| 日韩精品青青久久久久久| 一个人观看的视频www高清免费观看| 啦啦啦观看免费观看视频高清| 精品人妻视频免费看| 午夜福利视频1000在线观看| 久久久久久久久中文| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 国产精品国产高清国产av| 精品午夜福利在线看| 性欧美人与动物交配| 国产极品精品免费视频能看的| 欧美日韩乱码在线| 亚洲丝袜综合中文字幕| 99久久精品热视频| 久久久久性生活片| 免费观看在线日韩| 久久6这里有精品| 久久这里有精品视频免费| 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 亚洲av二区三区四区| 一级毛片电影观看 | 一级av片app| 久久久久国产网址| avwww免费| 18禁在线播放成人免费| 成年免费大片在线观看| 亚洲精华国产精华液的使用体验 | 成人av在线播放网站| 国产91av在线免费观看| 国产日韩欧美在线精品| 久久久久久久久久久免费av| 国产精品av视频在线免费观看| 亚洲精品国产成人久久av| 久久久色成人| 中文在线观看免费www的网站| 国产伦一二天堂av在线观看| 色哟哟哟哟哟哟| 久久精品国产清高在天天线| 欧美一区二区亚洲| 亚洲国产色片| 18+在线观看网站| 99久久中文字幕三级久久日本| 一级黄片播放器| 你懂的网址亚洲精品在线观看 | 成人二区视频| 日韩人妻高清精品专区| 在线观看午夜福利视频| 久久鲁丝午夜福利片| 一边亲一边摸免费视频| 精品久久久久久久久久久久久| 中文欧美无线码| 亚洲欧美日韩高清专用| 人人妻人人澡人人爽人人夜夜 | 日本五十路高清| 禁无遮挡网站| 网址你懂的国产日韩在线| 一级毛片电影观看 | 久久精品夜色国产| 国产极品精品免费视频能看的| 99国产精品一区二区蜜桃av| 亚洲无线观看免费| 一边亲一边摸免费视频| 久久久a久久爽久久v久久| 精品人妻视频免费看| 人妻少妇偷人精品九色| 日本黄色视频三级网站网址| 性插视频无遮挡在线免费观看| 在线播放无遮挡| 亚洲国产欧美在线一区| 高清在线视频一区二区三区 | 日日撸夜夜添| 欧美极品一区二区三区四区| 欧美日本亚洲视频在线播放| 最近2019中文字幕mv第一页| 日本黄色视频三级网站网址| 夜夜爽天天搞| av国产免费在线观看| 卡戴珊不雅视频在线播放| 国产成年人精品一区二区| 天天躁日日操中文字幕| 国产亚洲av片在线观看秒播厂 | 久久99热这里只有精品18| 免费观看的影片在线观看| 日本一本二区三区精品| 国产免费一级a男人的天堂| 国产男人的电影天堂91| 亚洲精品乱码久久久久久按摩| av在线观看视频网站免费| or卡值多少钱| 午夜激情欧美在线| 免费av观看视频| 日韩人妻高清精品专区| 黄色视频,在线免费观看| 秋霞在线观看毛片| 国产精品99久久久久久久久| 久久国产乱子免费精品| 亚洲七黄色美女视频| 久久精品国产亚洲av天美| av福利片在线观看| 中文精品一卡2卡3卡4更新| 可以在线观看的亚洲视频| 免费一级毛片在线播放高清视频| 欧美+亚洲+日韩+国产| 久久6这里有精品| 国产日韩欧美在线精品| 只有这里有精品99| 色播亚洲综合网| 国产探花在线观看一区二区| 久久欧美精品欧美久久欧美| 黄片wwwwww| 精品国产三级普通话版| 国产精品久久久久久av不卡| 日本在线视频免费播放| 国产精品久久久久久久电影| 99热网站在线观看| 高清毛片免费观看视频网站| 亚洲丝袜综合中文字幕| 天天躁夜夜躁狠狠久久av| 欧美在线一区亚洲| 精品人妻一区二区三区麻豆| 在线a可以看的网站| 国产高清视频在线观看网站| 一级黄片播放器| 日韩,欧美,国产一区二区三区 | 在线观看av片永久免费下载| 99九九线精品视频在线观看视频| 老司机福利观看| 日本熟妇午夜| 亚洲av.av天堂| 一进一出抽搐动态| 成人永久免费在线观看视频| 国产 一区精品| 一个人观看的视频www高清免费观看| 天堂影院成人在线观看| 在线观看av片永久免费下载| 日韩成人av中文字幕在线观看| 天堂√8在线中文| 搡老妇女老女人老熟妇| 精品99又大又爽又粗少妇毛片| 国产精品一区二区性色av| 国产高清有码在线观看视频| 99久久人妻综合| 日本免费一区二区三区高清不卡| 两个人视频免费观看高清| 啦啦啦观看免费观看视频高清| 日韩精品有码人妻一区| 亚洲成人久久爱视频| 白带黄色成豆腐渣| 国产一区二区在线av高清观看| 日本三级黄在线观看| 亚洲欧美精品专区久久| 亚洲国产色片| 网址你懂的国产日韩在线| 一级毛片电影观看 | 亚洲五月天丁香| 国产精品人妻久久久久久| 国产一区二区在线观看日韩| 国产人妻一区二区三区在| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 欧美3d第一页| 日本-黄色视频高清免费观看| 激情 狠狠 欧美| 日韩欧美国产在线观看| 国产一区二区三区av在线 | 午夜福利高清视频| 亚洲高清免费不卡视频| 特级一级黄色大片| 免费不卡的大黄色大毛片视频在线观看 | 观看免费一级毛片| 久久人人精品亚洲av| 精品一区二区三区视频在线| 少妇熟女aⅴ在线视频| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 国产乱人视频| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 男女下面进入的视频免费午夜| 性插视频无遮挡在线免费观看| 国产午夜精品论理片| 亚洲国产欧美人成| 亚洲天堂国产精品一区在线| 久久欧美精品欧美久久欧美| 精品人妻熟女av久视频| 九九在线视频观看精品| 久久精品影院6| 别揉我奶头 嗯啊视频| 欧美日本亚洲视频在线播放| 免费观看的影片在线观看| 色5月婷婷丁香| 国产精品一区二区在线观看99 | 女人被狂操c到高潮| 成年女人看的毛片在线观看| 一级二级三级毛片免费看| 午夜精品国产一区二区电影 | 国产视频首页在线观看| 夜夜夜夜夜久久久久| 全区人妻精品视频| 国产精品国产三级国产av玫瑰| 午夜激情欧美在线| 欧美不卡视频在线免费观看| 在线观看一区二区三区| 久久久午夜欧美精品| 午夜亚洲福利在线播放| 美女被艹到高潮喷水动态| 男女下面进入的视频免费午夜| 成人av在线播放网站| 久久久久国产网址| 亚洲国产欧洲综合997久久,| 欧美3d第一页| 伊人久久精品亚洲午夜| av黄色大香蕉| 日本免费一区二区三区高清不卡| 女人十人毛片免费观看3o分钟| 国产欧美日韩精品一区二区| 日韩欧美一区二区三区在线观看| 非洲黑人性xxxx精品又粗又长| 三级男女做爰猛烈吃奶摸视频| 麻豆久久精品国产亚洲av| 欧美日韩在线观看h| 亚洲欧美日韩高清专用| 女同久久另类99精品国产91| 一级二级三级毛片免费看| 人妻少妇偷人精品九色| 美女脱内裤让男人舔精品视频 | 人妻夜夜爽99麻豆av| 国产成年人精品一区二区| 欧美xxxx性猛交bbbb| 男女下面进入的视频免费午夜| 毛片一级片免费看久久久久| 国产亚洲91精品色在线| 特大巨黑吊av在线直播| 男女啪啪激烈高潮av片| 亚洲人与动物交配视频| 国产精品蜜桃在线观看 | 91aial.com中文字幕在线观看| 18禁在线播放成人免费| 成人欧美大片| av又黄又爽大尺度在线免费看 | 蜜桃亚洲精品一区二区三区| 2021天堂中文幕一二区在线观| 亚洲国产精品成人久久小说 | 在现免费观看毛片| 小说图片视频综合网站| av在线播放精品| 精品少妇黑人巨大在线播放 | 好男人视频免费观看在线| 婷婷亚洲欧美| 69人妻影院| 日日摸夜夜添夜夜添av毛片| 国产精品人妻久久久影院| 国产精品久久电影中文字幕| 日韩人妻高清精品专区| 国产精品嫩草影院av在线观看| 免费av不卡在线播放| 观看美女的网站| 欧美日韩国产亚洲二区| 色综合站精品国产| 一本精品99久久精品77| 热99在线观看视频| 久久精品国产99精品国产亚洲性色| 波多野结衣高清无吗| 简卡轻食公司| 欧美日韩国产亚洲二区| 夫妻性生交免费视频一级片| 一级二级三级毛片免费看| 啦啦啦观看免费观看视频高清| 亚洲欧美成人综合另类久久久 | 91久久精品国产一区二区成人| 亚洲在线自拍视频| 久久婷婷人人爽人人干人人爱| 女人被狂操c到高潮| 亚洲激情五月婷婷啪啪| 精品一区二区三区视频在线| 亚洲电影在线观看av| 久久午夜福利片| 亚洲经典国产精华液单| 天天躁日日操中文字幕| 少妇高潮的动态图| 精品免费久久久久久久清纯| 尾随美女入室| 麻豆国产97在线/欧美| 最近最新中文字幕大全电影3| 黄片wwwwww| 欧美3d第一页| 日韩精品青青久久久久久| 精品人妻熟女av久视频| 1000部很黄的大片| 老司机影院成人| 亚洲中文字幕一区二区三区有码在线看| 国模一区二区三区四区视频| av天堂中文字幕网| 久久韩国三级中文字幕| 欧美日韩综合久久久久久| 国产精品美女特级片免费视频播放器| 3wmmmm亚洲av在线观看| 老师上课跳d突然被开到最大视频| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 久久久午夜欧美精品| 最近的中文字幕免费完整| 国产亚洲精品久久久久久毛片| 舔av片在线| 亚洲成av人片在线播放无| 精品午夜福利在线看| 国产成人a区在线观看| 国产一区二区在线观看日韩| 国产成人福利小说| 国产亚洲av片在线观看秒播厂 | 国产精品免费一区二区三区在线| 简卡轻食公司| 国产极品天堂在线| 国产亚洲欧美98| 亚洲自拍偷在线| 国产精品伦人一区二区| 3wmmmm亚洲av在线观看| 女的被弄到高潮叫床怎么办| 日韩欧美精品v在线| 性色avwww在线观看| 国产 一区 欧美 日韩| 国产精品一区二区三区四区久久| 看片在线看免费视频| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 91在线精品国自产拍蜜月| 国产精品乱码一区二三区的特点| 亚洲七黄色美女视频| 三级经典国产精品| 一边摸一边抽搐一进一小说| av福利片在线观看| 女人十人毛片免费观看3o分钟| 国产亚洲av片在线观看秒播厂 | 变态另类成人亚洲欧美熟女| 日本爱情动作片www.在线观看| 久久久久久久久中文| 中文字幕熟女人妻在线| 国产伦一二天堂av在线观看| 日本爱情动作片www.在线观看| www.av在线官网国产| 少妇猛男粗大的猛烈进出视频 | 91av网一区二区| 亚洲av电影不卡..在线观看| 欧美日韩精品成人综合77777| 精品日产1卡2卡| 男女做爰动态图高潮gif福利片| av在线老鸭窝| 欧美性猛交黑人性爽| 内射极品少妇av片p| 午夜福利在线观看吧| 悠悠久久av| 少妇熟女欧美另类| 欧美bdsm另类| 国产综合懂色| 亚洲欧洲日产国产| 国产成人一区二区在线| 99久久无色码亚洲精品果冻| 夫妻性生交免费视频一级片| 亚洲四区av| 色哟哟哟哟哟哟| 久久人人爽人人片av| 哪个播放器可以免费观看大片| 中文字幕人妻熟人妻熟丝袜美| 深夜精品福利| 日韩欧美在线乱码| 99久久无色码亚洲精品果冻| 亚洲av二区三区四区| 毛片女人毛片| 国产亚洲5aaaaa淫片| 国产精品久久久久久久久免| 99久久精品热视频| 免费观看精品视频网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产又黄又爽又无遮挡在线| 国产精品三级大全| 久久精品国产亚洲av涩爱 | 国产白丝娇喘喷水9色精品| 春色校园在线视频观看| 国产乱人视频| 女的被弄到高潮叫床怎么办| 免费不卡的大黄色大毛片视频在线观看 | 国产不卡一卡二| 国产av一区在线观看免费| 又粗又硬又长又爽又黄的视频 | 亚洲精品乱码久久久久久按摩| 99热全是精品| 婷婷色综合大香蕉| 亚洲不卡免费看| 国产私拍福利视频在线观看| 黄色欧美视频在线观看| 亚洲精品国产成人久久av| 18+在线观看网站| 久久6这里有精品| 国产高清不卡午夜福利| 日韩亚洲欧美综合| 男人舔奶头视频| 特大巨黑吊av在线直播| 日日撸夜夜添| 赤兔流量卡办理| 亚洲欧美日韩卡通动漫|